

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	508
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=s9s08aw60e5mfger

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Revision Number	Revision Date	Description of Changes
1	1/2006	Initial external release.
2	12/2006	Includes KBI block changes; new V _{OL} / I _{OL} figures; RI _{DD} spec changes; SC part numbers with ICG trim modifications; addition of Temp Sensor to ADC. Resolved the stop IDD issues, added RTI figure, bandgap information, and incorporated electricals edits and any ProjectSync issues.

This product incorporates SuperFlash[®] technology licensed from SST.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. © Freescale Semiconductor, Inc., 2006. All rights reserved.

Section Number

Title

Page

	7.2.1	Accumulator (A)	110
	7.2.2	Index Register (H:X)	
	7.2.3	Stack Pointer (SP)	
	7.2.4	Program Counter (PC)	
	7.2.5	Condition Code Register (CCR)	
7.3	Addressi	ng Modes	113
	7.3.1	Inherent Addressing Mode (INH)	
	7.3.2	Relative Addressing Mode (REL)	113
	7.3.3	Immediate Addressing Mode (IMM)	113
	7.3.4	Direct Addressing Mode (DIR)	113
	7.3.5	Extended Addressing Mode (EXT)	114
	7.3.6	Indexed Addressing Mode	114
7.4	Special C	Operations	115
	7.4.1	Reset Sequence	115
	7.4.2	Interrupt Sequence	
	7.4.3	Wait Mode Operation	
	7.4.4	Stop Mode Operation	
	7.4.5	BGND Instruction	117
7.5	HCS08 I	nstruction Set Summary	118

Chapter 8 Internal Clock Generator (S08ICGV4)

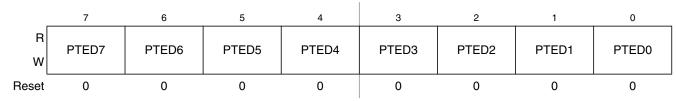
Introduc	tion	131
8.1.1	Features	131
8.1.2	Modes of Operation	132
8.1.3	Block Diagram	133
External	Signal Description	133
8.2.1	EXTAL — External Reference Clock / Oscillator Input	133
8.2.2	XTAL — Oscillator Output	133
8.2.3		
8.2.4	External Crystal/Resonator Connections	134
Register	Definition	135
8.3.1	ICG Control Register 1 (ICGC1)	135
8.3.2	ICG Control Register 2 (ICGC2)	137
8.3.3	ICG Status Register 1 (ICGS1)	138
8.3.4	ICG Status Register 2 (ICGS2)	139
8.3.5	ICG Filter Registers (ICGFLTU, ICGFLTL)	139
8.3.6	ICG Trim Register (ICGTRM)	140
Function	al Description	140
8.4.1	Off Mode (Off)	141
8.4.2	Self-Clocked Mode (SCM)	141
8.4.3	FLL Engaged, Internal Clock (FEI) Mode	142
	8.1.1 8.1.2 8.1.3 External 8.2.1 8.2.2 8.2.3 8.2.4 Register 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 Function 8.4.1 8.4.2	 8.1.2 Modes of Operation

Section Number

Title

Page

Chapter 14 Analog-to-Digital Converter (S08ADC10V1)


14.1	Overview	7	233
14.2	Channel A	Assignments	233
	14.2.1	Alternate Clock	234
	14.2.2	Hardware Trigger	234
	14.2.3	Temperature Sensor	235
	14.2.4	Features	237
	14.2.5	Block Diagram	237
14.3	External	Signal Description	238
	14.3.1	Analog Power (V _{DDAD})	239
	14.3.2	Analog Ground (V _{SSAD})	239
	14.3.3	Voltage Reference High (V _{REFH})	239
	14.3.4	Voltage Reference Low (V _{REFL})	
	14.3.5	Analog Channel Inputs (ADx)	
14.4	Register I	Definition	239
	14.4.1	Status and Control Register 1 (ADC1SC1)	239
	14.4.2	Status and Control Register 2 (ADC1SC2)	241
	14.4.3	Data Result High Register (ADC1RH)	
	14.4.4	Data Result Low Register (ADC1RL)	242
	14.4.5	Compare Value High Register (ADC1CVH)	243
	14.4.6	Compare Value Low Register (ADC1CVL)	
	14.4.7	Configuration Register (ADC1CFG)	
	14.4.8	Pin Control 1 Register (APCTL1)	245
	14.4.9	Pin Control 2 Register (APCTL2)	
	14.4.10	Pin Control 3 Register (APCTL3)	
14.5		al Description	
	14.5.1	Clock Select and Divide Control	248
	14.5.2	Input Select and Pin Control	249
	14.5.3	Hardware Trigger	249
	14.5.4	Conversion Control	249
	14.5.5	Automatic Compare Function	252
	14.5.6	MCU Wait Mode Operation	252
	14.5.7	MCU Stop3 Mode Operation	252
	14.5.8	MCU Stop1 and Stop2 Mode Operation	253
14.6		ion Information	
	14.6.1	ADC Module Initialization Example	253
14.7	Applicati	on Information	
	14.7.1	External Pins and Routing	255
	14.7.2	Sources of Error	

Chapter 6 Parallel Input/Output

6.7.9 Port E I/O Registers (PTED and PTEDD)

Port E parallel I/O function is controlled by the registers listed below.

Figure 6-29. Port E Data Register (PTED)

Table 6-22. PTED Register Field Descriptions

Field	Description
7:0 PTED[7:0]	Port E Data Register Bits — For port E pins that are inputs, reads return the logic level on the pin. For port E pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port E pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTED to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pullups disabled.

_	7	6	5	4	3	2	1	0
R W	PTEDD7	PTEDD6	PTEDD5	PTEDD4	PTEDD3	PTEDD2	PTEDD1	PTEDD0
Reset	0	0	0	0	0	0	0	0

Figure 6-30. Data Direction for Port E (PTEDD)

Table 6-23. PTEDD Register Field Descriptions

Field	Description
7:0	Data Direction for Port E Bits — These read/write bits control the direction of port E pins and what is read for
PTEDD[7:0]	PTED reads.
	0 Input (output driver disabled) and reads return the pin value.
	1 Output driver enabled for port E bit n and PTED reads return the contents of PTEDn.

Chapter 6 Parallel Input/Output

_	7	6	5	4	3	2	1	0
R W	PTFDS7	PTFDS6	PTFDS5	PTFDS4	PTFDS3	PTFDS2	PTFDS1	PTFDS0
Reset	0	0	0	0	0	0	0	0

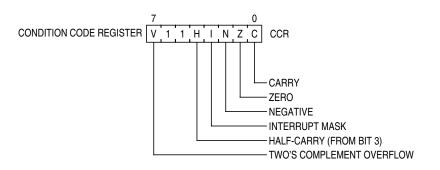

Figure 6-38. Output Drive Strength Selection for Port F (PTFDS)

Table 6-31. PTFDS Register Field Descriptions

Field	Description
7:0 PTFDS[7:0]	 Output Drive Strength Selection for Port F Bits — Each of these control bits selects between low and high output drive for the associated PTF pin. 0 Low output drive enabled for port F bit n. 1 High output drive enabled for port F bit n.

Chapter 7 Central Processor Unit (S08CPUV2)

Figure 7-2. Condition Code Register

Table 7-1. CCR Register Field Descriptions

Field	Description
7 V	Two's Complement Overflow Flag — The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 0 No overflow 1 Overflow
4 H	 Half-Carry Flag — The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C condition code bits to automatically add a correction value to the result from a previous ADD or ADC on BCD operands to correct the result to a valid BCD value. 0 No carry between bits 3 and 4 1 Carry between bits 3 and 4
3	Interrupt Mask Bit — When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the first instruction of the interrupt service routine is executed. Interrupts are not recognized at the instruction boundary after any instruction that clears I (CLI or TAP). This ensures that the next instruction after a CLI or TAP will always be executed without the possibility of an intervening interrupt, provided I was set. 0 Interrupts disabled
2 N	Negative Flag — The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. Simply loading or storing an 8-bit or 16-bit value causes N to be set if the most significant bit of the loaded or stored value was 1. 0 Non-negative result 1 Negative result
1 Z	 Zero Flag — The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of 0x00 or 0x0000. Simply loading or storing an 8-bit or 16-bit value causes Z to be set if the loaded or stored value was all 0s. 0 Non-zero result 1 Zero result
0 C	 Carry/Borrow Flag — The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. No carry out of bit 7 Carry out of bit 7

7.3 Addressing Modes

Addressing modes define the way the CPU accesses operands and data. In the HCS08, all memory, status and control registers, and input/output (I/O) ports share a single 64-Kbyte linear address space so a 16-bit binary address can uniquely identify any memory location. This arrangement means that the same instructions that access variables in RAM can also be used to access I/O and control registers or nonvolatile program space.

Some instructions use more than one addressing mode. For instance, move instructions use one addressing mode to specify the source operand and a second addressing mode to specify the destination address. Instructions such as BRCLR, BRSET, CBEQ, and DBNZ use one addressing mode to specify the location of an operand for a test and then use relative addressing mode to specify the branch destination address when the tested condition is true. For BRCLR, BRSET, CBEQ, and DBNZ, the addressing mode listed in the instruction set tables is the addressing mode needed to access the operand to be tested, and relative addressing mode is implied for the branch destination.

7.3.1 Inherent Addressing Mode (INH)

In this addressing mode, operands needed to complete the instruction (if any) are located within CPU registers so the CPU does not need to access memory to get any operands.

7.3.2 Relative Addressing Mode (REL)

Relative addressing mode is used to specify the destination location for branch instructions. A signed 8-bit offset value is located in the memory location immediately following the opcode. During execution, if the branch condition is true, the signed offset is sign-extended to a 16-bit value and is added to the current contents of the program counter, which causes program execution to continue at the branch destination address.

7.3.3 Immediate Addressing Mode (IMM)

In immediate addressing mode, the operand needed to complete the instruction is included in the object code immediately following the instruction opcode in memory. In the case of a 16-bit immediate operand, the high-order byte is located in the next memory location after the opcode, and the low-order byte is located in the next memory location after that.

7.3.4 Direct Addressing Mode (DIR)

In direct addressing mode, the instruction includes the low-order eight bits of an address in the direct page (0x0000-0x00FF). During execution a 16-bit address is formed by concatenating an implied 0x00 for the high-order half of the address and the direct address from the instruction to get the 16-bit address where the desired operand is located. This is faster and more memory efficient than specifying a complete 16-bit address for the operand.

Chapter 7 Central Processor Unit (S08CPUV2)

Bit-Manipulation	Branch	Rea	d-Modify-W		 Control Register/Memory							
				9E60 6 NEG 3 SP1						9ED0 5 SUB 4 SP2	9EE0 4 SUB 3 SP1	
				9E61 6 CBEQ 4 SP1						9ED1 5 CMP 4 SP2	9EE1 4 CMP 3 SP1	
										9ED2 5 SBC 4 SP2	3 SP1	
				9E63 6 COM 3 SP1						9ED3 5 CPX 4 SP2 9ED4 5	9EE3 4 CPX 3 SP1	9EF3 6 CPHX 3 SP1
				9E64 6 LSR 3 SP1						AND	AND	
										9ED5 5 BIT 4 SP2	9EE5 4 BIT 3 SP1	
				9E66 6 ROR 3 SP1						9ED6 5 LDA 4 SP2	9EE6 4 LDA 3 SP1	
				9E67 6 ASR 3 SP1						9ED7 5 STA 4 SP2	9EE7 4 STA 3 SP1	
				9E68 6 LSL 3 SP1 9E69 6						9ED8 5 EOR 4 SP2	9EE8 4 EOR 3 SP1	
				ROL 3 SP1						9ED9 5 ADC 4 SP2	ADC 3 SP1	
				9E6A 6 DEC 3 SP1						9EDA 5 ORA 4 SP2	ORA 3 SP1	
				9E6B 8 DBNZ 4 SP1						9EDB 5 ADD 4 SP2	ADD	
				9E6C 6 INC 3 SP1								
				9E6D 5 TST 3 SP1								
							9EAE 5 LDHX 2 IX	LDHX		9EDE 5 LDX 4 SP2	א חו	9EFE 5 LDHX 3 SP1 9EFF 5
				9E6F 6 CLR 3 SP1						9EDF 5 STX 4 SP2	9EEF 4 STX 3 SP1	9EFF 5 STHX 3 SP1

Table 7-3. Opcode Map (Sheet 2 of 2)

Inherent Immediate Direct Extended DIR to DIR IX+ to DIR REL IX IX1 IX2 IMD DIX+ INH IMM DIR EXT DD IX+D

Relative Indexed, No Offset Indexed, 8-Bit Offset Indexed, 16-Bit Offset IMM to DIR DIR to IX+

Stack Pointer, 8-Bit Offset Stack Pointer, 16-Bit Offset Indexed, No Offset with Post Increment Indexed, 1-Byte Offset with Post Increment

SP1 SP2 IX+

IX1+

Note: All Sheet 2 Opcodes are Preceded by the Page 2 Prebyte (9E)

Prebyte (9E) and Opcode in Hexadecimal 9E60 6 NEG Number of Bytes 3 SP1 Addressing Mode

MC9S08AW60 Data Sheet, Rev 2

Chapter 8 Internal Clock Generator (S08ICGV4)

The internal clock generation (ICG) module is used to generate the system clocks for the MC9S08AW60 Series MCU. The analog supply lines V_{DDA} and V_{SSA} are internally derived from the MCU's V_{DD} and V_{SS} pins. Electrical parametric data for the ICG may be found in Appendix A, "Electrical Characteristics and Timing Specifications."

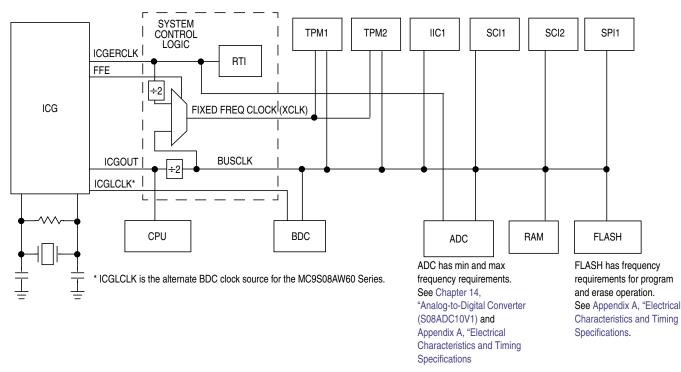


Figure 8-1. System Clock Distribution Diagram

NOTE

Freescale Semiconductor recommends that FLASH location \$FFBE be reserved to store a nonvolatile version of ICGTRM. This will allow debugger and programmer vendors to perform a manual trim operation and store the resultant ICGTRM value for users to access at a later time.

8.4.4 FLL Engaged Internal Unlocked

FEI unlocked is a temporary state that is entered when FEI is entered and the count error (Δn) output from the subtractor is greater than the maximum n_{unlock} or less than the minimum n_{unlock} , as required by the lock detector to detect the unlock condition.

The ICG will remain in this state while the count error (Δn) is greater than the maximum n_{lock} or less than the minimum n_{lock} , as required by the lock detector to detect the lock condition.

In this state the output clock signal ICGOUT frequency is given by f_{ICGDCLK} / R.

8.4.5 FLL Engaged Internal Locked

FLL engaged internal locked is entered from FEI unlocked when the count error (Δn), which comes from the subtractor, is less than n_{lock} (max) and greater than n_{lock} (min) for a given number of samples, as required by the lock detector to detect the lock condition. The output clock signal ICGOUT frequency is given by $f_{ICGDCLK}$ / R. In FEI locked, the filter value is updated only once every four comparison cycles. The update made is an average of the error measurements taken in the four previous comparisons.

8.4.6 FLL Bypassed, External Clock (FBE) Mode

FLL bypassed external (FBE) is entered when any of the following conditions occur:

- From SCM when CLKS = 10 and ERCS is high
- When CLKS = 10, ERCS = 1 upon entering off mode, and off is then exited
- From FLL engaged external mode if a loss of DCO clock occurs and the external reference remains valid (both LOCS = 1 and ERCS = 1)

In this state, the DCO and IRG are off and the reference clock is derived from the external reference clock, ICGERCLK. The output clock signal ICGOUT frequency is given by $f_{ICGERCLK} / R$. If an external clock source is used (REFS = 0), then the input frequency on the EXTAL pin can be anywhere in the range 0 MHz to 40 MHz. If a crystal or resonator is used (REFS = 1), then frequency range is either low for RANGE = 0 or high for RANGE = 1.

8.4.7 FLL Engaged, External Clock (FEE) Mode

The FLL engaged external (FEE) mode is entered when any of the following conditions occur:

- CLKS = 11 and ERCS and DCOS are both high.
- The DCO stabilizes (DCOS = 1) while in SCM upon exiting the off state with CLKS = 11.

In FEE mode, the reference clock is derived from the external reference clock ICGERCLK, and the FLL loop will attempt to lock the ICGDCLK frequency to the desired value, as selected by the MFD bits. To run in FEE mode, there must be a working 32 kHz–100 kHz or 2 MHz–10 MHz external clock source. The maximum external clock frequency is limited to 10 MHz in FEE mode to prevent over-clocking the DCO. The minimum multiplier for the FLL, from Table 8-12 is 4. Because 4 X 10 MHz is 40MHz, which is the operational limit of the DCO, the reference clock cannot be any faster than 10 MHz.

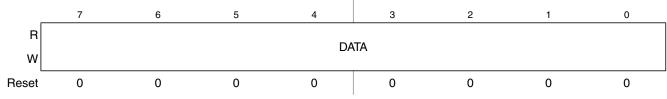
Chapter 8 Internal Clock Generator (S08ICGV4)

Chapter 9 Keyboard Interrupt (S08KBIV1)

9.3 Features

The keyboard interrupt (KBI) module features include:

- Four falling edge/low level sensitive
- Four falling edge/low level or rising edge/high level sensitive
- Choice of edge-only or edge-and-level sensitivity
- Common interrupt flag and interrupt enable control
- Capable of waking up the MCU from stop3 or wait mode


Chapter 13 Inter-Integrated Circuit (S08IICV1)

13.1 Introduction

The MC9S08AW60 Series of microcontrollers has an inter-integrated circuit (IIC) module for communication with other integrated circuits. The two pins associated with this module, SCL and SDA, are open-drain outputs and are shared with port C pins 0 and 1, respectively.

Chapter 13 Inter-Integrated Circuit (S08IICV1)

13.3.5 IIC Data I/O Register (IIC1D)

Figure 13-7. IIC Data I/O Register (IIC1D)

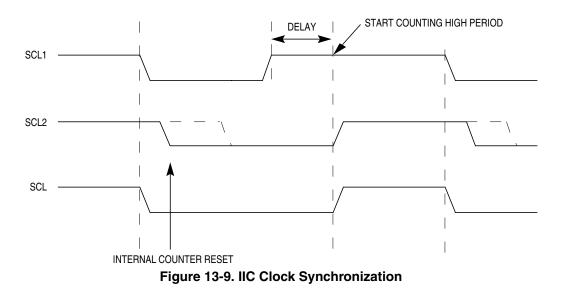
Table 13-6. IIC1D Register Field Descriptions

Field	Description
7:0 DATA	Data — In master transmit mode, when data is written to the IIC1D, a data transfer is initiated. The most significant bit is sent first. In master receive mode, reading this register initiates receiving of the next byte of data.

NOTE

When transmitting out of master receive mode, the IIC mode should be switched before reading the IIC1D register to prevent an inadvertent initiation of a master receive data transfer.

In slave mode, the same functions are available after an address match has occurred.


Note that the TX bit in IIC1C must correctly reflect the desired direction of transfer in master and slave modes for the transmission to begin. For instance, if the IIC is configured for master transmit but a master receive is desired, then reading the IIC1D will not initiate the receive.

Reading the IIC1D will return the last byte received while the IIC is configured in either master receive or slave receive modes. The IIC1D does not reflect every byte that is transmitted on the IIC bus, nor can software verify that a byte has been written to the IIC1D correctly by reading it back.

In master transmit mode, the first byte of data written to IIC1D following assertion of MST is used for the address transfer and should comprise of the calling address (in bit 7–bit 1) concatenated with the required R/W bit (in position bit 0).

Chapter 13 Inter-Integrated Circuit (S08IICV1)

13.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold the SCL low after completion of one byte transfer (9 bits). In such case, it halts the bus clock and forces the master clock into wait states until the slave releases the SCL line.

13.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After the master has driven SCL low the slave can drive SCL low for the required period and then release it. If the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low period is stretched.

13.5 Resets

The IIC is disabled after reset. The IIC cannot cause an MCU reset.

13.6 Interrupts

The IIC generates a single interrupt.

An interrupt from the IIC is generated when any of the events in Table 13-7 occur provided the IICIE bit is set. The interrupt is driven by bit IICIF (of the IIC status register) and masked with bit IICIE (of the IIC control register). The IICIF bit must be cleared by software by writing a one to it in the interrupt routine. The user can determine the interrupt type by reading the status register.

Interrupt Source	Status	Flag	Local Enable
Complete 1-byte transfer	TCF	IICIF	IICIE
Match of received calling address	IAAS	IICIF	IICIE
Arbitration Lost	ARBL	IICIF	IICIE

Table 13-7. Interrupt Summary

14.2.4 Features

Features of the ADC module include:

- Linear successive approximation algorithm with 10 bits resolution.
- Up to 28 analog inputs.
- Output formatted in 10- or 8-bit right-justified format.
- Single or continuous conversion (automatic return to idle after single conversion).
- Configurable sample time and conversion speed/power.
- Conversion complete flag and interrupt.
- Input clock selectable from up to four sources.
- Operation in wait or stop3 modes for lower noise operation.
- Asynchronous clock source for lower noise operation.
- Selectable asynchronous hardware conversion trigger.
- Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value.

14.2.5 Block Diagram

Figure 14-2 provides a block diagram of the ADC module

Command Mnemonic			Description
SYNC	Non-intrusive	n/a ¹	Request a timed reference pulse to determine target BDC communication speed
ACK_ENABLE	Non-intrusive	D5/d	Enable acknowledge protocol. Refer to Freescale document order no. HCS08RMv1/D.
ACK_DISABLE	Non-intrusive	D6/d	Disable acknowledge protocol. Refer to Freescale document order no. HCS08RMv1/D.
BACKGROUND	Non-intrusive	90/d	Enter active background mode if enabled (ignore if ENBDM bit equals 0)
READ_STATUS	Non-intrusive	E4/SS	Read BDC status from BDCSCR
WRITE_CONTROL	Non-intrusive	C4/CC	Write BDC controls in BDCSCR
READ_BYTE	Non-intrusive	E0/AAAA/d/RD	Read a byte from target memory
READ_BYTE_WS	Non-intrusive	E1/AAAA/d/SS/RD	Read a byte and report status
READ_LAST	Non-intrusive	E8/SS/RD	Re-read byte from address just read and report status
WRITE_BYTE	Non-intrusive	C0/AAAA/WD/d	Write a byte to target memory
WRITE_BYTE_WS	Non-intrusive	C1/AAAA/WD/d/SS	Write a byte and report status
READ_BKPT	Non-intrusive	E2/RBKP	Read BDCBKPT breakpoint register
WRITE_BKPT	Non-intrusive	C2/WBKP	Write BDCBKPT breakpoint register
GO	Active BDM	08/d	Go to execute the user application program starting at the address currently in the PC
TRACE1	Active BDM	10/d	Trace 1 user instruction at the address in the PC, then return to active background mode
TAGGO	Active BDM	18/d	Same as GO but enable external tagging (HCS08 devices have no external tagging pin)
READ_A	Active BDM	68/d/RD	Read accumulator (A)
READ_CCR	Active BDM	69/d/RD	Read condition code register (CCR)
READ_PC	Active BDM	6B/d/RD16	Read program counter (PC)
READ_HX	Active BDM	6C/d/RD16	Read H and X register pair (H:X)
READ_SP	Active BDM	6F/d/RD16	Read stack pointer (SP)
READ_NEXT	Active BDM	70/d/RD	Increment H:X by one then read memory byte located at H:X
READ_NEXT_WS	Active BDM	71/d/SS/RD	Increment H:X by one then read memory byte located at H:X. Report status and data.
WRITE_A	Active BDM	48/WD/d	Write accumulator (A)
WRITE_CCR	Active BDM	49/WD/d	Write condition code register (CCR)
WRITE_PC	Active BDM	4B/WD16/d	Write program counter (PC)
WRITE_HX	Active BDM	4C/WD16/d	Write H and X register pair (H:X)
WRITE_SP	Active BDM	4F/WD16/d	Write stack pointer (SP)
WRITE_NEXT	Active BDM	50/WD/d	Increment H:X by one, then write memory byte located at H:X
WRITE_NEXT_WS	Active BDM	51/WD/d/SS	Increment H:X by one, then write memory byte located at H:X. Also report status.

¹ The SYNC command is a special operation that does not have a command code.

Appendix A Electrical Characteristics and Timing Specifications

A.7 Supply Current Characteristics

Table A-8.	Supply	Current	Characteristics
------------	--------	---------	-----------------

Num	с	Parameter	Symbol	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
	_	Run supply current ² measured at		5	0.750	0.950		
1	P	(CPU clock = 2 MHz, f _{Bus} = 1 MHz)	RI _{DD}	3	0.570	0.770	mA	–40 to 125°C
		Run supply current ² measured at		5	4.90	5.10		
2	P	P (CPU clock = 16 MHz, f _{Bus} = 8 MHz)	RI _{DD}	3	3.50	3.70	mA	–40 to 125°C
_	Р	Run supply current ³ measured at (CPU		5	16.8	18.5		40 1 40500
3	P	clock = 40 MHz, f _{Bus} = 20 MHz)	RI _{DD}	3	11.5	12.5	mA	–40 to 125°C
4		Stop2 mode supply current		5	0.900	18.0 60	μA	–40 to 85°C –40 to 125°C
4	P		S2I _{DD}	3	0.720	17.0 50	μA	–40 to 85°C –40 to 125°C
5	Р	Stop3 mode supply current		5	0.975	20.0 90	μA	–40 to 85°C –40 to 125°C
5	P		S3I _{DD}	3	0.825	19.0 85	μA	–40 to 85°C –40 to 125°C
6	с	RTI adder to stop2 or stop3 ⁴	S23I _{DDRTI}	5	300	500 500	nA	–40 to 85°C –40 to 125°C
0				3	300	500 500	nA	–40 to 85°C –40 to 125°C
7	с		<u></u>	5	110	180	μA	–40 to 125°C
		LVD adder to stop3 (LVDE = LVDSE = 1)	S3I _{DDLVD}	3	90	160	μA	–40 to 125°C
8	с	Adder to stop3 for oscillator enabled (OSCSTEN =1) ⁵	S3I _{DDOSC}	5,3	5	8	μA	–40 to 125°C

¹ Typical values are based on characterization data at 25°C unless otherwise stated. See Figure A-5 through Figure A-7 for typical curves across voltage/temperature.

² All modules except ADC enabled, but not active. ICG configured for FBE. Does not include any DC loads on port pins.

³ All modules except ADC active, ICG configured for FBE and does not include any DC loads on port pins

⁴ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 500 μ A at 5 V with f_{Bus} = 1 MHz.

⁵ Values given under the following conditions: low range operation (RANGE = 0) with a 32.768 kHz crystal, low power mode (HGO = 0), clock monitor disabled (LOCD = 1).

Appendix A Electrical Characteristics and Timing Specifications

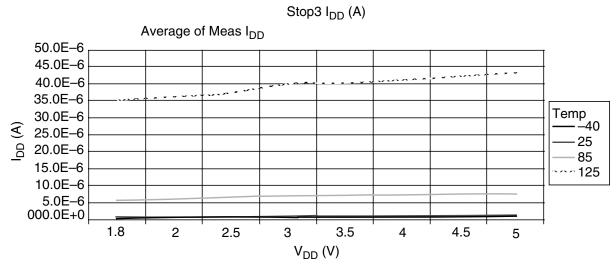


Figure A-7. Typical Stop3 I_{DD}

A.8 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit
Supply voltage	Absolute	V _{DDAD}	2.7	_	5.5	V
	Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV _{DDAD}	-100	0	+100	mV
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV _{SSAD}	-100	0	+100	mV
Ref voltage high		V _{REFH}	2.7	V _{DDAD}	V _{DDAD}	V
Ref voltage low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V
Input capacitance		C _{ADIN}	_	4.5	5.5	pF
Input resistance		R _{ADIN}	_	3	5	kΩ
Analog source resistance External to MCU	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ
	8-bit mode (all valid f _{ADCK})		_	_	10	
ADC conversion clock frequency	High speed (ADLPC = 0)	f _{ADCK}	0.4	_	8.0	MHz
	Low power (ADLPC = 1)		0.4	_	4.0	

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25°C, f_{ADCK} = 1.0MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² dc potential difference.

NOTES:

- 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUMS L, M AND N TO BE DETERMINED AT DATUM PLANE H.

5. DIMENSIONS TO BE DETERMINED AT SEATING PLANE T.

6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

/1. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE DIMENSION TO EXCEED 0.53. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:		DOCUMENT NE	RE∨: D	
44 LD LQFP, 10 X 10 PKG, 0.8 PITCH, 1.	CASE NUMBER: 824D-02 26 FEB 20			
		STANDARD: JE	DEC MS-026 BCB	