

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	15
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21324cnsp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Current of Aug 2010

1.2 Product List

Table 1.3 lists Product List for R8C/32C Group, and Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/32C Group.

Part No	ROM Capacity		RAM	Packago Typo	Pomarka	
Fait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remarks	
R5F21321CNSP	4 Kbytes	1 Kbyte × 4	512 bytes	PLSP0020JB-A	N version	
R5F21322CNSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0020JB-A		
R5F21324CNSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0020JB-A		
R5F21321CDSP	4 Kbytes	1 Kbyte × 4	512 bytes	PLSP0020JB-A	D version	
R5F21322CDSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0020JB-A		
R5F21324CDSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0020JB-A		

Table 1.3 Product List for R8C/32C Group

1.3 Block Diagram

Figure 1.2 shows a Block Diagram.

Din			I/O Pin Functions for Peripheral Modules					
Number	Control Pin	Port	Interrupt	Timer	Serial	9911	I ² C	A/D Converter,
Turnbor			interrupt		Interface	550	bus	Comparator B
1		P4_2						VREF
2	MODE							
3	RESET							
4	XOUT(/XCOUT)	P4_7						
5	VSS/AVSS							
6	XIN(/XCIN)	P4_6						
7	VCC/AVCC							
8		P3_7		TRAO	(RXD2/SCL2/ TXD2/SDA2)	SSO	SDA	
9		P3_5		(TRCIOD)	(CLK2)	SSCK	SCL	
10		P3_4		(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)	SSI		IVREF3
11		P3_3	INT3	(TRCCLK)	(CTS2/RTS2)	SCS		IVCMP3
12		P4_5	INTO		(RXD2/SCL2)			ADTRG
13		P1_7	INT1	(TRAIO)				IVCMP1
14		P1_6			(CLK0)			IVREF1
15		P1_5	(INT1)	(TRAIO)	(RXD0)			
16		P1_4		(TRCCLK)	(TXD0)			
17		P1_3	KI3	TRBO (/TRCIOC)				AN11
18		P1_2	KI2	(TRCIOB)				AN10
19		P1_1	KI1	(TRCIOA/ TRCTRG)				AN9
20		P1_0	KI0	(TRCIOD)				AN8

Table 1.4 Pin Name Information by Pin Number

Note:

1. Can be assigned to the pin in parentheses by a program.

Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0181h	Timer RC Pin Select Register	TRBRCSR	00h
01925	Timor PC Din Soloct Register 0	TPCDQDO	00b
01820		TROPSRU	000
0183h	Timer KU Pin Select Register 1	TRUPSR1	UUN
0184h			
0185h			
0186h			
0187h			
0188h	UARTO Pin Select Register	U0SR	00h
0180h			
01031	LIAPT2 Din Salaat Pagiatar 0	112580	00h
010A11	UART2 FIII Select Register 0	023R0	001
018Bh	UARIZ PIN Select Register 1	U2SR1	UUh
018Ch	SSU / IIC Pin Select Register	SSUIICSR	00h
018Dh			
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h
018Fh	I/O Function Pin Select Register	PINSR	00h
0190h			
0101h			
0102h			
01025	SS Dit Counter Degister	CODD	11111000b
01930		SODR	
0194h	SS Transmit Data Register L / IIC bus Transmit Data Register (2)	SSTDR / ICDRT	FFN
0195h	SS Transmit Data Register H ⁽²⁾	SSTDRH	FFh
0196h	SS Receive Data Register L / IIC bus Receive Data Register (2)	SSRDR / ICDRR	FFh
0197h	SS Receive Data Register H (2)	SSRDRH	FFh
01006	CC Control Degister II / IIC hug Control De -: 4 (2)	SSCRH / ICCP1	00b
013011			04444045
0199h	SS Control Register L / IIC bus Control Register 2 ⁽²⁾	SSURL / ICCR2	011111010
019Ah	SS Mode Register / IIC bus Mode Register (2)	SSMR / ICMR	00010000b / 00011000b
019Bh	SS Enable Register / IIC bus Interrupt Enable Register (2)	SSER / ICIER	00h
019Ch	SS Status Register / IIC bus Status Register (2)	SSSR / ICSR	00h / 0000X000h
01006	Se Mada Dogistar 2 / Slove Address Dogister (?)	SSMR2/SAD	00b
	So would register 2 / Slave Address register (2)	JOININZ / JAK	0011
UI9EN			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01/70/1			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B00			
01005	Elech Memory Statue Degister	LOT	10000X00b
01B2h	riash wemory status kegister	101	duxuuu
01B3h		EN ID A	0.01
01B4h	Flash Memory Control Register 0	FMR0	UUh
01B5h	Flash Memory Control Register 1	FMR1	00h
01B6h	Flash Memory Control Register 2	FMR2	00h
01B7h			
01B8h			
01B9h		1	
01BAh			
01BRh			
01001			
UIBDN			
01BEh			
01BFh			

Table 4.7	SFR Information (7) ⁽¹⁾
-----------	------------------------------------

X: Undefined Notes: 1. The blank areas are reserved and cannot be accessed by users. 2. Selectable by the IICSEL bit in the SSUIICSR register.

Address	Register	Symbol	After Reset
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C06h	DTC Transfer Vector Area		XXn
2C07h	DTC Transfer Vector Area		XXn
2008h	DTC Transfer Vector Area		
2C090	DTC Transfer Vector Area		XXh
200AII	DTC Transfer Vector Area		XXh
	DTC Transfer Vector Area		XXh
2C3Ah	DTC Transfer Vector Area		XXh
2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C40h	DTC Control Data 0	DTCD0	XXh
2C41h			XXh
2C42h			XXh
2C43h			XXN
2044n			
2045h			
2C401			XXh
2C48h	DTC Control Data 1	DTCD1	XXh
2C49h		01001	XXh
2C4Ah			XXh
2C4Bh			XXh
2C4Ch			XXh
2C4Dh			XXh
2C4Eh			XXh
2C4Fh			XXh
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h			XXh
2C52h			XXn
2C530			XXh
2054h			XXh
2000h			XXh
2C57h			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h			XXh
2C5Ah			XXh
2C5Bh			XXh
2C5Ch			XXh
2C5Dh			XXh
2C5Eh			XXh
2C5Fh		DTOD (XXh
2C60h	DIC Control Data 4	DTCD4	XXN
2061h			
2002N			
2003II 2064b			XXh
2C65h			XXh
2C66h			XXh
2C67h			XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h			XXh
2C6Ah			XXh
2C6Bh			XXh
2C6Ch			XXh
2C6Dh			XXh
2C6Eh			XXh
206Fh			770

SFR Information (9)⁽¹⁾ Table 4.9

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2072h			YVh
20731			
2074h			XXn
2C75h			XXh
2C76h			XXh
2C77h			XXh
2C78h	DTC Control Data 7	DTCD7	XXh
2C79h			XXh
2C7Ah			XXh
2C7Bh			XXh
2070h			XXh
2070h			YVh
207Dh			
207EII			
207Fn			XXn
2C80h	DIC Control Data 8	DICD8	XXh
2C81h			XXh
2C82h			XXh
2C83h			XXh
2C84h			XXh
2C85h			XXh
2C86h			XXh
2C87h			XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2000h		01000	XXh
2009II			XXh
2CoAll			
20880			AAn
2080h			XXN
2C8Dh			XXh
2C8Eh			XXh
2C8Fh			XXh
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h			XXh
2C94h			XXh
2C95h			XXh
2000h			XXh
2030h			XXh
209711	DTO Ocatal Data 14	DTOD44	
2098h	DTC Control Data TT		
2099h			7.XU
2C9Ah			XXh
2C9Bh			XXh
2C9Ch			XXh
2C9Dh			XXh
2C9Eh			XXh
2C9Fh			XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h		-	XXh
2CA2h			XXh
2CA3h			XXh
207.011			YYh
20A4II			
20A5h			
20A6h			7.XU
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
2CAAh			XXh
2CABh			XXh
2CACh			XXh
2CADh			XXh
2CAFh			XXh
20/1E11			XXh
20/111			7770

SFR Information (10)⁽¹⁾ Table 4.10

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Symbol	Parameter	Conditions		Linit		
Symbol		Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		1,000 (3)	-	-	times
-	Byte program time		-	80	500	μS
-	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	_	5 + CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	_	_	μS
-	Time from suspend until erase restart		-	_	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	-	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time (7)	Ambient temperature = 55°C	20	-	_	year

Table 5.5 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and $T_{opr} = 0$ to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Baramatar	Conditions		Lloit		
Symbol			Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		10,000 (3)	-	-	times
-	Byte program time (program/erase endurance \leq 1,000 times)		_	160	1,500	μS
-	Byte program time (program/erase endurance > 1,000 times)		_	300	1,500	μs
-	Block erase time (program/erase endurance \leq 1,000 times)		_	0.2	1	S
-	Block erase time (program/erase endurance > 1,000 times)		_	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5 + CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	-	-	μs
_	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	-	5.5	V
_	Program, erase temperature		-20 (7)	-	85	°C
-	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	-	_	year

Table 5.6 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

Notes:

1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

Definition of programming/erastice endurance
 The programming and erasure endurance is defined on a per-block basis.
 If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.
 However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. -40°C for D version.

8. The data hold time includes time that the power supply is off or the clock is not supplied.

Figure 5.2Time delay until Suspend

Symbol	Parameter	Condition		Linit		
Symbol	Falanielei	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 ⁽²⁾		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
-	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0_0 - 0.1) V	-	6	150	μS
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

Table 5.7	Voltage Detection	0 Circuit Electrical	Characteristics
Table 5.7	voltage Detection	U CIrcuit Electrical	Characteristics

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.8	Voltage Detection	I Circuit Electrical	Characteristics
Table J.O	Vullage Delection	i Gircuit Liectricai	Characteristic

Symbol	Parameter	Condition	1	Linit		
Symbol			Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 (2)	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 (2)	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 (2)	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 (2)	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A ⁽²⁾	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
-	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	_	0.07	-	V
		Vdet1_6 to Vdet1_F selected	_	0.10	_	V
-	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to $(Vdet1_0 - 0.1) V$	_	60	150	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V		1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		_	-	100	μs

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Linit		
Symbol	Falametei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		-	0.10	-	V
-	Voltage detection 2 circuit response time ⁽²⁾	At the falling of Vcc from $5 \text{ V to } (\text{Vdet2}_0 - 0.1) \text{ V}$	-	20	150	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts $^{\rm (3)}$		Ι	-	100	μs

Table 5.9 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.10 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Lloit		
		Condition	Min.	Тур.	Max.	Unit
trth	External power Vcc rise gradient	(1)	0	-	50,000	mV/msec

Notes:

- 1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Power-on Reset Circuit Electrical Characteristics

Figure 5.3

Symbol	Parameter		Conditions		Standard			
Symbol			Conditions	Min.	Тур.	Max.	Unit	
tsucyc	SSCK clock cycle time)		4	-	-	tCYC ⁽²⁾	
tнı	SSCK clock "H" width			0.4	—	0.6	tsucyc	
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc	
trise	SSCK clock rising	Master		-	=	1	tCYC (2)	
	time	Slave		-	-	1	μs	
TFALL	SSCK clock falling	Master		-	-	1	tCYC ⁽²⁾	
	time	Slave		-	-	1	μs	
tsu	SSO, SSI data input setup time			100	-	=	ns	
tн	SSO, SSI data input he	old time		1	=	-	tCYC (2)	
tlead	SCS setup time	Slave		1tcyc + 50	_	_	ns	
tlag	SCS hold time	Slave		1tcyc + 50	_	_	ns	
top	SSO, SSI data output	delay time		-	=	1	tCYC ⁽²⁾	
tsa	SSI slave access time		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	-	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns	
tor	SSI slave out open tim	e	$2.7~\text{V} \leq \text{Vcc} \leq 5.5~\text{V}$	-	-	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns	

Table 5.14 Timing Requirements of Synchronous Serial Communication Unit (SSU) ⁽¹⁾

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

RENESAS

Table 5.20 S	erial Interface
--------------	-----------------

Symbol	Deremeter		Standard		
	Falanielei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200	-	ns	
tw(скн)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0, 2

Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.21 External Interrupt INTi (i = 0, 1, 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Paramatar		Standard		
	Falameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	250 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	250 ⁽²⁾	-	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Table 5.23Electrical Characteristics (4) $[2.7 V \le Vcc < 3.3 V]$
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard	þ	Unit
Cyrribol	rarameter		Condition	Min.	Тур.	Max.	Onin
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	10	mA
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	7.5	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	4.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	390	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	80	400	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	-	μΑ
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		2.0	5.0	μΑ
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	5.0	_	μA

Table 5.26 S	erial Interface
--------------	-----------------

Symbol	Deromotor		Standard		
	Falanielei	Min.	Max.	Offic	
tc(CK)	CLKi input cycle time	300	-	ns	
tW(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0, 2

Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.27External Interrupt \overline{INTi} (i = 0, 1, 3) Input, Key Input Interrupt \overline{Kli} (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	380 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	380 (2)	-	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.15 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

Table 5.29Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standar	b	Unit	
Cymbol	rarameter		Condition	Min.	Тур.	Max.	Onin	
Icc	Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pips are open	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	2.2	_	mA	
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8	_	mA	
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	2.5	10	mA	
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.7	-	mA	
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	_	mA	
		Low-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	300	μΑ	
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	80	350	μΑ	
				XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	90	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4	80	μA	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	3.5	_	μA		
		Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5	μΑ	
			XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	5.0	_	μA	

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.30 External Clock Input (XOUT, XCIN)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tc(XOUT)	XOUT input cycle time	200	-	ns
twh(xout)	XOUT input "H" width	90	-	ns
twl(xout)	XOUT input "L" width	90	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width	7	-	μS

Figure 5.16 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.31 TRAIO Input

Symbol	Parameter	Standard		Linit
		Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	-	ns
twl(traio)	TRAIO input "L" width	200	-	ns

Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpog GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpog Const Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-2825-1155, Frax: +86-21-6887-7858 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +882-2415-9200, Fax: +888-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +882-2415-9300, Fax: +882-2415-955-9510 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +882-2415-9390, Fax: +882-3475-9510 Renease Electronics Konea Co., Ltd. 11F, Samik Lavied or Billog, 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 13