

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3865axi-204t

Contents

1. Architectural Overview	4
2. Pinouts	6
3. Pin Descriptions	12
4. CPU	13
4.1 8051 CPU	
4.2 Addressing Modes	
4.3 Instruction Set	
4.4 DMA and PHUB	
4.5 Interrupt Controller	
5. Memory	
5.1 Static RAM	
5.2 Flash Program Memory	
5.3 Flash Security	
5.4 EEPROM	
5.5 Nonvolatile Latches (NVLs)	
5.7 Memory Map	
6. System Integration	28
6.1 Clocking System	
6.3 Reset	
6.4 I/O System and Routing	
-	
7. Digital Subsystem	44
7. Digital Subsystem	 44 44
7. Digital Subsystem	 44 44 46
7. Digital Subsystem	44 44 46 49
7. Digital Subsystem	44 46 49 49
7. Digital Subsystem	44 46 49 49 51
7. Digital Subsystem	44 46 49 51 53
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C	44 46 49 51 53 53
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block	44 46 49 51 53 53 54
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem	44 46 49 51 53 53 54 56
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing	44 46 49 51 53 54 56 56
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC	44 46 49 51 53 54 56 56 57
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators	44 46 49 51 53 54 56 56 57 59
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps	44 46 49 51 53 54 56 57 59 60
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks	44 44 49 51 53 54 56 57 59 61
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive	44 44 49 51 53 54 56 59 61 61
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense	444 446 499 51 53 546 566 566 566 616 616 626 63
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor	444 446 499 51 53 546 566 566 566 616 626 636
7. Digital Subsystem 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8. Analog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense	44 44 49 51 53 54 56 56 61 61 63 63 64

э. г	Togramming, Debug interfaces, Resources	
	9.1 JTAG Interface	
	9.2 Serial Wire Debug Interface	
	9.3 Debug Features	
	9.4 Trace Features	
	9.5 Single Wire Viewer Interface	
	9.6 Programming Features	
	9.7 Device Security	
	9.8 CSP Package Bootloader	69
10.	Development Support	70
	10.1 Documentation	
	10.2 Online	70
	10.3 Tools	70
11.	Electrical Specifications	71
	11.1 Absolute Maximum Ratings	
	11.2 Device Level Specifications	
	11.3 Power Regulators	
	11.4 Inputs and Outputs	
	11.5 Analog Peripherals	
	11.6 Digital Peripherals	
	11.7 Memory	
	11.8 PSoC System Resources	
	11.9 Clocking	119
12.	Ordering Information	123
	12.1 Part Numbering Conventions	
13	Packaging	
	Acronyms	
15.	Reference Documents	130
16.	Document Conventions	131
	16.1 Units of Measure	131
17.	Revision History	132
	Sales, Solutions, and Legal Information	
	Worldwide Sales and Design Support	140
	Products	
	PSoC® Solutions	
	Cypress Developer Community	
	Technical Support	

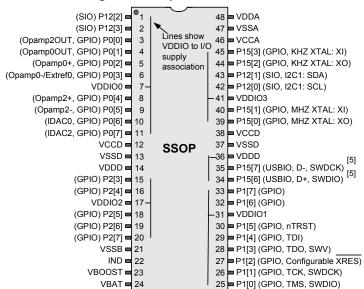
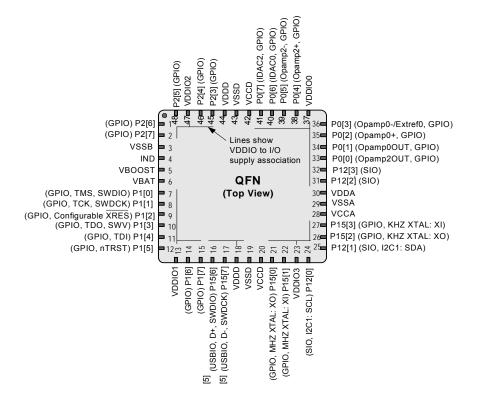



Figure 2-3. 48-pin SSOP Part Pinout

Figure 2-4. 48-pin QFN Part Pinout^[6]

Notes

- 5. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.
- 6. The center pad on the QFN package should be connected to digital ground (VSSD) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal. For more information, see AN72845, Design Guidelines for QFN Devices.

4.3.1.2 Logical Instructions

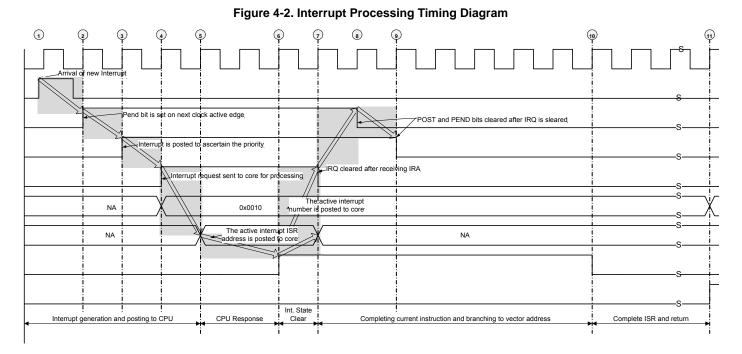
The logical instructions perform Boolean operations such as AND, OR, XOR on bytes, rotate of accumulator contents, and swap of nibbles in an accumulator. The Boolean operations on the bytes are performed on the bit-by-bit basis. Table 4-2 shows the list of logical instructions and their description.

Table 4-2. Logical Instructions

	Mnemonic	Description	Bytes	Cycles
ANL	A,Rn	AND register to accumulator	1	1
ANL	A,Direct	AND direct byte to accumulator	2	2
ANL	A,@Ri	AND indirect RAM to accumulator	1	2
ANL	A,#data	AND immediate data to accumulator	2	2
ANL	Direct, A	AND accumulator to direct byte	2	3
ANL	Direct, #data	AND immediate data to direct byte	3	3
ORL	A,Rn	OR register to accumulator	1	1
ORL	A,Direct	OR direct byte to accumulator	2	2
ORL	A,@Ri	OR indirect RAM to accumulator	1	2
ORL	A,#data	OR immediate data to accumulator	2	2
ORL	Direct, A	OR accumulator to direct byte	2	3
ORL	Direct, #data	OR immediate data to direct byte	3	3
XRL	A,Rn	XOR register to accumulator	1	1
XRL	A,Direct	XOR direct byte to accumulator	2	2
XRL	A,@Ri	XOR indirect RAM to accumulator	1	2
XRL	A,#data	XOR immediate data to accumulator	2	2
XRL	Direct, A	XOR accumulator to direct byte	2	3
XRL	Direct, #data	XOR immediate data to direct byte	3	3
CLR	Α	Clear accumulator	1	1
CPL	Α	Complement accumulator	1	1
RL	Α	Rotate accumulator left	1	1
RLC	Α	Rotate accumulator left through carry	1	1
RR	Α	Rotate accumulator right	1	1
RRC	A	Rotate accumulator right though carry	1	1
SWA	PA	Swap nibbles within accumulator	1	1

4.3.1.3 Data Transfer Instructions

The data transfer instructions are of three types: the core RAM, xdata RAM, and the lookup tables. The core RAM transfer includes transfer between any two core RAM locations or SFRs. These instructions can use direct, indirect, register, and immediate addressing. The xdata RAM transfer includes only the transfer between the accumulator and the xdata RAM location. It can use only indirect addressing. The lookup tables involve nothing but the read of program memory using the Indexed


addressing mode. Table 4-3 lists the various data transfer instructions available.

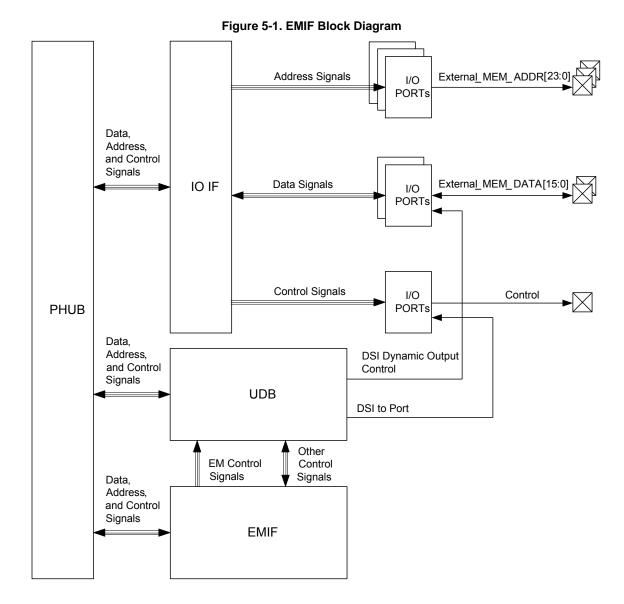
4.3.1.4 Boolean Instructions

The 8051 core has a separate bit-addressable memory location. It has 128 bits of bit addressable RAM and a set of SFRs that are bit addressable. The instruction set includes the whole menu of bit operations such as move, set, clear, toggle, OR, and AND instructions and the conditional jump instructions. Table 4-4 lists the available Boolean instructions.

Document Number: 001-11729 Rev. AF Page 15 of 140

Notes

- 1: Interrupt triggered asynchronous to the clock
- 2: The PEND bit is set on next active clock edge to indicate the interrupt arrival
- 3: POST bit is set following the PEND bit
- 4: Interrupt request and the interrupt number sent to CPU core after evaluation priority (Takes 3 clocks)
- 5: ISR address is posted to CPU core for branching
- 6: CPU acknowledges the interrupt request
- 7: ISR address is read by CPU for branching
- 8, 9: PEND and POST bits are cleared respectively after receiving the IRA from core
- 10: IRA bit is cleared after completing the current instruction and starting the instruction execution from ISR location (Takes 7 cycles)
- 11: IRC is set to indicate the completion of ISR, Active int. status is restored with previous status


The total interrupt latency (ISR execution)

- = POST + PEND + IRQ + IRA + Completing current instruction and branching
- = 1+1+1+2+7 cycles
- = 12 cycles

5.6 External Memory Interface

CY8C38 provides an EMIF for connecting to external memory devices. The connection allows read and write accesses to external memories. The EMIF operates in conjunction with UDBs, I/O ports, and other hardware to generate external memory address and control signals. At 33 MHz, each memory access cycle takes four bus clock cycles. Figure 5-1 is the EMIF block diagram. The EMIF supports synchronous and asynchronous memories. The CY8C38 supports only one type of external memory device at a time. External memory can be accessed through the 8051 xdata space; up to 24 address bits can be used. See "xdata Space" section on page 27. The memory can be 8 or 16 bits wide.

PSoC® 3: CY8C38 Family Datasheet

6.4.5 Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the system. All eight pins in each port interface to their own Port Interrupt Control Unit (PICU) and associated interrupt vector. Each pin of the port is independently configurable to detect rising edge, falling edge, both edge interrupts, or to not generate an interrupt.

Depending on the configured mode for each pin, each time an interrupt event occurs on a pin, its corresponding status bit of the interrupt status register is set to '1' and an interrupt request is sent to the interrupt controller. Each PICU has its own interrupt vector in the interrupt controller and the pin status register providing easy determination of the interrupt source down to the pin level.

Port pin interrupts remain active in all sleep modes allowing the PSoC device to wake from an externally generated interrupt. While level sensitive interrupts are not directly supported; UDB provide this functionality to the system when needed.

6.4.6 Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level for the default CMOS input thresholds or the optional LVTTL input thresholds. All input buffers incorporate Schmitt triggers for input hysteresis. Additionally, individual pin input buffers can be disabled in any drive mode.

6.4.7 I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the device and package. Each I/O supply must be less than or equal to the voltage on the chip's analog (VDDA) pin. This feature allows users to provide different I/O voltage levels for different pins on the device. Refer to the specific device package pinout to determine VDDIO capability for a given port and pin. The SIO port pins support an additional regulated high output capability, as described in Adjustable Output Level.

6.4.8 Analog Connections

These connections apply only to GPIO pins. All GPIO pins may be used as analog inputs or outputs. The analog voltage present on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs. Each GPIO may connect to one of the analog global busses or to one of the analog mux buses to connect any pin to any internal analog resource such as ADC or comparators. In addition, select pins provide direct connections to specific analog features such as the high current DACs or uncommitted opamps.

6.4.9 CapSense

This section applies only to GPIO pins. All GPIO pins may be used to create CapSense buttons and sliders^[15]. See the "CapSense" section on page 63 for more information.

6.4.10 LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be used to generate Segment and Common drive signals for direct glass drive of LCD glass. See the "LCD Direct Drive" section on page 62 for details.

6.4.11 Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the ability to provide a regulated high output level for interface to external signals that are lower in voltage than the SIO's respective VDDIO. SIO pins are individually configurable to output either the standard VDDIO level or the regulated output, which is based on an internally generated reference. Typically a voltage DAC (VDAC) is used to generate the reference (see Figure 6-13). The "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins. Resistive pullup and pull-down drive modes are not available with SIO in regulated output mode.

6.4.12 Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support the standard CMOS and LVTTL input levels but also support a differential mode with programmable levels. SIO pins are grouped into pairs. Each pair shares a reference generator block which, is used to set the digital input buffer reference level for interface to external signals that differ in voltage from VDDIO. The reference sets the pins voltage threshold for a high logic level (see Figure 6-13). Available input thresholds are:

- 0.5 × VDDIO
- 0.4 × VDDIO
- $\blacksquare 0.5 \times V_{REF}$
- V_{REF}

Typically a voltage DAC (VDAC) generates the V_{REF} reference. "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins.

Note

15. GPIOs with opamp outputs are not recommended for use with CapSense.

PSoC® 3: CY8C38 Family Datasheet

For most designs, the default values in Table 7-2 will provide excellent performance without any calculations. The default values were chosen to use standard resistor values between the minimum and maximum limits. The values in Table 7-2 work for designs with 1.8 V to 5.0V V_{DD} , less than 200-pF bus capacitance (C_{B}), up to 25 μA of total input leakage (I_{IL}), up to 0.4 V output voltage level (V_{OL}), and a max V_{IH} of 0.7 * V_{DD} . Standard Mode and Fast Mode can use either GPIO or SIO PSoC pins. Fast Mode Plus requires use of SIO pins to meet the V_{OL} spec at 20 mA. Calculation of custom pull-up resistor values is required; if your design does not meet the default assumptions, you use series resistors (RS) to limit injected noise, or you need to maximize the resistor value for low power consumption.

Table 7-2. Recommended default Pull-up Resistor Values

	R _P	Units
Standard Mode – 100 kbps	4.7 k, 5%	Ω
Fast Mode – 400 kbps	1.74 k, 1%	Ω
Fast Mode Plus – 1 Mbps	620, 5%	Ω

Calculation of the ideal pull-up resistor value involves finding a value between the limits set by three equations detailed in the NXP I^2C specification. These equations are:

Equation 1:

$$R_{PMIN} = (V_{DD}(max) - V_{OL}(max))/(I_{OL}(min))$$

Equation 2:

$$R_{PMAX} = T_R(max)/0.8473 \times C_R(max)$$

Equation 3:

$$R_{PMAX} = V_{DD}(min) - V_{IH}(min) + V_{NH}(min)/I_{IH}(max)$$

Equation parameters:

 V_{DD} = Nominal supply voltage for I^2C bus

V_{OL} = Maximum output low voltage of bus devices.

I_{OI} = Low-level output current from I²C specification

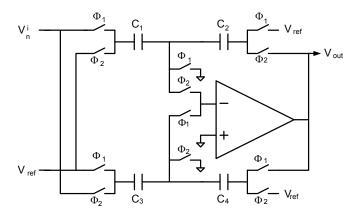
 T_R = Rise Time of bus from I^2C specification

C_B = Capacitance of each bus line including pins and PCB traces

VIH = Minimum high-level input voltage of all bus devices

V_{NH} = Minimum high-level input noise margin from I²C specification

I_{IH} = Total input leakage current of all devices on the bus


The supply voltage (V_{DD}) limits the minimum pull-up resistor value due to bus devices maximum low output voltage (V_{OL}) specifications. Lower pull-up resistance increases current through the pins and can, therefore, exceed the spec conditions of V_{OL} . Equation 1 is derived using Ohm's law to determine the minimum resistance that will still meet the V_{OL} specification at 3 mA for standard and fast modes, and 20 mA for fast mode plus at the given V_{DD} .

Equation 2 determines the maximum pull-up resistance due to bus capacitance. Total bus capacitance is comprised of all pin, wire, and trace capacitance on the bus. The higher the bus capacitance, the lower the pull-up resistance required to meet the specified bus speeds rise time due to RC delays. Choosing a pull-up resistance higher than allowed can result in failing timing requirements resulting in communication errors. Most designs with five or less I²C devices and up to 20 centimeters of bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value is total bus leakage calculated in Equation 3. The primary source of leakage is I/O pins connected to the bus. If leakage is too high, the pull-ups will have difficulty maintaining an acceptable V_{IH} level causing communication errors. Most designs with five or less I^2C devices on the bus have less than 10 μA of total leakage current.

Figure 8-13. Sample and Hold Topology (Φ 1 and Φ 2 are opposite phases of a clock)

8.11.1 Down Mixer

The SC/CT block can be used as a mixer to down convert an input signal. This circuit is a high bandwidth passive sample network that can sample input signals up to 14 MHz. This sampled value is then held using the opamp with a maximum clock rate of 4 MHz. The output frequency is at the difference between the input frequency and the highest integer multiple of the Local Oscillator that is less than the input.

8.11.2 First Order Modulator - SC Mode

A first order modulator is constructed by placing the SC/CT block in an integrator mode and using a comparator to provide a 1-bit feedback to the input. Depending on this bit, a reference voltage is either subtracted or added to the input signal. The block output is the output of the comparator and not the integrator in the modulator case. The signal is downshifted and buffered and then processed by a decimator to make a delta-sigma converter or a counter to make an incremental converter. The accuracy of the sampled data from the first-order modulator is determined from several factors.

The main application for this modulator is for a low-frequency ADC with high accuracy. Applications include strain gauges, thermocouples, precision voltage, and current measurement.

Programming, Debug Interfaces, Resources

PSoC devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. Three interfaces are available: JTAG, SWD, and SWV. JTAG and SWD support all programming and debug features of the device. JTAG also supports standard JTAG scan chains for board level test and chaining multiple JTAG devices to a single JTAG connection.

For more information on PSoC 3 Programming, refer to the PSoC® 3 Device Programming Specifications.

Complete Debug on Chip (DoC) functionality enables full device debugging in the final system using the standard production

device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE software provides fully integrated programming and debug support for PSoC devices. The low cost MiniProg3 programmer and debugger is designed to provide full programming and debug support of PSoC devices in conjunction with the PSoC Creator IDE. PSoC JTAG, SWD, and SWV interfaces are fully compatible with industry standard third party

All DOC circuits are disabled by default and can only be enabled in firmware. If not enabled, the only way to reenable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables DOC. Disabling DOC features, robust flash protection, and hiding custom analog and digital functionality inside the PSoC device provide a level of security not possible with multichip application solutions. Additionally, all device interfaces can be permanently disabled (Device Security) for applications concerned about phishing attacks due to a maliciously reprogrammed device. Permanently disabling interfaces is not recommended in most applications because you cannot access the device later. Because all programming, debug, and test interfaces are disabled when device security is enabled, PSoCs with Device Security enabled may not be returned for failure analysis.

Table 9-1. Debug Configurations

Debug and Trace Configuration	GPIO Pins Used
All debug and trace disabled	0
JTAG	4 or 5
SWD	2
SWV	1
SWD + SWV	3

9.1 JTAG Interface

The IEEE 1149.1 compliant JTAG interface exists on four or five pins (the nTRST pin is optional). The JTAG interface is used for programming the flash memory, debugging, I/O scan chains, and JTAG device chaining.

PSoC 3 has certain timing requirements to be met for entering programming mode through the JTAG interface. Due to these timing requirements, not all standard JTAG programmers, or standard JTAG file formats such as SVF or STAPL, can support PSoC 3 programming. The list of programmers that support PSoC 3 programming is available at http://www.cypress.com/go/programming.

The JTAG clock frequency can be up to 14 MHz, or 1/3 of the CPU clock frequency for 8 and 16-bit transfers, or 1/5 of the CPU clock frequency for 32-bit transfers. By default, the JTAG pins are enabled on new devices but the JTAG interface can be disabled, allowing these pins to be used as GPIO instead.

Document Number: 001-11729 Rev. AF Page 65 of 140

PSoC® 3: CY8C38 Family Datasheet

9.3 Debug Features

Using the JTAG or SWD interface, the CY8C38 supports the following debug features:

- Halt and single-step the CPU
- View and change CPU and peripheral registers, and RAM addresses
- Eight program address breakpoints
- One memory access breakpoint—break on reading or writing any memory address and data value
- Break on a sequence of breakpoints (non recursive)
- Debugging at the full speed of the CPU
- Compatible with PSoC Creator and MiniProg3 programmer and debugger
- Standard JTAG programming and debugging interfaces make CY8C38 compatible with other popular third-party tools (for example, ARM / Keil)

9.4 Trace Features

The CY8C38 supports the following trace features when using JTAG or SWD:

- Trace the 8051 program counter (PC), accumulator register (ACC), and one SFR / 8051 core RAM register
- Trace depth up to 1000 instructions if all registers are traced, or 2000 instructions if only the PC is traced (on devices that include trace memory)
- Program address trigger to start tracing
- Trace windowing, that is, only trace when the PC is within a given range
- Two modes for handling trace buffer full: continuous (overwriting the oldest trace data) or break when trace buffer is full

9.5 Single Wire Viewer Interface

The SWV interface is closely associated with SWD but can also be used independently. SWV data is output on the JTAG interface's TDO pin. If using SWV, you must configure the device for SWD, not JTAG. SWV is not supported with the JTAG interface

SWV is ideal for application debug where it is helpful for the firmware to output data similar to 'printf' debugging on PCs. The SWV is ideal for data monitoring, because it requires only a single pin and can output data in standard UART format or Manchester encoded format. For example, it can be used to tune a PID control loop in which the output and graphing of the three error terms greatly simplifies coefficient tuning.

The following features are supported in SWV:

- 32 virtual channels, each 32 bits long
- Simple, efficient packing and serializing protocol
- Supports standard UART format (N81)

9.6 Programming Features

The JTAG and SWD interfaces provide full programming support. The entire device can be erased, programmed, and verified. You can increase flash protection levels to protect firmware IP. Flash protection can only be reset after a full device

erase. Individual flash blocks can be erased, programmed, and verified, if block security settings permit.

9.7 Device Security

PSoC 3 offers an advanced security feature called device security, which permanently disables all test, programming, and debug ports, protecting your application from external access. The device security is activated by programming a 32-bit key (0×50536F43) to a Write Once Latch (WOL).

The Write Once Latch is a type of nonvolatile latch (NVL). The cell itself is an NVL with additional logic wrapped around it. Each WOL device contains four bytes (32 bits) of data. The wrapper outputs a '1' if a super-majority (28 of 32) of its bits match a pre-determined pattern (0×50536F43); it outputs a '0' if this majority is not reached. When the output is 1, the Write Once NV latch locks the part out of Debug and Test modes; it also permanently gates off the ability to erase or alter the contents of the latch. Matching all bits is intentionally not required, so that single (or few) bit failures do not deassert the WOL output. The state of the NVL bits after wafer processing is truly random with no tendency toward 1 or 0.

The WOL only locks the part after the correct 32-bit key (0×50536F43) is loaded into the NVL's volatile memory, programmed into the NVL's nonvolatile cells, and the part is reset. The output of the WOL is only sampled on reset and used to disable the access. This precaution prevents anyone from reading, erasing, or altering the contents of the internal memory. The user can write the key into the WOL to lock out external access only if no flash protection is set (see "Flash Security" on page 23). However, after setting the values in the WOL, a user still has access to the part until it is reset. Therefore, a user can write the key into the WOL, program the flash protection data, and then reset the part to lock it.

If the device is protected with a WOL setting, Cypress cannot perform failure analysis and, therefore, cannot accept RMAs from customers. The WOL can be read out through the SWD port to electrically identify protected parts. The user can write the key in WOL to lock out external access only if no flash protection is set. For more information on how to take full advantage of the security features in PSoC see the PSoC 3 TRM.

Disclaimer

Note the following details of the flash code protection features on Cypress devices.

Cypress products meet the specifications contained in their particular Cypress data sheets. Cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Document Number: 001-11729 Rev. AF Page 68 of 140

Figure 11-22. USBIO Output High Voltage and Current, GPIO Mode

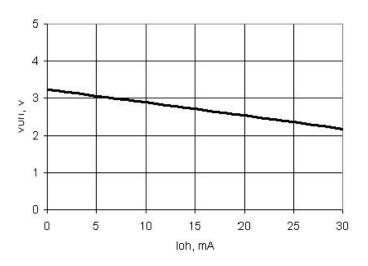


Figure 11-23. USBIO Output Low Voltage and Current, GPIO Mode

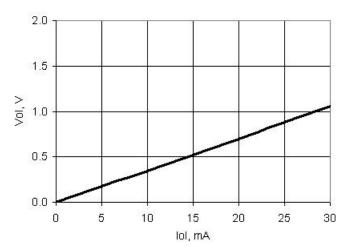


Table 11-15. USBIO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Tdrate	Full-speed data rate average bit rate		12 – 0.25%	12	12 + 0.25%	MHz
Tjr1	Receiver data jitter tolerance to next transition		-8	_	8	ns
Tjr2	Receiver data jitter tolerance to pair transition		– 5	_	5	ns
Tdj1	Driver differential jitter to next transition		-3.5	_	3.5	ns
Tdj2	Driver differential jitter to pair transition		-4	_	4	ns
Tfdeop	Source jitter for differential transition to SE0 transition		-2	_	5	ns
Tfeopt	Source SE0 interval of EOP		160	_	175	ns
Tfeopr	Receiver SE0 interval of EOP		82	_	_	ns
Tfst	Width of SE0 interval during differential transition		_	_	14	ns
Fgpio_out	GPIO mode output operating frequency	$3 \text{ V} \leq \text{V}_{DDD} \leq 5.5 \text{ V}$	_	_	20	MHz
		V _{DDD} = 1.71 V	-	-	6	MHz
Tr_gpio	Rise time, GPIO mode, 10%/90% V _{DDD}	V _{DDD} > 3 V, 25 pF load	_	_	12	ns
		V _{DDD} = 1.71 V, 25 pF load	_	_	40	ns
Tf_gpio	Fall time, GPIO mode, 90%/10% V _{DDD}	V _{DDD} > 3 V, 25 pF load	_	-	12	ns
		V _{DDD} = 1.71 V, 25 pF load	_	-	40	ns

Table 11-21. 20-bit Delta-sigma ADC DC Specifications (continued)

Parameter	Description	Conditions	Min	Тур	Max	Units		
Vextref	ADC external reference input voltage, see also internal reference in Voltage Reference on page 95	Pins P0[3], P3[2]	0.9	_	1.3	V		
Current Co	Current Consumption							
	I _{DDA} + I _{DDD} current consumption, 20 bit ^[50]		_	-	1.5	mA		
	I _{DDA} + I _{DDD} current consumption, 16 bit ^[50]		_	-	1.5	mA		
I _{DD_12}	I _{DDA} + I _{DDD} current consumption, 12 bit ^[50]	192 ksps, unbuffered	_	-	1.95	mA		
I _{BUFF}	Buffer current consumption ^[50]		_	_	2.5	mA		

Table 11-22. Delta-sigma ADC AC Specifications

	Delta-sigma ADC AC Specifications					
Parameter	Description	Conditions	Min	Тур	Max	Units
	Startup time		-	_	4	Samples
THD	Total harmonic distortion ^[50]	Buffer gain = 1, 16 bit, Range = ±1.024 V	-	-	0.0032	%
20-Bit Resol	ution Mode					
SR20	Sample rate ^[50]	Range = ±1.024 V, unbuffered	7.8	_	187	sps
BW20	Input bandwidth at max sample rate ^[50]	Range = ±1.024 V, unbuffered	_	40	_	Hz
16-Bit Resol	ution Mode				•	•
SR16	Sample rate ^[50]	Range = ±1.024 V, unbuffered	2	_	48	ksps
BW16	Input bandwidth at max sample rate ^[50]	Range = ±1.024 V, unbuffered	_	11	_	kHz
SINAD16int	Signal to noise ratio, 16-bit, internal reference ^[50]	Range = ±1.024V, unbuffered	81	-	-	dB
SINAD16ext	Signal to noise ratio, 16-bit, external reference ^[50]	Range = ±1.024 V, unbuffered	84	-	_	dB
12-Bit Resol	ution Mode				•	•
SR12	Sample rate, continuous, high power ^[50]	Range = ±1.024 V, unbuffered	4	_	192	ksps
BW12	Input bandwidth at max sample rate ^[50]	Range = ±1.024 V, unbuffered	_	44	-	kHz
SINAD12int	Signal to noise ratio, 12-bit, internal reference ^[50]	Range = ±1.024 V, unbuffered	66	-	_	dB
8-Bit Resolu	tion Mode				•	•
SR8	Sample rate, continuous, high power ^[50]	Range = ±1.024 V, unbuffered	8	_	384	ksps
BW8	Input bandwidth at max sample rate ^[50]	Range = ±1.024 V, unbuffered	_	88	_	kHz
SINAD8int	Signal to noise ratio, 8-bit, internal reference ^[50]	Range = ±1.024 V, unbuffered	43	_	_	dB

Note
50. Based on device characterization (Not production tested).

Document Number: 001-11729 Rev. AF

Table 11-23. Delta-sigma ADC Sample Rates, Range = ± 1.02

Decelution Dita	Cont	inuous	Multi-Sample		Multi-Sar	nple Turbo
Resolution, Bits	Min	Max	Min	Max	Min	Max
8	8000	384000	1911	91701	1829	87771
9	6400	307200	1543	74024	1489	71441
10	5566	267130	1348	64673	1307	62693
11	4741	227555	1154	55351	1123	53894
12	4000	192000	978	46900	956	45850
13	3283	157538	806	38641	791	37925
14	2783	133565	685	32855	674	32336
15	2371	113777	585	28054	577	27675
16	2000	48000	495	11861	489	11725
17	500	12000	124	2965	282	6766
18	125	3000	31	741	105	2513
19	16	375	4	93	15	357
20	8	187.5	2	46	8	183

Continuous Sample Mode, Input Buffer Bypassed

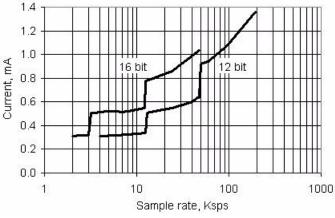


Figure 11-35. Delta-sigma ADC Noise Histogram, 1000 Samples, 16-bit, 48 ksps, Ext Ref, V_{IN} = V_{REF}/2, Range = ±1.024 V

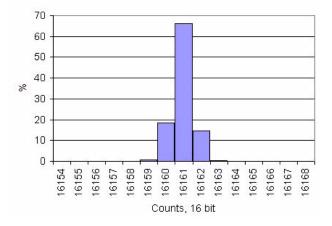


Figure 11-33. Delta-sigma ADC IDD vs sps, Range = ±1.024 V, Figure 11-34. Delta-sigma ADC Noise Histogram, 1000 Samples, 20-Bit, 187 sps, Ext Ref, V_{IN} = V_{REF}/2, Range = ±1.024 V

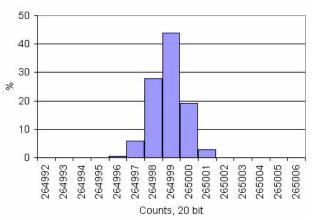


Figure 11-36. Delta-sigma ADC Noise Histogram, 1000 Samples, 16-bit, 48 ksps, Int Ref, V_{IN} = V_{REF}/2, Range = ±1.024 V

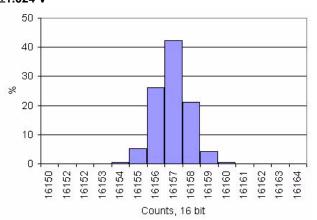


Figure 11-49. IDAC Operating Current vs Temperature, Range = $255 \mu A$, Code = 0, Source Mode

Figure 11-50. IDAC Operating Current vs Temperature, Range = 255 µA, Code = 0, Sink Mode

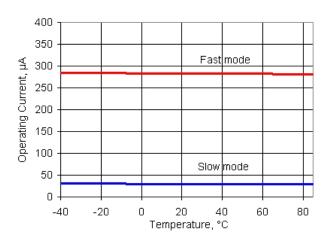


Table 11-33. IDAC AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DAC}	Update rate		_	_	8	Msps
T _{SETTLE}	Settling time to 0.5 LSB	Range = 31.875 μ A or 255 μ A, full scale transition, High speed mode, 600 Ω 15-pF load	-	_	125	ns
	Current noise	Range = 255 μ A, source mode, High speed mode, V_{DDA} = 5 V, 10 kHz	_	340	_	pA/sqrtHz

Figure 11-51. IDAC Step Response, Codes 0x40 - 0xC0, 255 μA Mode, Source Mode, High speed mode, $V_{DDA} = 5 \text{ V}$

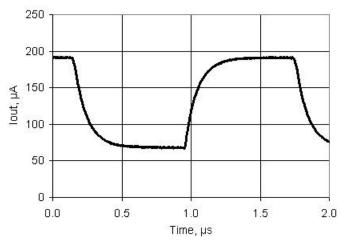


Figure 11-52. IDAC Glitch Response, Codes 0x7F - 0x80, 255 μ A Mode, Source Mode, High speed mode, $V_{DDA} = 5 \text{ V}$

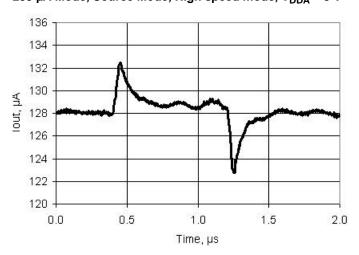


Figure 11-53. IDAC PSRR vs Frequency

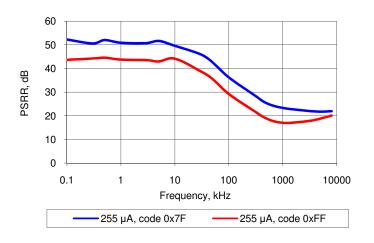
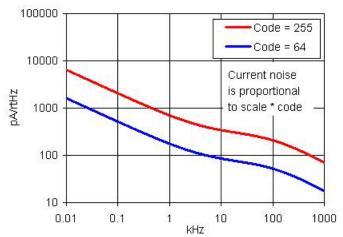



Figure 11-54. IDAC Current Noise, 255 μA Mode, Source Mode, High speed mode, V_{DDA} = 5 V

11.5.7 Voltage Digital to Analog Converter (VDAC)

See the VDAC component datasheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-34. VDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		-	8	-	bits
V _{OUT}	Output voltage range, code = 255	1 V scale	-	1.02	-	V
		4 V scale, V _{DDA} = 5 V	_	4.08	_	V
INL1	Integral nonlinearity	1 V scale	-	±2.1	±2.5	LSB
INL4	Integral nonlinearity ^[57]	4 V scale	_	±2.1	±2.5	LSB
DNL1	Differential nonlinearity	1 V scale	_	±0.3	±1	LSB
DNL4	Differential nonlinearity ^[57]	4 V scale	_	±0.3	±1	LSB
Rout	Output resistance	1 V scale	-	4	_	kΩ
		4 V scale	-	16	_	kΩ
	Monotonicity		_	-	Yes	-
V _{OS}	Zero scale error		_	0	±0.9	LSB
Eg	Gain error	1 V scale,	-	_	±2.5	%
		4 V scale	_	_	±2.5	%
TC_Eg	Temperature coefficient, gain error	1 V scale,	_	-	0.03	%FSR / °C
		4 V scale	_	_	0.03	%FSR / °C
I _{DD}	Operating current	Low speed mode	_	_	100	μA
		High speed mode	-	_	500	μA

57. Based on device characterization (Not production tested).

Figure 11-61. VDAC Operating Current vs Temperature, 1V Mode, Low speed mode

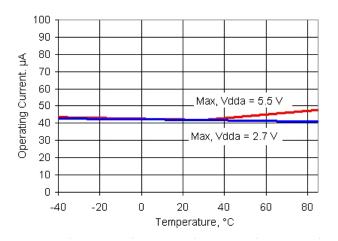


Figure 11-62. VDAC Operating Current vs Temperature, 1 V Mode, High speed mode

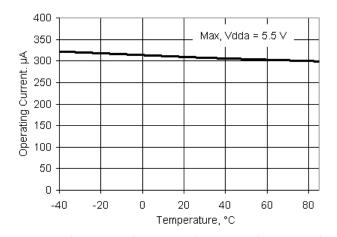


Table 11-35. VDAC AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DAC}	Update rate	1 V scale	-	-	1000	ksps
		4 V scale	-	-	250	ksps
TsettleP	Settling time to 0.1%, step 25% to 75%	1 V scale, Cload = 15 pF	-	0.45	1	μs
		4 V scale, Cload = 15 pF	_	0.8	3.2	μs
TsettleN	Settling time to 0.1%, step 75% to 25%	1 V scale, Cload = 15 pF	_	0.45	1	μs
		4 V scale, Cload = 15 pF	_	0.7	3	μs
	Voltage noise	Range = 1 V, High speed mode, V _{DDA} = 5 V, 10 kHz	-	750	_	nV/sqrtHz

Figure 11-63. VDAC Step Response, Codes 0x40 - 0xC0, 1 V Mode, High speed mode, $V_{DDA} = 5 \text{ V}$

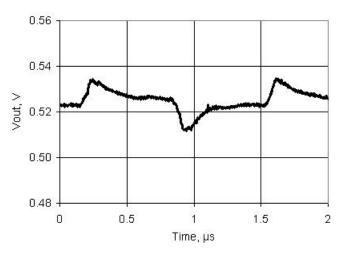
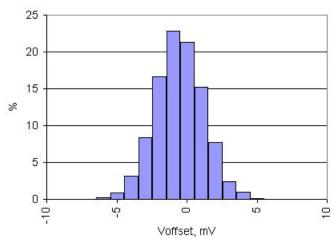



Figure 11-64. VDAC Glitch Response, Codes 0x7F - 0x80, 1 V Mode, High speed mode, $V_{DDA} = 5 V$

11.5.10 Programmable Gain Amplifier

The PGA is created using a SC/CT analog block; see the PGA component data sheet in PSoC Creator for full electrical specifications and APIs.


Unless otherwise specified, operating conditions are:

- Operating temperature = 25 °C for typical values
- Unless otherwise specified, all charts and graphs show typical values

Table 11-40. PGA DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Vin	Input voltage range	Power mode = minimum	Vssa	-	V_{DDA}	V
Vos	Input offset voltage	Power mode = high, gain = 1	_	-	10	mV
TCVos	Input offset voltage drift with temperature	Power mode = high, gain = 1	_	_	±30	μV/°C
Ge1	Gain error, gain = 1		_	-	±0.15	%
Ge16	Gain error, gain = 16		_	_	±2.5	%
Ge50	Gain error, gain = 50		_	_	±5	%
VonI	DC output nonlinearity	Gain = 1	_	_	±0.01	% of FSR
Cin	Input capacitance		_	-	7	pF
Voh	Output voltage swing	Power mode = high, gain = 1, Rload = 100 k Ω to V _{DDA} / 2	V _{DDA} – 0.15	-	_	V
Vol	Output voltage swing	Power mode = high, gain = 1, Rload = 100 k Ω to V _{DDA} / 2	-	-	V _{SSA} + 0.15	V
Vsrc	Output voltage under load	lload = 250 μA, V _{DDA} ≥ 2.7V, power mode = high	_	-	300	mV
ldd	Operating current	Power mode = high	_	1.5	1.65	mA
PSRR	Power supply rejection ratio		48	_	_	dB

Figure 11-67. PGA Voffset Histogram, 4096 samples/ 1024 parts

11.6.2 Counter

The following specifications apply to the Timer/Counter/PWM peripheral, in counter mode. Counters can also be implemented in UDBs; for more information, see the Counter component data sheet in PSoC Creator.

Table 11-47. Counter DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit counter, at listed input clock frequency	_	_	_	μA
	3 MHz		-	15	_	μA
	12 MHz		-	60	_	μΑ
	48 MHz		-	260	_	μA
	67 MHz		_	350	_	μA

Table 11-48. Counter AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Operating frequency		DC	_	67.01	MHz
	Capture pulse		15	-	_	ns
	Resolution		15	_	_	ns
	Pulse width		15	-	_	ns
	Pulse width (external)		30			ns
	Enable pulse width		15	_	_	ns
	Enable pulse width (external)		30	-	_	ns
	Reset pulse width		15	-	_	ns
	Reset pulse width (external)		30	-	_	ns

11.6.3 Pulse Width Modulation

The following specifications apply to the Timer/Counter/PWM peripheral, in PWM mode. PWM components can also be implemented in UDBs; for more information, see the PWM component data sheet in PSoC Creator.

Table 11-49. PWM DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit PWM, at listed input clock frequency	-	-	_	μA
	3 MHz		_	15	-	μA
	12 MHz		_	60	_	μA
	48 MHz		_	260	-	μA
	67 MHz		_	350	_	μA

Table 11-50. Pulse Width Modulation (PWM) AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Operating frequency		DC	-	67.01	MHz
	Pulse width		15	-	-	ns
	Pulse width (external)		30	-	-	ns
	Kill pulse width		15	-	_	ns
	Kill pulse width (external)		30	-	-	ns
	Enable pulse width		15	-	-	ns
	Enable pulse width (external)		30	-	_	ns
	Reset pulse width		15	-	-	ns
	Reset pulse width (external)		30	-	-	ns

Document Number: 001-11729 Rev. AF Page 109 of 140

11.6.7 USB

Table 11-57. USB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{USB_5}	Device supply (V _{DDD}) for USB operation	USB configured, USB regulator enabled	4.35	_	5.25	V
V _{USB_3.3}		USB configured, USB regulator bypassed	3.15	_	3.6	V
V _{USB_3}		USB configured, USB regulator bypassed ^[60]	2.85	_	3.6	V
I _{USB_Configured}	Device supply current in device	V _{DDD} = 5 V, F _{CPU} = 1.5 MHz	_	10	_	mA
	active mode, bus clock and IMO = 24 MHz	V _{DDD} = 3.3 V, F _{CPU} = 1.5 MHz	_	8	-	mA
I _{USB_Suspended}	Device supply current in device sleep mode	V _{DDD} = 5 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 5 V, disconnected from USB host	_	0.3	_	mA
	r	V _{DDD} = 3.3 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 3.3 V, disconnected from USB host	_	0.3	_	mA

11.6.8 Universal Digital Blocks (UDBs)

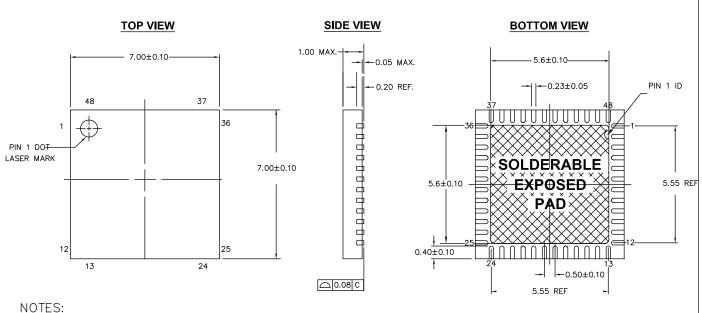
PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. See the component data sheets in PSoC Creator for full AC/DC specifications, APIs, and example code.

Table 11-58. UDB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Datapath Per	formance		•	•		•
F _{MAX_TIMER}	Maximum frequency of 16-bit timer in a UDB pair		_	-	67.01	MHz
F _{MAX_ADDER}	Maximum frequency of 16-bit adder in a UDB pair		_	-	67.01	MHz
F _{MAX_CRC}	Maximum frequency of 16-bit CRC/PRS in a UDB pair		-	-	67.01	MHz
PLD Perform	ance					
F _{MAX_PLD}	Maximum frequency of a two-pass PLD function in a UDB pair		_	-	67.01	MHz
Clock to Outp	out Performance					
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-70.	25 °C, $V_{DDD} \ge 2.7$ V	_	20	25	ns
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-70.	Worst-case placement, routing, and pin selection	_	_	55	ns

Note

60. Rise/fall time matching (TR) not guaranteed, see USB Driver AC Specifications on page 87.


Document Number: 001-11729 Rev. AF Page 111 of 140

0.395 0.420 0.292 DIMENSIONS IN INCHES MIN. PKG. WEIGHT: REFER TO PMDD SPEC. 0.620 SEATING PLANE .010 0.088 0.092 GAUGE PLANE 0.004 0.008 0.0135 0.008 51-85061 *F

Figure 13-1. 48-pin (300 mil) SSOP Package Outline

Figure 13-2. 48-pin QFN Package Outline

- 1. MATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION
LT48D	LEAD FREE

001-45616 *E

16. Document Conventions

16.1 Units of Measure

Table 16-1. Units of Measure

Table 10-1.	Units of Measure
Symbol	Unit of Measure
°C	degrees Celsius
dB	decibels
fF	femtofarads
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohours
kHz	kilohertz
kΩ	kilohms
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
ΜΩ	megaohms
Msps	megasamples per second
μΑ	microamperes
μF	microfarads
μH	microhenrys
μs	microseconds
μV	microvolts
μW	microwatts
mA	milliamperes
ms	milliseconds
mV	millivolts
nA	nanoamperes
ns	nanoseconds
nV	nanovolts
Ω	ohms
pF	picofarads
ppm	parts per million
ps	picoseconds
s	seconds
sps	samples per second
sqrtHz	square root of hertz
V	volts

Document Number: 001-11729 Rev. AF