

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3865lti-205

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. A	rchitectural Overview	. 4
	inouts	
3. F	in Descriptions	12
	PU	
	4.1 8051 CPU	13
	4.2 Addressing Modes	13
	4.3 Instruction Set	
	4.4 DMA and PHUB	
	4.5 Interrupt Controller	
5. N	lemory	
	5.1 Static RAM	
	5.2 Flash Program Memory	
	5.3 Flash Security	
	5.4 EEPROM 5.5 Nonvolatile Latches (NVLs)	
	5.6 External Memory Interface	2 4 25
	5.7 Memory Map	
6 9	system Integration	
0. 0	6.1 Clocking System	
	6.2 Power System	
	6.3 Reset	
	6.4 I/O System and Routing	37
7. C	igital Subsystem	44
7. C	igital Subsystem 7.1 Example Peripherals	
7. C	7.1 Example Peripherals7.2 Universal Digital Block	44 46
7. C	7.1 Example Peripherals7.2 Universal Digital Block7.3 UDB Array Description	44 46 49
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 	44 46 49 49
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 	44 46 49 49 51
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 	44 46 49 49 51 53
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 	44 49 49 51 53 53
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 	44 49 49 51 53 53 54
	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 	44 49 49 51 53 53 54 56
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem	44 49 49 51 53 53 54 56 56
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block analog Subsystem 8.1 Analog Routing	44 49 49 51 53 53 53 54 56 57
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC	44 49 49 51 53 53 54 56 57 59
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators	44 49 49 51 53 53 54 56 57 59 60
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block malog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks	44 49 49 51 53 53 54 56 57 59 60 61 61
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive	44 49 49 53 53 53 56 57 59 60 61 61 62
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense	44 49 49 53 53 54 56 57 60 61 62 63
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor	44 49 53 53 54 55 57 60 61 62 63 63
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor 8.9 DAC	44 49 53 53 55 56 61 62 63 64
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor	44 49 53 53 55 56 57 50 61 62 63 64 64

9. Programming, Debug Interfaces, Resources	
9.1 JTAG Interface	
9.2 Serial Wire Debug Interface 9.3 Debug Features	
9.4 Trace Features	
9.5 Single Wire Viewer Interface	
9.6 Programming Features	
9.7 Device Security	
9.8 CSP Package Bootloader	69
10. Development Support	70
10.1 Documentation	70
10.2 Online	
10.3 Tools	
11. Electrical Specifications	
11.1 Absolute Maximum Ratings	
11.2 Device Level Specifications	
11.3 Power Regulators 11.4 Inputs and Outputs	
11.5 Analog Peripherals	
11.6 Digital Peripherals	
11.7 Memory	112
11.8 PSoC System Resources	
11.9 Clocking	119
12. Ordering Information	
12.1 Part Numbering Conventions	
13. Packaging	125
14. Acronyms	129
15. Reference Documents	130
16. Document Conventions	131
16.1 Units of Measure	131
17. Revision History	132
18. Sales, Solutions, and Legal Information	140
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	140

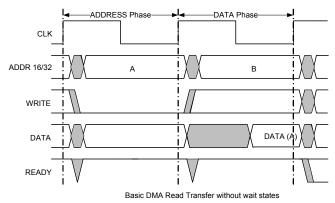
Table 2-2 shows the pinout for the 72-pin CSP package. Since there are four V_{DDIO} pins, the set of I/O pins associated with any V_{DDIO} may sink up to 100 mA total, same as for the 100-pin and 68-pin devices.

Table	2-2.	CSP	Pinout	

Ball	Name	Ball	Name	Ball	Name
G6	P2[5]	F1	VDDD	A5	VDDA
E5	P2[6]	E1	VSSD	A6	VSSD
F5	P2[7]	E2	VCCD	B6	P12[2]
J7	P12[4]	C1	P15[0]	C6	P12[3]
H6	P12[5]	C2	P15[1]	A7	P0[0]
J6	VSSB	D2	P3[0]	B7	P0[1]
J5	Ind	D3	P3[1]	B5	P0[2]
H5	VBOOST	D4	P3[2]	C5	P0[3]
J4	VBAT	D5	P3[3]	A8	VIO0
H4	VSSD	B4	P3[4]	D6	P0[4]
J3	XRES_N	B3	P3[5]	D7	P0[5]
H3	P1[0]	A1	VIO3	C7	P0[6]
G3	P1[1]	B2	P3[6]	C8	P0[7]
H2	P1[2]	A2	P3[7]	E8	VCCD
J2	P1[3]	C3	P12[0]	F8	VSSD
G4	P1[4]	C4	P12[1]	G8	VDDD
G5	P1[5]	E3	P15[2]	E7	P15[4]
J1	VIO1	E4	P15[3]	F7	P15[5]
F4	P1[6]	B1 ^[10]	NC	G7	P2[0]
F3	P1[7]	B8 ^[10]	NC	H7	P2[1]
H1	P12[6]	D1 ^[10]	NC	H8	P2[2]
G1	P12[7]	D8 ^[10]	NC	F6	P2[3]
G2	P15[6]	A3	VCCA	E6	P2[4]
F2	P15[7]	A4	VSSA	J8	VIO2

Figure 2-7 and Figure 2-8 show an example schematic and an example PCB layout, for the 100-pin TQFP part, for optimal analog performance on a two-layer board.

The two pins labeled VDDD must be connected together.


The two pins labeled VCCD must be connected together, with capacitance added, as shown in Figure 2-7 and Power System on page 31. The trace between the two VCCD pins should be as short as possible.

■ The two pins labeled VSSD must be connected together.

For information on circuit board layout issues for mixed signals, refer to the application note, AN57821 - Mixed Signal Circuit Board Layout Considerations for PSoC® 3 and PSoC 5.

Figure 4-1. DMA Timing Diagram

4.4.4.2 Auto Repeat DMA

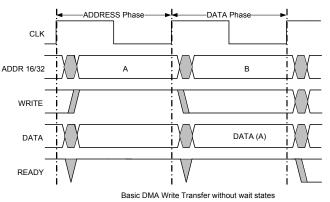
Auto repeat DMA is typically used when a static pattern is repetitively read from system memory and written to a peripheral. This is done with a single TD that chains to itself.

4.4.4.3 Ping Pong DMA

A ping pong DMA case uses double buffering to allow one buffer to be filled by one client while another client is consuming the data previously received in the other buffer. In its simplest form, this is done by chaining two TDs together so that each TD calls the opposite TD when complete.

4.4.4.4 Circular DMA

Circular DMA is similar to ping pong DMA except it contains more than two buffers. In this case there are multiple TDs; after the last TD is complete it chains back to the first TD.


4.4.4.5 Scatter Gather DMA

In the case of scatter gather DMA, there are multiple noncontiguous sources or destinations that are required to effectively carry out an overall DMA transaction. For example, a packet may need to be transmitted off of the device and the packet elements, including the header, payload, and trailer, exist in various noncontiguous locations in memory. Scatter gather DMA allows the segments to be concatenated together by using multiple TDs in a chain. The chain gathers the data from the multiple locations. A similar concept applies for the reception of data onto the device. Certain parts of the received data may need to be scattered to various locations in memory for software processing convenience. Each TD in the chain specifies the location for each discrete element in the chain.

4.4.4.6 Packet Queuing DMA

Packet queuing DMA is similar to scatter gather DMA but specifically refers to packet protocols. With these protocols, there may be separate configuration, data, and status phases associated with sending or receiving a packet.

For instance, to transmit a packet, a memory mapped configuration register can be written inside a peripheral, specifying the overall length of the ensuing data phase. The CPU can set up this configuration information anywhere in system memory and copy it with a simple TD to the peripheral. After the configuration phase, a data phase TD (or a series of data phase TDs) can begin (potentially using scatter gather). When the data

phase TD(s) finish, a status phase TD can be invoked that reads some memory mapped status information from the peripheral and copies it to a location in system memory specified by the CPU for later inspection. Multiple sets of configuration, data, and status phase 'subchains' can be strung together to create larger chains that transmit multiple packets in this way. A similar concept exists in the opposite direction to receive the packets.

4.4.4.7 Nested DMA

One TD may modify another TD, as the TD configuration space is memory mapped similar to any other peripheral. For example, a first TD loads a second TD's configuration and then calls the second TD. The second TD moves data as required by the application. When complete, the second TD calls the first TD, which again updates the second TD's configuration. This process repeats as often as necessary.

4.5 Interrupt Controller

The interrupt controller provides a mechanism for hardware resources to change program execution to a new address, independent of the current task being executed by the main code. The interrupt controller provides enhanced features not found on original 8051 interrupt controllers:

- Thirty-two interrupt vectors
- Jumps directly to ISR anywhere in code space with dynamic vector addresses
- Multiple sources for each vector
- Flexible interrupt to vector matching
- Each interrupt vector is independently enabled or disabled
- Each interrupt can be dynamically assigned one of eight priorities
- Eight level nestable interrupts
- Multiple I/O interrupt vectors
- Software can send interrupts
- Software can clear pending interrupts

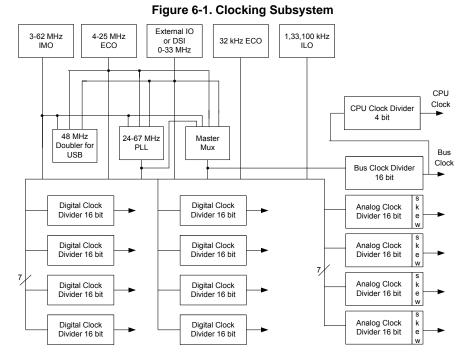
Figure 4-2 on page 20 represents typical flow of events when an interrupt triggered. Figure 4-3 on page 21 shows the interrupt structure and priority polling.

Table 4-8. Interrupt Vector Table

#	Fixed Function	DMA	UDB
0	LVD	phub_termout0[0]	udb_intr[0]
1	Cache/ECC	phub_termout0[1]	udb_intr[1]
2	Reserved	phub_termout0[2]	udb_intr[2]
3	Sleep (Pwr Mgr)	phub_termout0[3]	udb_intr[3]
4	PICU[0]	phub_termout0[4]	udb_intr[4]
5	PICU[1]	phub_termout0[5]	udb_intr[5]
6	PICU[2]	phub_termout0[6]	udb_intr[6]
7	PICU[3]	phub_termout0[7]	udb_intr[7]
8	PICU[4]	phub_termout0[8]	udb_intr[8]
9	PICU[5]	phub_termout0[9]	udb_intr[9]
10	PICU[6]	phub_termout0[10]	udb_intr[10]
11	PICU[12]	phub_termout0[11]	udb_intr[11]
12	PICU[15]	phub_termout0[12]	udb_intr[12]
13	Comparators Combined	phub_termout0[13]	udb_intr[13]
14	Switched Caps Combined	phub_termout0[14]	udb_intr[14]
15	l ² C	phub_termout0[15]	udb_intr[15]
16	CAN	phub_termout1[0]	udb_intr[16]
17	Timer/Counter0	phub_termout1[1]	udb_intr[17]
18	Timer/Counter1	phub_termout1[2]	udb_intr[18]
19	Timer/Counter2	phub_termout1[3]	udb_intr[19]
20	Timer/Counter3	phub_termout1[4]	udb_intr[20]
21	USB SOF Int	phub_termout1[5]	udb_intr[21]
22	USB Arb Int	phub_termout1[6]	udb_intr[22]
23	USB Bus Int	phub_termout1[7]	udb_intr[23]
24	USB Endpoint[0]	phub_termout1[8]	udb_intr[24]
25	USB Endpoint Data	phub_termout1[9]	udb_intr[25]
26	Reserved	phub_termout1[10]	udb_intr[26]
27	LCD	phub_termout1[11]	udb_intr[27]
28	DFB Int	phub_termout1[12]	udb_intr[28]
29	Decimator Int	phub_termout1[13]	udb_intr[29]
30	PHUB Error Int	phub_termout1[14]	udb_intr[30]
31	EEPROM Fault Int	phub_termout1[15]	udb_intr[31]

6. System Integration

6.1 Clocking System

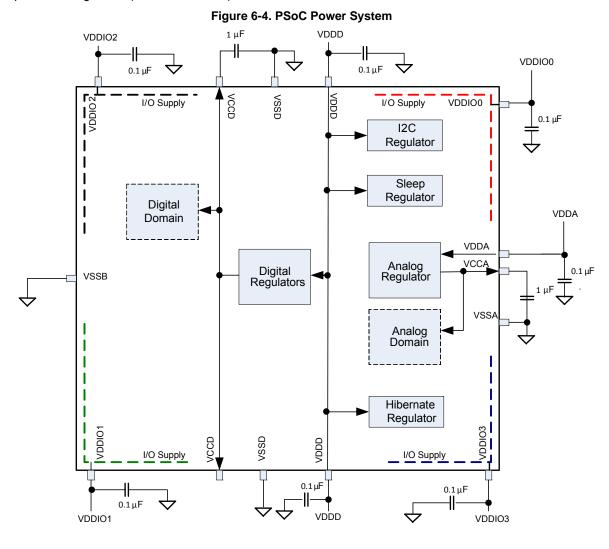

The clocking system generates, divides, and distributes clocks throughout the PSoC system. For the majority of systems, no external crystal is required. The IMO and PLL together can generate up to a 66 MHz clock, accurate to ± 1 percent over voltage and temperature. Additional internal and external clock sources allow each design to optimize accuracy, power, and cost. Any of the clock sources can be used to generate other clock frequencies in the 16-bit clock dividers and UDBs for anything the user wants, for example a UART baud rate generator.

Clock generation and distribution is automatically configured through the PSoC Creator IDE graphical interface. This is based on the complete system's requirements. It greatly speeds the design process. PSoC Creator allows you to build clocking systems with minimal input. You can specify desired clock frequencies and accuracies, and the software locates or builds a clock that meets the required specifications. This is possible because of the programmability inherent in PSoC. Key features of the clocking system include:

- Seven general purpose clock sources
 - □ 3- to 62-MHz IMO, ±1% at 3 MHz
 - 4- to 25-MHz external crystal oscillator (MHzECO)
 - Clock doubler provides a doubled clock frequency output for the USB block, see USB Clock Domain on page 30.
 - DSI signal from an external I/O pin or other logic
 - 24- to 67-MHz fractional PLL sourced from IMO, MHzECO, or DSI
 - 1-kHz, 33-kHz, 100-kHz ILO for WDT and sleep timer
 32.768-kHz external crystal oscillator (kHzECO) for RTC
- IMO has a USB mode that auto locks to the USB bus clock requiring no external crystal for USB (USB equipped parts only)
- Independently sourced clock in all clock dividers
- Eight 16-bit clock dividers for the digital system
- Four 16-bit clock dividers for the analog system
- Dedicated 16-bit divider for the bus clock
- Dedicated 4-bit divider for the CPU clock
- Automatic clock configuration in PSoC Creator

Source	Fmin	Tolerance at Fmin	Fmax	Tolerance at Fmax	Startup Time
IMO	3 MHz	±1% over voltage and temperature	62 MHz	±7%	13 µs max
MHzECO	4 MHz	Crystal dependent	25 MHz	Crystal dependent	5 ms typ, max is crystal dependent
DSI	0 MHz	Input dependent	33 MHz	Input dependent	Input dependent
PLL	24 MHz	Input dependent	67 MHz	Input dependent	250 µs max
Doubler	48 MHz	Input dependent	48 MHz	Input dependent	1 µs max
ILO	1 kHz	-50%, +100%	100 kHz	-55%, +100%	15 ms max in lowest power mode
kHzECO	32 kHz	Crystal dependent	32 kHz	Crystal dependent	500 ms typ, max is crystal dependent

Table 6-1. Oscillator Summary



6.2 Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It also includes two internal 1.8-V regulators that provide the digital (VCCD) and analog (VCCA) supplies for the internal core logic. The output pins of the regulators (VCCD and VCCA) and the

VDDIO pins must have capacitors connected as shown in Figure 6-4. The two VCCD pins must be shorted together, with as short a trace as possible, and connected to a $1-\mu$ F ±10-percent X5R capacitor. The power system also contains a sleep regulator, an I²C regulator, and a hibernate regulator.

Notes

- The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as shown in Figure 2-8 on page 12.
- It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the DC bias (VDDX or VCCX in Figure 6-4) is a significant percentage of the rated working voltage.
- You can power the device in internally regulated mode, where the voltage applied to the VDDx pins is as high as 5.5 V, and the internal regulators provide the core voltages. In this mode, do not apply power to the VCCx pins, and do not tie the VDDx pins to the VCCx pins.
- You can also power the device in externally regulated mode, that is, by directly powering the VCCD and VCCA pins. In this configuration, the VDDD pins should be shorted to the VCCD pins and the VDDA pin should be shorted to the VCCA pin. The allowed supply range in this configuration is 1.71 V to 1.89 V. After power up in this configuration, the internal regulators are on by default, and should be disabled to reduce power consumption.

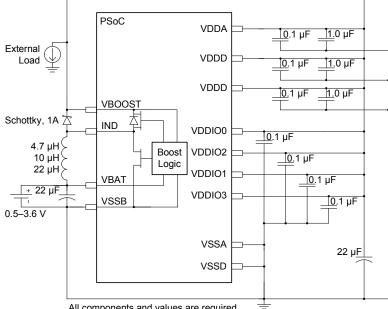
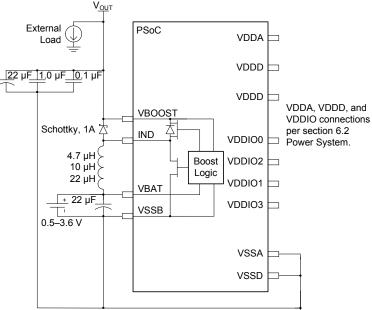



Figure 6-6. Application of Boost Converter powering PSoC device

The boost converter may also generate a supply that is not used directly by the PSoC device. An example of this use case is boosting a 1.8 V supply to 4.0 V to drive a white LED. If the boost converter is not supplying the PSoC devices V_{DDA} , V_{DDD} , and V_{DDIO} it must comply with the same design rules as supplying the PSoC device, but with a change to the bulk capacitor requirements. A parallel arrangement 22 µF, 1.0 µF, and 0.1 µF capacitors are all required on the Vout supply and must be placed within 1 cm of the VBOOST pin to ensure regulator stability.

Figure 6-7. Application of Boost Converter not powering PSoC device

All components and values are required

The switching frequency is set to 400 kHz using an oscillator integrated into the boost converter. The boost converter can be operated in two different modes: active and standby. Active mode is the normal mode of operation where the boost regulator actively generates a regulated output voltage. In standby mode, most boost functions are disabled, thus reducing power consumption of the boost circuit. Only minimal power is provided, typically < 5 µA to power the PSoC device in Sleep mode. The

All components and values are required

6.4.5 Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the system. All eight pins in each port interface to their own Port Interrupt Control Unit (PICU) and associated interrupt vector. Each pin of the port is independently configurable to detect rising edge, falling edge, both edge interrupts, or to not generate an interrupt.

Depending on the configured mode for each pin, each time an interrupt event occurs on a pin, its corresponding status bit of the interrupt status register is set to '1' and an interrupt request is sent to the interrupt controller. Each PICU has its own interrupt vector in the interrupt controller and the pin status register providing easy determination of the interrupt source down to the pin level.

Port pin interrupts remain active in all sleep modes allowing the PSoC device to wake from an externally generated interrupt. While level sensitive interrupts are not directly supported; UDB provide this functionality to the system when needed.

6.4.6 Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level for the default CMOS input thresholds or the optional LVTTL input thresholds. All input buffers incorporate Schmitt triggers for input hysteresis. Additionally, individual pin input buffers can be disabled in any drive mode.

6.4.7 I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the device and package. Each I/O supply must be less than or equal to the voltage on the chip's analog (VDDA) pin. This feature allows users to provide different I/O voltage levels for different pins on the device. Refer to the specific device package pinout to determine VDDIO capability for a given port and pin. The SIO port pins support an additional regulated high output capability, as described in Adjustable Output Level.

6.4.8 Analog Connections

These connections apply only to GPIO pins. All GPIO pins may be used as analog inputs or outputs. The analog voltage present on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs. Each GPIO may connect to one of the analog global busses or to one of the analog mux buses to connect any pin to any internal analog resource such as ADC or comparators. In addition, select pins provide direct connections to specific analog features such as the high current DACs or uncommitted opamps.

6.4.9 CapSense

This section applies only to GPIO pins. All GPIO pins may be used to create CapSense buttons and sliders^[15]. See the "CapSense" section on page 63 for more information.

6.4.10 LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be used to generate Segment and Common drive signals for direct glass drive of LCD glass. See the "LCD Direct Drive" section on page 62 for details.

6.4.11 Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the ability to provide a regulated high output level for interface to external signals that are lower in voltage than the SIO's respective VDDIO. SIO pins are individually configurable to output either the standard VDDIO level or the regulated output, which is based on an internally generated reference. Typically a voltage DAC (VDAC) is used to generate the reference (see Figure 6-13). The "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins. Resistive pullup and pull-down drive modes are not available with SIO in regulated output mode.

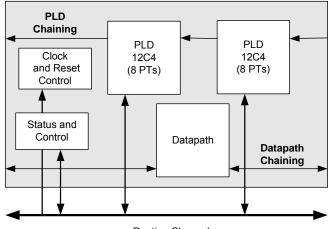
6.4.12 Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support the standard CMOS and LVTTL input levels but also support a differential mode with programmable levels. SIO pins are grouped into pairs. Each pair shares a reference generator block which, is used to set the digital input buffer reference level for interface to external signals that differ in voltage from VDDIO. The reference sets the pins voltage threshold for a high logic level (see Figure 6-13). Available input thresholds are:

- 0.5 × VDDIO
- 0.4 × VDDIO
- $\blacksquare 0.5 \times V_{REF}$
- V_{REF}

Typically a voltage DAC (VDAC) generates the V_{REF} reference. "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins.

^{15.} GPIOs with opamp outputs are not recommended for use with CapSense.



7.2 Universal Digital Block

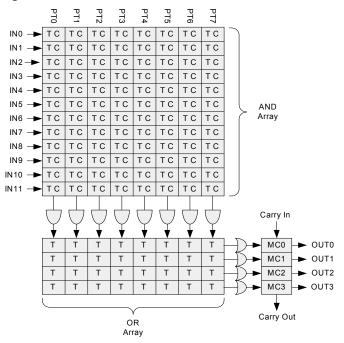
The UDB represents an evolutionary step to the next generation of PSoC embedded digital peripheral functionality. The architecture in first generation PSoC digital blocks provides coarse programmability in which a few fixed functions with a small number of options are available. The new UDB architecture is the optimal balance between configuration granularity and efficient implementation. A cornerstone of this approach is to provide the ability to customize the devices digital operation to match application requirements.

To achieve this, UDBs consist of a combination of uncommitted logic (PLD), structured logic (Datapath), and a flexible routing scheme to provide interconnect between these elements, I/O connections, and other peripherals. UDB functionality ranges from simple self contained functions that are implemented in one UDB, or even a portion of a UDB (unused resources are available for other functions), to more complex functions that require multiple UDBs. Examples of basic functions are timers, counters, CRC generators, PWMs, dead band generators, and communications functions, such as UARTs, SPI, and I²C. Also, the PLD blocks and connectivity provide full featured general purpose programmable logic within the limits of the available resources.

Figure 7-2. UDB Block Diagram

Routing Channel

The main component blocks of the UDB are:

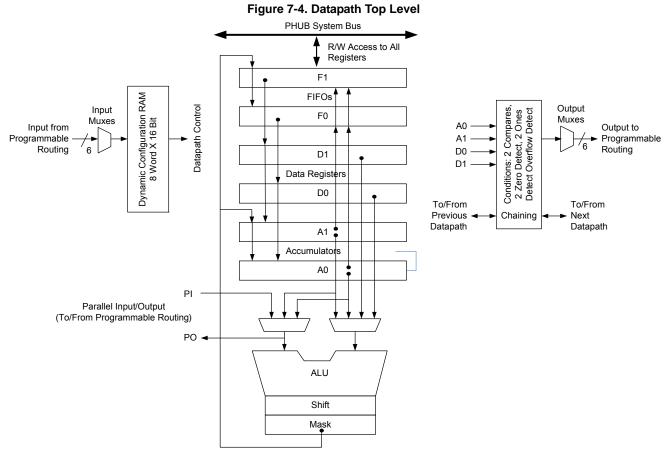

- PLD blocks There are two small PLDs per UDB. These blocks take inputs from the routing array and form registered or combinational sum-of-products logic. PLDs are used to implement state machines, state bits, and combinational logic equations. PLD configuration is automatically generated from graphical primitives.
- Datapath module This 8-bit wide datapath contains structured logic to implement a dynamically configurable ALU, a variety of compare configurations and condition generation. This block also contains input/output FIFOs, which are the primary parallel data interface between the CPU/DMA system and the UDB.

- Status and control module The primary role of this block is to provide a way for CPU firmware to interact and synchronize with UDB operation.
- Clock and reset module This block provides the UDB clocks and reset selection and control.

7.2.1 PLD Module

The primary purpose of the PLD blocks is to implement logic expressions, state machines, sequencers, lookup tables, and decoders. In the simplest use model, consider the PLD blocks as a standalone resource onto which general purpose RTL is synthesized and mapped. The more common and efficient use model is to create digital functions from a combination of PLD and datapath blocks, where the PLD implements only the random logic and state portion of the function while the datapath (ALU) implements the more structured elements.

Figure 7-3. PLD 12C4 Structure



One 12C4 PLD block is shown in Figure 7-3. This PLD has 12 inputs, which feed across eight product terms. Each product term (AND function) can be from 1 to 12 inputs wide, and in a given product term, the true (T) or complement (C) of each input can be selected. The product terms are summed (OR function) to create the PLD outputs. A sum can be from 1 to 8 product terms wide. The 'C' in 12C4 indicates that the width of the OR gate (in this case 8) is constant across all outputs (rather than variable as in a 22V10 device). This PLA like structure gives maximum flexibility and insures that all inputs and outputs are permutable for ease of allocation by the software tools. There are two 12C4 PLDs in each UDB.

7.2.2 Datapath Module

The datapath contains an 8-bit single cycle ALU, with associated compare and condition generation logic. This datapath block is optimized to implement embedded functions, such as timers, counters, integrators, PWMs, PRS, CRC, shifters and dead band generators and many others.

7.2.2.1 Working Registers

The datapath contains six primary working registers, which are accessed by CPU firmware or DMA during normal operation.

Table 7-1.	Working	Datapath	Registers
------------	---------	----------	-----------

Name	Function	Description
A0 and A1	Accumulators	These are sources and sinks for the ALU and also sources for the compares.
D0 and D1	Data Registers	These are sources for the ALU and sources for the compares.
F0 and F1	FIFOs	These are the primary interface to the system bus. They can be a data source for the data registers and accumulators or they can capture data from the accumulators or ALU. Each FIFO is four bytes deep.

7.2.2.2 Dynamic Configuration RAM

Dynamic configuration is the ability to change the datapath function and internal configuration on a cycle-by-cycle basis, under sequencer control. This is implemented using the 8-word × 16-bit configuration RAM, which stores eight unique 16-bit wide configurations. The address input to this RAM controls the sequence, and can be routed from any block connected to the UDB routing matrix, most typically PLD logic, I/O pins, or from the outputs of this or other datapath blocks.

ALU

The ALU performs eight general purpose functions. They are: Increment

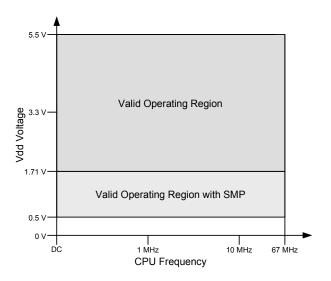

- Decrement
- Add
- Subtract
- Logical AND
- Logical OR
- Logical XOR
- Pass, used to pass a value through the ALU to the shift register, mask, or another UDB register.

Table 11-3. AC Specifications^[33]

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{CPU}	CPU frequency	$1.71~V \le V_{DDD} \le 5.5~V$	DC	-	67.01	MHz
F _{BUSCLK}	Bus frequency	$1.71~V \leq V_{DDD} \leq 5.5~V$	DC	-	67.01	MHz
Svdd	V _{DD} ramp rate		-	-	0.066	V/µs
T _{IO_INIT}	Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge$ IPOR to I/O ports set to their reset states		-	-	10	μs
T _{STARTUP}	Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge PRES$ to CPU executing code at reset vector	V_{CCA}/V_{DDA} = regulated from V_{DDA}/V_{DDD} , no PLL used, fast IMO boot mode (48 MHz typ.)	-	-	40	μs
		V_{CCA}/V_{CCD} = regulated from V_{DDA}/V_{DDD} , no PLL used, slow IMO boot mode (12 MHz typ.)	_	-	74	μs
T _{SLEEP}	Wakeup from sleep mode – Application of non-LVD interrupt to beginning of execution of next CPU instruction		_	-	15	μs
T _{HIBERNATE}	Wakeup from hibernate mode – Application of external interrupt to beginning of execution of next CPU instruction		_	-	100	μs

Figure 11-4. F_{CPU} vs. V_{DD}

11.3.3 Inductive Boost Regulator

Unless otherwise specified, operating conditions are: $V_{BAT} = 0.5 V-3.6 V$, $V_{OUT} = 1.8 V-5.0 V$, $I_{OUT} = 0 mA-50 mA$, $L_{BOOST} = 4.7 \mu H-22 \mu H$, $C_{BOOST} = 22 \mu F \parallel 3 \times 1.0 \mu F \parallel 3 \times 0.1 \mu F$, $C_{BAT} = 22 \mu F$, $I_F = 1.0 A$. Unless otherwise specified, all charts and graphs show typical values.

Table 11-6.	Inductive Boost Regulator DC Specifications
-------------	---

Parameter	Description	Cond	ditions	Min	Тур	Max	Units
V _{OUT}	Boost output voltage ^[34]	vsel = 1.8 V in regist	ter BOOST_CR0	1.71	1.8	1.89	V
		vsel = 1.9 V in regist	ter BOOST_CR0	1.81	1.90	2.00	V
		vsel = 2.0 V in register BOOST_CR0		1.90	2.00	2.10	V
		vsel = 2.4 V in regist	ter BOOST_CR0	2.16	2.40	2.64	V
		vsel = 2.7 V in regist	ter BOOST_CR0	2.43	2.70	2.97	V
		vsel = 3.0 V in regist	ter BOOST_CR0	2.70	3.00	3.30	V
		vsel = 3.3 V in regist	ter BOOST_CR0	2.97	3.30	3.63	V
		vsel = 3.6 V in regist	ter BOOST_CR0	3.24	3.60	3.96	V
		vsel = 5.0 V in regist	ter BOOST_CR0	4.50	5.00	5.50	V
V _{BAT}	Input voltage to boost ^[35]	I _{OUT} = 0 mA–5 mA	vsel = 1.8 V–2.0 V, T _A = 0 °C–70 °C	0.5	-	0.8	V
		I _{OUT} = 0 mA–15 mA	vsel = 1.8 V–5.0 V ^[36] , T _A = –10 °C–85 °C	1.6	-	3.6	V
		I _{OUT} = 0 mA–25 mA	T _A = –10 °C–85 °C	0.8	-	1.6	V
		I _{OUT} = 0 mA–50 mA	vsel = 1.8 V–3.3 V ^[36] , T _A = –40 °C–85 °C	1.8	-	2.5	V
			vsel = 1.8 V–3.3 V ^[36] , T _A = –10 °C–85 °C	1.3	-	2.5	V
			vsel = 2.5 V–5.0 V ^[36] , T _A = –10 °C–85 °C	2.5	-	3.6	V
I _{OUT}	Output current	T _A = 0 °C–70 °C	V _{BAT} = 0.5 V–0.8 V	0	_	5	mA
		T _A = -10 °C-85 °C	V _{BAT} = 1.6 V–3.6 V	0	_	15	mA
			V _{BAT} = 0.8 V–1.6 V	0	_	25	mA
			V _{BAT} = 1.3 V–2.5 V	0	_	50	mA
			V _{BAT} = 2.5 V–3.6 V	0	_	50	mA
		T _A = -40 °C-85 °C	V _{BAT} = 1.8 V–2.5 V	0	_	50	mA
I _{LPK}	Inductor peak current		БЛ	_	_	700	mA
l _Q	Quiescent current	Boost active mode		_	250	_	μA
S.		Boost sleep mode, I	ουτ < 1 μΑ	_	25	_	μΑ
Reg _{LOAD}	Load regulation			_	_	10	%
Reg _{LINE}	Line regulation			_	_	10	%

Notes

- 34. Listed vsel options are characterized. Additional vsel options are valid and guaranteed by design.
 35. The boost will start at all valid V_{BAT} conditions including down to V_{BAT} = 0.5 V.
 36. If V_{BAT} is greater than or equal to V_{OUT} boost setting, then V_{OUT} will be less than V_{BAT} due to resistive losses in the boost circuit.

Figure 11-55. VDAC INL vs Input Code, 1 V Mode

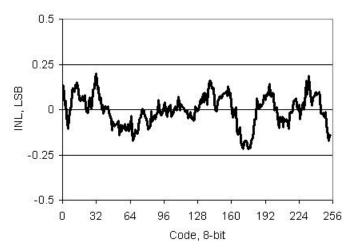


Figure 11-57. VDAC INL vs Temperature, 1 V Mode

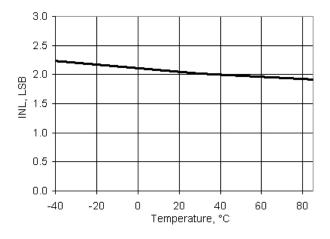


Figure 11-59. VDAC Full Scale Error vs Temperature, 1 V Mode

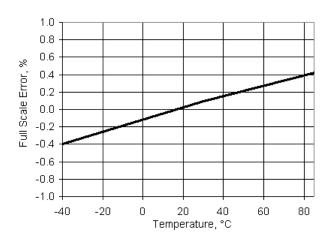


Figure 11-56. VDAC DNL vs Input Code, 1 V Mode

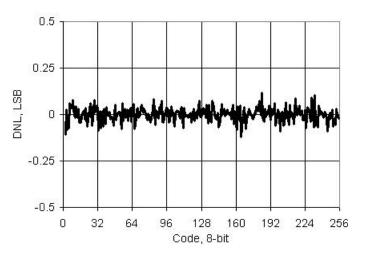


Figure 11-58. VDAC DNL vs Temperature, 1 V Mode

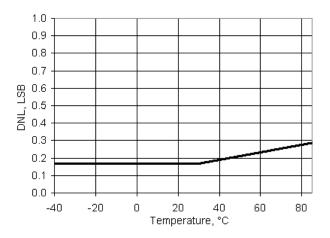
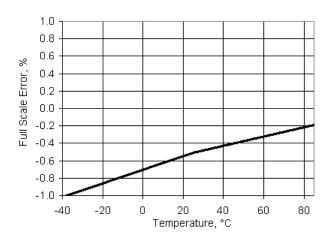



Figure 11-60. VDAC Full Scale Error vs Temperature, 4 V Mode

11.7.5 External Memory Interface

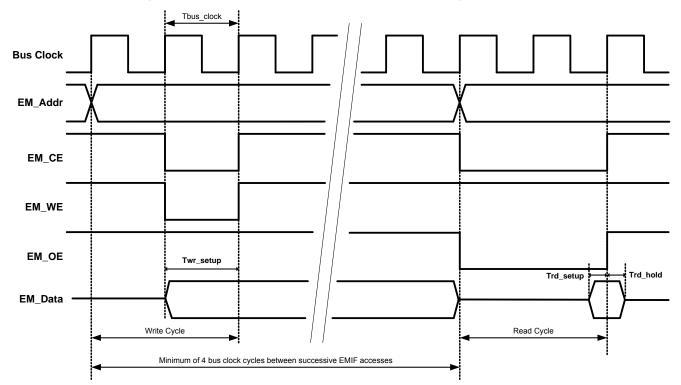


Figure 11-71. Asynchronous Write and Read Cycle Timing, No Wait States

Table 11-67.	Asynchronous	Write and Read	Timing Spe	ecifications ^[62]
--------------	--------------	----------------	-------------------	------------------------------

Parameter	Description	Conditions	Min	Тур	Max	Units
Fbus_clock	Bus clock frequency ^[63]		-	-	33	MHz
Tbus_clock	Bus clock period ^[64]		30.3	-	-	ns
Twr_Setup	Time from EM_data valid to rising edge of EM_WE and EM_CE		Tbus_clock – 10	-	-	ns
Trd_setup	Time that EM_data must be valid before rising edge of EM_OE		5	-	-	ns
Trd_hold	Time that EM_data must be valid after rising edge of EM_OE		5	_	-	ns

Notes

- 62. Based on device characterization (Not production tested).

63. EMIF signal timings are limited by GPIO frequency limitations. See "GPIO" section on page 80.
64. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

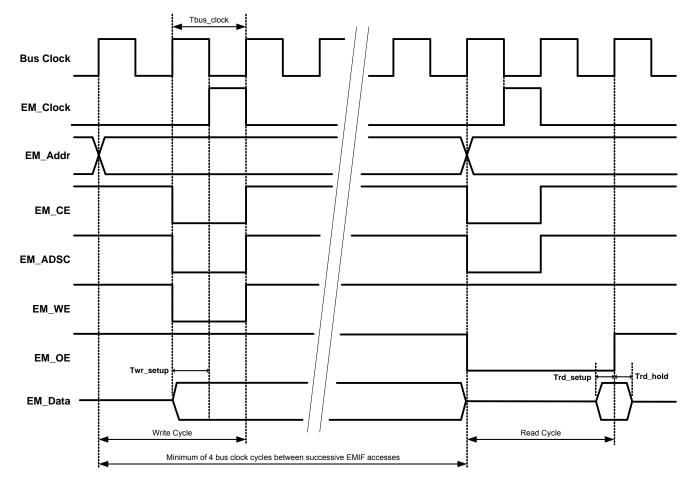


Figure 11-72. Synchronous Write and Read Cycle Timing, No Wait States

Table 11-68. Synchronous Write and Read Timing Specifications^[65]

Parameter	Description	Conditions	Min	Тур	Max	Units
Fbus_clock	Bus clock frequency ^[66]		-	-	33	MHz
Tbus_clock	Bus clock period ^[67]		30.3	-	-	ns
Twr_Setup	Time from EM_data valid to rising edge of EM_Clock		Tbus_clock – 10	-	-	ns
Trd_setup	Time that EM_data must be valid before rising edge of EM_OE		5	-	-	ns
Trd_hold	Time that EM_data must be valid after rising edge of EM_OE		5	-	-	ns

Notes

- 65. Based on device characterization (Not production tested).
 66. EMIF signal timings are limited by GPIO frequency limitations. See "GPIO" section on page 80.
 67. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

11.8 PSoC System Resources

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.8.1 POR with Brown Out

For brown out detect in regulated mode, V_{DDD} and V_{DDA} must be \geq 2.0 V. Brown out detect is not available in externally regulated mode.

Table 11-69. Precise Low-Voltage Reset (PRES) with Brown Out DC Specifications

Parameter	Description Conditions Min		Min	Тур	Max	Units
PRESR	Rising trip voltage	Factory trim	1.64	_	1.68	V
PRESF	Falling trip voltage		1.62	-	1.66	V

Table 11-70. Power On Reset (POR) with Brown Out AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
PRES_TR	Response time		_	_	0.5	μs
	V _{DDD} /V _{DDA} droop rate	Sleep mode	-	5	-	V/sec

11.8.2 Voltage Monitors

Table 11-71. Voltage Monitors DC Specifications

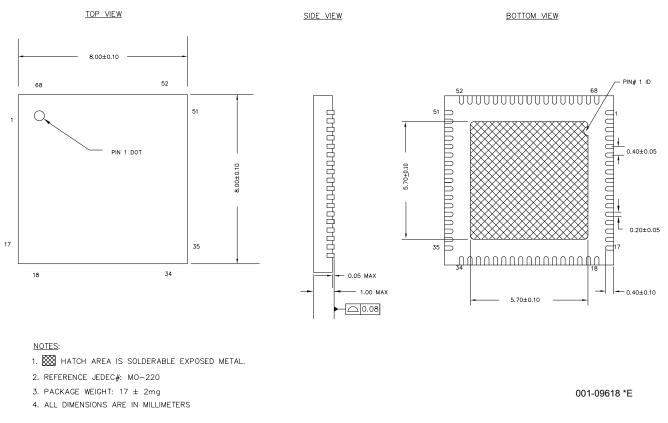

Parameter	Description	Conditions	Min	Тур	Max	Units
LVI	Trip voltage					
	LVI_A/D_SEL[3:0] = 0000b		1.68	1.73	1.77	V
	LVI_A/D_SEL[3:0] = 0001b		1.89	1.95	2.01	V
	LVI_A/D_SEL[3:0] = 0010b		2.14	2.20	2.27	V
	LVI_A/D_SEL[3:0] = 0011b		2.38	2.45	2.53	V
	LVI_A/D_SEL[3:0] = 0100b		2.62	2.71	2.79	V
	LVI_A/D_SEL[3:0] = 0101b		2.87	2.95	3.04	V
	LVI_A/D_SEL[3:0] = 0110b		3.11	3.21	3.31	V
	LVI_A/D_SEL[3:0] = 0111b		3.35	3.46	3.56	V
	LVI_A/D_SEL[3:0] = 1000b		3.59	3.70	3.81	V
	LVI_A/D_SEL[3:0] = 1001b		3.84	3.95	4.07	V
	LVI_A/D_SEL[3:0] = 1010b		4.08	4.20	4.33	V
	LVI_A/D_SEL[3:0] = 1011b		4.32	4.45	4.59	V
	LVI_A/D_SEL[3:0] = 1100b		4.56	4.70	4.84	V
	LVI_A/D_SEL[3:0] = 1101b		4.83	4.98	5.13	V
	LVI_A/D_SEL[3:0] = 1110b		5.05	5.21	5.37	V
	LVI_A/D_SEL[3:0] = 1111b		5.30	5.47	5.63	V
HVI	Trip voltage		5.57	5.75	5.92	V

Table 11-72. Voltage Monitors AC Specifications

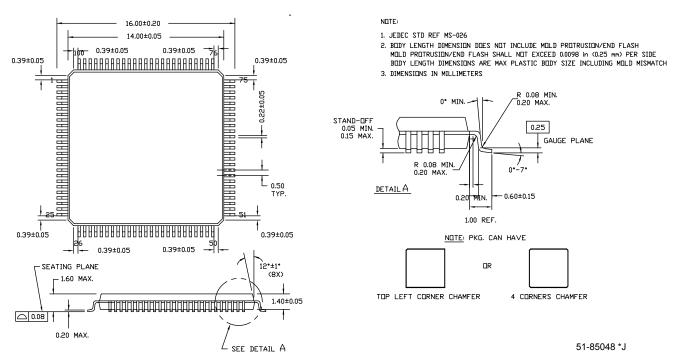

Parameter		Conditions	Min	Тур	Max	Units
	Response time ^[68]		-	-	1	μs

Figure 13-4. 100-pin TQFP (14 × 14 × 1.4 mm) Package Outline

Document Number: 001-11729 Rev. AF

	n Title: PSo Number: 00		Family Data	sheet Programmable System-on-Chip (PSoC [®]) (continued)
Revision	ECN	Submission Date	Orig. of Change	Description of Change
*[2938381	05/27/10	MKEA	Replaced V _{DDIO} with V _{DDD} in USBIO diagram and specification tables, added text in USBIO section of Electrical Specifications. Added Table 13-2 (Package MSL) Modified Tstorag condition and changed max spec to 100 Added bullet (Pass) under ALU (section 7.2.2.2) Added figures for kHzECO and MHzECO in the External Oscillator section Updated Figure 6-1(Clocking Subsystem diagram) Removed CPUCLK_DIV in table 5-2, Deleted Clock Divider SFR subsection Updated PSoC Creator Framework image Updated SIO DC Specifications (V _{IH} and V _{IL} parameters) Updated bullets in Clocking System and Clocking Distribution sections Updated Figure 8-2 Updated PCB Layout and Schematic, updated as per MTRB review comments Updated Table 6-3 (power changed to current) In 32kHZ EC DC Specifications table, changed I _{CC} Max to 0.25 In IMO DC Specifications table, updated Supply Current values Updated GPIO DC Specs table
*M	2958674	06/22/10	SHEA	Minor ECN to post data sheet to external website
*N	2989685	08/04/10	MKEA	INL max is changed from 16 to 32 in Table 11-20, 20-bit Delta-sigma ADC AC Specifications. Added to Table 6-6 a footnote and references to same. Added sentences to the resistive pullup and pull-down description bullets. Added sentence to Section 6.4.11, Adjustable Output Level. Updated section 5.5 External Memory Interface Updated Table 11-73 JTAG Interface AC Specifications Updated Table 11-74 SWD Interface AC Specifications Updated style changes as per the new template.
*0	3078568	11/04/10	MKEA	Added 48-SSOP pin and package details. Removed PLL output duty cycle spec. Updated "Current Digital-to-analog Converter (IDAC)" on page 97 Updated "Voltage Digital to Analog Converter (VDAC)" on page 101 Updated Table 11-2, "DC Specifications," on page 72 Updated Table 11-28, "Voltage Reference Specifications," on page 95

Document	Number: 0	01-11729	-	asheet Programmable System-on-Chip (PSoC [®]) (continued)
Revision	ECN	Submission Date	Orig. of Change	Description of Change
*P	3107314	12/10/2010	MKEA	Updated delta-sigma tables and graphs. Formatted table 11.2. Updated interrupt controller table Updated transimpedance amplifier section Updated SIO DC specs table Updated Voltage Monitors DC Specifications table Updated LCD Direct Drive DC specs table Replaced the Discrete Time Mixer and Continuous Time Mixer tables with Mixer DC and AC specs tables Updated ESD _{HBM} value. Updated IDAC and VDAC sections Removed ESO parts from ordering information Changed USBIO pins from NC to DNU and removed redundant USBIO pin description notes Updated POR with brown out DC and AC specs Updated POR with brown out DC and AC specs Updated 32 kHz External Crystal DC Specifications Updated opamp AC specs Updated Inductive boost regulator section Delta sigma ADC spec updates Updated comparator section Removed buzz mode from Power Mode Transition diagram Updated opamp DC and AC spec tables Updated PGA DC table
*Q	3179219	22/02/2011	MKEA	Updated conditions for flash data retention time Updated 100-pin TQFP package spec. Updated EEPROM AC specifications.
*R	3200146	03/28/2011	MKEA	Removed Preliminary status from the data sheet. Updated JTAG ID Deleted Cin_G1, ADC input capacitance from Delta-Sigma ADC DC spec table Updated JTAG Interface AC Specifications and SWD Interface Specifications tables Updated USBIO DC specs Added 0.01 to max speed Updated Features on page 1 Added Section 5.5, Nonvolatile Latches Updated Flash AC specs Added CAN DC specs Updated delta-sigma graphs, noise histogram figures and RMS Noise spec tables Add reference to application note AN58304 in section 8.1 Updated 100-pin TQFP package spec Added oscillator, I/O, VDAC, regulator graphs Updated GPIO and SIO AC specs Updated GPIO and SIO AC specs Updated POR with Brown Out AC spec table Updated IDAC graphs Added DMA timing diagram, interrupt timing and interrupt vector, I2C timing diagrams Updated opamp graphs and PGA graphs Added full chip performance graphs Changed MHzECO range. Added "Solder Reflow Peak Temperature" table.

Revision	ECN	Submission Date	Orig. of Change	Description of Change
*W	3732521	09/03/2012	MKEA	Replaced I _{DDDR} and I _{DDAR} specs in Table 11-2, "DC Specifications," on page 72 that were dropped out in *U revision. Updated V _{OS} Max value from 10 to 15 in Table 11-36, "Mixer DC Specifications, on page 104. Updated Table 11-21, "20-bit Delta-sigma ADC DC Specifications," on page 9° I _{DD_20} Max value from 1.25 to 1.5 mA I _{DD_16} Max value from 1.2 to 1.5 mA Replaced PSoC [®] 3 Programming AN62391 with TRM in footnote #61 and "Programming, Debug Interfaces, Resources" section on page 65. Removed Figure 11-8 (Efficiency vs Vout) Updated Table 11-19, "Opamp DC Specifications," on page 88, I _{DD} Quiescen current row values from 200 and 270 to 250 and 400 respectively. Updated conditions for Storage Temperature in Table 11-1, "Absolute Maximur Ratings DC Specifications[18]," on page 71 Updated conditions and min values for NVL data retention time in Table 11-64 "NVL AC Specifications," on page 113 Updated Table 11-79, "ILO DC Specifications," on page 121. Removed the following pruned parts from the "Ordering Information" section of page 123. CY8C3865PVI-060 CY8C3866LTI-062 CY8C3866AXI-035 Updated PSoC 3 boost circuit value throughout the document. Removed 100 kHz sub row in Table 11-55, "DFB DC Specifications," on page 110. Updated package diagram 51-85061 to *F revision.
*X	3922905	03/25/2013	MKEA	Updated $I_{DD, XX}$ parameters under Table 11-21, "20-bit Delta-sigma ADC DC Specifications," on page 91. Updated Temperature Drift spec in Voltage Reference Specifications. Added CY8C3865AXI-204, CY8C3865LTI-205, CY8C3866AXI-206, CY8C3866LTI-207, CY8C3866AXI-208, and CY8C3866LTI-209 part numbers in Ordering Information. Updated I ² C section and GPIO and SIO DC specification tables. Corrected Hibernate max limit. Changed INL max value from ±1.5 to ±1.6 in IDAC DC Specifications. Updated ECCEN default setting in Fields and Factory Default Settings.
*Y	4064707	07/18/2013	MKEA	Added USB test ID in Features. Updated schematic in <i>Section 2.</i> . Added paragraph for device reset warning in <i>Section 5.4</i> . Added NVL bit for DEBUG_EN in <i>Section 5.5</i> . Updated UDB PLD array diagram in <i>Section 7.2.1</i> . Changed Tstartup specs in <i>Section 11.2.1</i> . Changed GPIO rise and fall time specs in <i>Section 11.4</i> . Added Opamp IIB spec in <i>Section 11.5.1</i> . Changed Del-sig Vos spec in <i>Section 11.5.2</i> . Added VREF spec condition: pre-assembly and added "box method" to VREF temperature drift spec condition: pre-assembly in <i>Section 11.9.1</i> . Added IMO spec condition: pre-assembly in <i>Section 11.9.1</i> .
*Z	4118845	09/10/2013	MKEA	Removed T _{STG} spec. and added note clarifying the maximum storage temper ature range in Table 11-1. Updated Vos spec conditions and TCVos in Table 11-21. Updated F _{IMO} spec (3 MHz). Updated 100-TQFP package diagram.