

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

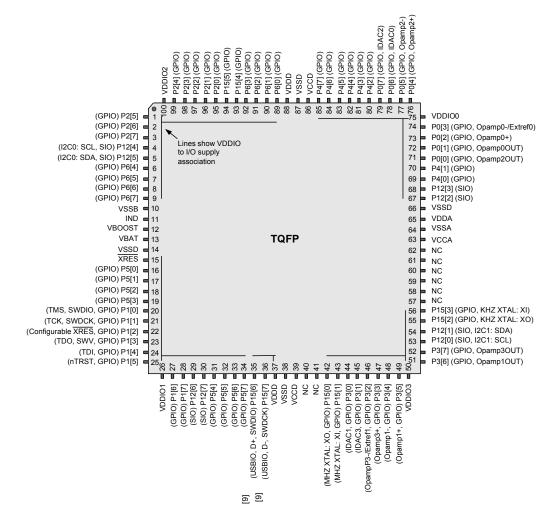
Details

E·XFI

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3866axi-035t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Contents

1. A	rchitectural Overview	. 4
	inouts	
3. F	in Descriptions	12
	PU	
	4.1 8051 CPU	13
	4.2 Addressing Modes	13
	4.3 Instruction Set	
	4.4 DMA and PHUB	
	4.5 Interrupt Controller	
5. N	lemory	
	5.1 Static RAM	
	5.2 Flash Program Memory	
	5.3 Flash Security	
	5.4 EEPROM 5.5 Nonvolatile Latches (NVLs)	
	5.6 External Memory Interface	2 4 25
	5.7 Memory Map	
6 9	system Integration	
0. 0	6.1 Clocking System	
	6.2 Power System	
	6.3 Reset	
	6.4 I/O System and Routing	37
7. C	igital Subsystem	44
7. C	igital Subsystem 7.1 Example Peripherals	
7. C	7.1 Example Peripherals7.2 Universal Digital Block	44 46
7. C	7.1 Example Peripherals7.2 Universal Digital Block7.3 UDB Array Description	44 46 49
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 	44 46 49 49
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 	44 46 49 49 51
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 	44 46 49 49 51 53
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 	44 49 49 51 53 53
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 	44 49 49 51 53 53 54
	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 	44 49 49 51 53 53 54 56
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem	44 49 49 51 53 53 54 56 56
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block analog Subsystem 8.1 Analog Routing	44 49 49 51 53 53 53 54 56 57
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC	44 49 49 51 53 53 54 56 57 59
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators	44 49 49 51 53 53 54 56 57 59 60
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block malog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks	44 49 49 51 53 53 54 56 57 59 60 61 61
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive	44 49 49 53 53 53 56 57 59 60 61 61 62
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense	44 49 49 53 53 54 56 57 60 61 62 63
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor	44 49 53 53 54 55 57 60 61 62 63 63
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor 8.9 DAC	44 49 53 53 55 56 61 62 63 64
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor	44 49 53 53 55 56 57 50 61 62 63 64 64

9. Programming, Debug Interfaces, Resources	
9.1 JTAG Interface	
9.2 Serial Wire Debug Interface 9.3 Debug Features	
9.4 Trace Features	
9.5 Single Wire Viewer Interface	
9.6 Programming Features	
9.7 Device Security	
9.8 CSP Package Bootloader	69
10. Development Support	70
10.1 Documentation	70
10.2 Online	
10.3 Tools	
11. Electrical Specifications	
11.1 Absolute Maximum Ratings	
11.2 Device Level Specifications	
11.3 Power Regulators 11.4 Inputs and Outputs	
11.5 Analog Peripherals	
11.6 Digital Peripherals	
11.7 Memory	112
11.8 PSoC System Resources	
11.9 Clocking	119
12. Ordering Information	
12.1 Part Numbering Conventions	
13. Packaging	125
14. Acronyms	129
15. Reference Documents	130
16. Document Conventions	131
16.1 Units of Measure	131
17. Revision History	132
18. Sales, Solutions, and Legal Information	140
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	140

Figure 2-6. 100-pin TQFP Part Pinout

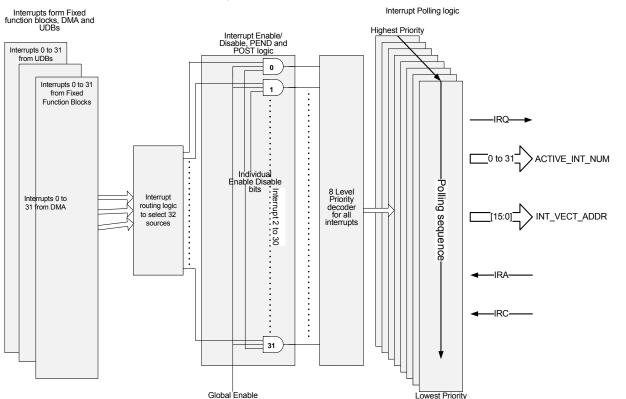


Table 2-1.	V _{DDIO} and	l Port Pin	Associations
------------	-----------------------	------------	--------------

VDDIO	Port Pins
VDDIO0	P0[7:0], P4[7:0], P12[3:2]
VDDIO1	P1[7:0], P5[7:0], P12[7:6]
VDDIO2	P2[7:0], P6[7:0], P12[5:4], P15[5:4]
VDDIO3	P3[7:0], P12[1:0], P15[3:0]
VDDD	P15[7:6] (USB D+, D-)

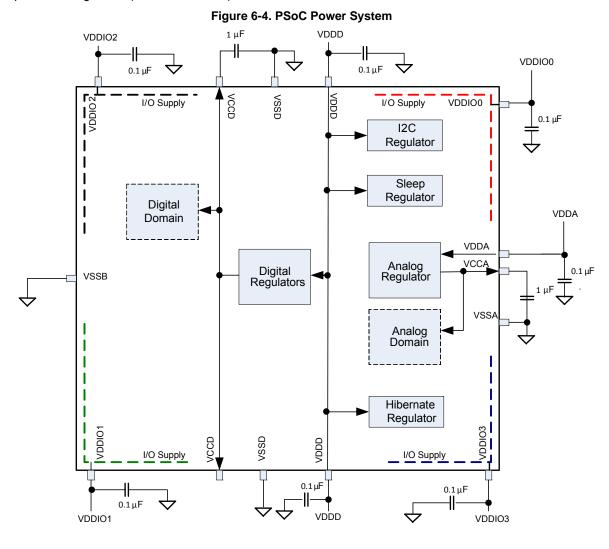
Note 9. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.

disable bit

Figure 4-3. Interrupt Structure

When an interrupt is pending, the current instruction is completed and the program counter is pushed onto the stack. Code execution then jumps to the program address provided by the vector. After the ISR is completed, a RETI instruction is executed and returns execution to the instruction following the previously interrupted instruction. To do this the RETI instruction pops the program counter from the stack.

If the same priority level is assigned to two or more interrupts, the interrupt with the lower vector number is executed first. Each interrupt vector may choose from three interrupt sources: Fixed Function, DMA, and UDB. The fixed function interrupts are


direct connections to the most common interrupt sources and provide the lowest resource cost connection. The DMA interrupt sources provide direct connections to the two DMA interrupt sources provided per DMA channel. The third interrupt source for vectors is from the UDB digital routing array. This allows any digital signal available to the UDB array to be used as an interrupt source. Fixed function interrupts and all interrupt sources may be routed to any interrupt vector using the UDB interrupt source connections.

6.2 Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It also includes two internal 1.8-V regulators that provide the digital (VCCD) and analog (VCCA) supplies for the internal core logic. The output pins of the regulators (VCCD and VCCA) and the

VDDIO pins must have capacitors connected as shown in Figure 6-4. The two VCCD pins must be shorted together, with as short a trace as possible, and connected to a $1-\mu$ F ±10-percent X5R capacitor. The power system also contains a sleep regulator, an I²C regulator, and a hibernate regulator.

Notes

- The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as shown in Figure 2-8 on page 12.
- It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the DC bias (VDDX or VCCX in Figure 6-4) is a significant percentage of the rated working voltage.
- You can power the device in internally regulated mode, where the voltage applied to the VDDx pins is as high as 5.5 V, and the internal regulators provide the core voltages. In this mode, do not apply power to the VCCx pins, and do not tie the VDDx pins to the VCCx pins.
- You can also power the device in externally regulated mode, that is, by directly powering the VCCD and VCCA pins. In this configuration, the VDDD pins should be shorted to the VCCD pins and the VDDA pin should be shorted to the VCCA pin. The allowed supply range in this configuration is 1.71 V to 1.89 V. After power up in this configuration, the internal regulators are on by default, and should be disabled to reduce power consumption.

7.1.3 Example System Function Components

The following is a sample of the system function components available in PSoC Creator for the CY8C38 family. The exact amount of hardware resources (UDBs, DFB taps, SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- CapSense
- LCD drive
- LCD control
- Filters

7.1.4 Designing with PSoC Creator

7.1.4.1 More Than a Typical IDE

A successful design tool allows for the rapid development and deployment of both simple and complex designs. It reduces or eliminates any learning curve. It makes the integration of a new design into the production stream straightforward.

PSoC Creator is that design tool.

PSoC Creator is a full featured Integrated Development Environment (IDE) for hardware and software design. It is optimized specifically for PSoC devices and combines a modern, powerful software development platform with a sophisticated graphical design tool. This unique combination of tools makes PSoC Creator the most flexible embedded design platform available.

Graphical design entry simplifies the task of configuring a particular part. You can select the required functionality from an extensive catalog of components and place it in your design. All components are parameterized and have an editor dialog that allows you to tailor functionality to your needs.

PSoC Creator automatically configures clocks and routes the I/O to the selected pins and then generates APIs to give the application complete control over the hardware. Changing the PSoC device configuration is as simple as adding a new component, setting its parameters, and rebuilding the project.

At any stage of development you are free to change the hardware configuration and even the target processor. To retarget your application (hardware and software) to new devices, even from 8- to 32-bit families, just select the new device and rebuild.

You also have the ability to change the C compiler and evaluate an alternative. Components are designed for portability and are validated against all devices, from all families, and against all supported tool chains. Switching compilers is as easy as editing the from the project options and rebuilding the application with no errors from the generated APIs or boot code.

7.1.4.2 Component Catalog

The component catalog is a repository of reusable design elements that select device functionality and customize your PSoC device. It is populated with an impressive selection of content; from simple primitives such as logic gates and device registers, through the digital timers, counters and PWMs, plus analog components such as ADC, DACs, and filters, and communication protocols, such as I²C, USB, and CAN. See Example Peripherals on page 44 for more details about available peripherals. All content is fully characterized and carefully documented in data sheets with code examples, AC/DC specifications, and user code ready APIs.

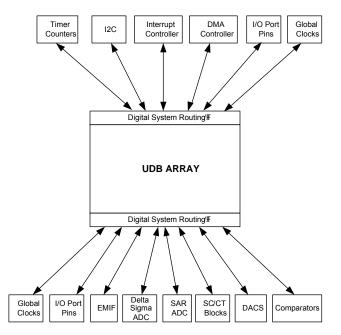
7.1.4.3 Design Reuse

The symbol editor gives you the ability to develop reusable components that can significantly reduce future design time. Just draw a symbol and associate that symbol with your proven design. PSoC Creator allows for the placement of the new symbol anywhere in the component catalog along with the content provided by Cypress. You can then reuse your content as many times as you want, and in any number of projects, without ever having to revisit the details of the implementation.

7.1.4.4 Software Development

Anchoring the tool is a modern, highly customizable user interface. It includes project management and integrated editors for C and assembler source code, as well the design entry tools.

Project build control leverages compiler technology from top commercial vendors such as ARM[®] Limited, Keil[™], and CodeSourcery (GNU). Free versions of Keil C51 and GNU C Compiler (GCC) for ARM, with no restrictions on code size or end product distribution, are included with the tool distribution. Upgrading to more optimizing compilers is a snap with support for the professional Keil C51 product and ARM RealView[™] compiler.


7.1.4.5 Nonintrusive Debugging

With JTAG (4-wire) and SWD (2-wire) debug connectivity available on all devices, the PSoC Creator debugger offers full control over the target device with minimum intrusion. Breakpoints and code execution commands are all readily available from toolbar buttons and an impressive lineup of windows—register, locals, watch, call stack, memory and peripherals—make for an unparalleled level of visibility into the system.

PSoC Creator contains all the tools necessary to complete a design, and then to maintain and extend that design for years to come. All steps of the design flow are carefully integrated and optimized for ease-of-use and to maximize productivity.

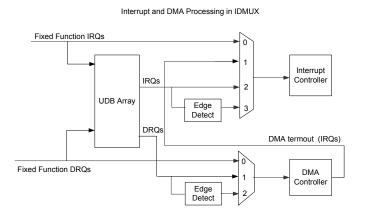


Figure 7-9. Digital System Interconnect

Interrupt and DMA routing is very flexible in the CY8C38 programmable architecture. In addition to the numerous fixed function peripherals that can generate interrupt requests, any data signal in the UDB array routing can also be used to generate a request. A single peripheral may generate multiple independent interrupt requests simplifying system and firmware design. Figure 7-10 shows the structure of the IDMUX (Interrupt/DMA Multiplexer).

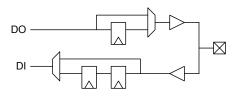
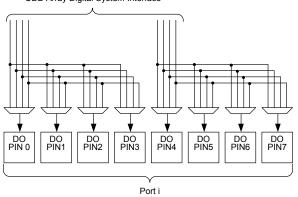
Figure 7-10. Interrupt and DMA Processing in the IDMUX

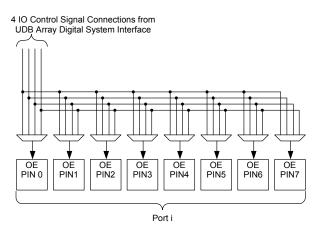
7.4.1 I/O Port Routing

There are a total of 20 DSI routes to a typical 8-bit I/O port, 16 for data and four for drive strength control.

When an I/O pin is connected to the routing, there are two primary connections available, an input and an output. In conjunction with drive strength control, this can implement a bidirectional I/O pin. A data output signal has the option to be single synchronized (pipelined) and a data input signal has the option to be double synchronized. The synchronization clock is the master clock (see Figure 6-1). Normally all inputs from pins are synchronized as this is required if the CPU interacts with the signal or any signal derived from it. Asynchronous inputs have rare uses. An example of this is a feed through of combinational PLD logic from input pins to output pins.

Figure 7-11. I/O Pin Synchronization Routing


Figure 7-12. I/O Pin Output Connectivity

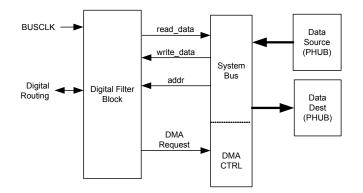
8 IO Data Output Connections from the UDB Array Digital System Interface

There are four more DSI connections to a given I/O port to implement dynamic output enable control of pins. This connectivity gives a range of options, from fully ganged 8-bits controlled by one signal, to up to four individually controlled pins. The output enable signal is useful for creating tri-state bidirectional pins and buses.

Figure 7-13. I/O Pin Output Enable Connectivity

7.9 Digital Filter Block

Some devices in the CY8C38 family of devices have a dedicated HW accelerator block used for digital filtering. The DFB has a dedicated multiplier and accumulator that calculates a 24-bit by 24-bit multiply accumulate in one bus clock cycle. This enables the mapping of a direct form FIR filter that approaches a computation rate of one FIR tap for each clock cycle. The MCU can implement any of the functions performed by this block, but at a slower rate that consumes MCU bandwidth.


The heart of the DFB is a datapath (DP), which is the numerical calculation unit of the DFB. The DP is a 24-bit fixed-point numerical processor containing a 48-bit multiply and accumulate function (MAC), a multi-function ALU, sample and coefficient data RAMs as well as data routing, shifting, holding and rounding functions.

In the MAC, two 24-bit values can be multiplied and the result added to the 48-bit accumulator in each bus clock cycle. The MAC is the only portion of the DP that is wider than 24 bits. All results from the MAC are passed on to the ALU as 24-bit values representing the high-order 24 bits in the accumulator shifted by one (bits 46:23). The MAC assumes an implied binary point after the most significant bit.

The DP also contains an optimized ALU that supports add, subtract, comparison, threshold, absolute value, squelch, saturation, and other functions. The DP unit is controlled by seven control fields totaling 18 bits coming from the DFB Controller. For more information see the TRM.

The PSoC Creator interface provides a wizard to implement FIR and IIR digital filters with coefficients for LPF, BPF, HPF, Notch and arbitrary shape filters. 64 pairs of data and coefficients are stored. This enables a 64 tap FIR filter or up to 4 16 tap filters of either FIR or IIR formulation.

Figure 7-20. DFB Application Diagram (pwr/gnd not shown)

The typical use model is for data to be supplied to the DFB over the system bus from another on-chip system data source such as an ADC. The data typically passes through main memory or is directly transferred from another chip resource through DMA. The DFB processes this data and passes the result to another on chip resource such as a DAC or main memory through DMA on the system bus.

Data movement in or out of the DFB is typically controlled by the system DMA controller but can be moved directly by the MCU.

8. Analog Subsystem

The analog programmable system creates application specific combinations of both standard and advanced analog signal processing blocks. These blocks are then interconnected to each other and also to any pin on the device, providing a high level of design flexibility and IP security. The features of the analog subsystem are outlined here to provide an overview of capabilities and architecture.

- Flexible, configurable analog routing architecture provided by analog globals, analog mux bus, and analog local buses.
- High resolution delta-sigma ADC.
- Up to four 8-bit DACs that provide either voltage or current output.
- Four comparators with optional connection to configurable LUT outputs.
- Up to four configurable switched capacitor/continuous time (SC/CT) blocks for functions that include opamp, unity gain buffer, programmable gain amplifier, transimpedance amplifier, and mixer.
- Up to four opamps for internal use and connection to GPIO that can be used as high current output buffers.
- CapSense subsystem to enable capacitive touch sensing.
- Precision reference for generating an accurate analog voltage for internal analog blocks.

The opamp and resistor array is programmable to perform various analog functions including

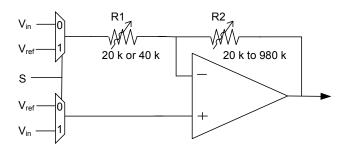
- Naked operational amplifier Continuous mode
- Unity-gain buffer Continuous mode
- PGA Continuous mode
- Transimpedance amplifier (TIA) Continuous mode
- Up/down mixer Continuous mode
- Sample and hold mixer (NRZ S/H) Switched cap mode
- First order analog to digital modulator Switched cap mode

8.5.1 Naked Opamp

The Naked Opamp presents both inputs and the output for connection to internal or external signals. The opamp has a unity gain bandwidth greater than 6.0 MHz and output drive current up to 650 μ A. This is sufficient for buffering internal signals (such as DAC outputs) and driving external loads greater than 7.5 kohms.

8.5.2 Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly connected to the inverting input for a gain of 1.00. It has a -3 dB bandwidth greater than 6.0 MHz.


8.5.3 PGA

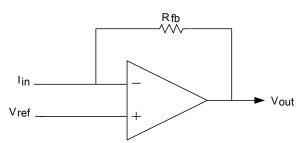
The PGA amplifies an external or internal signal. The PGA can be configured to operate in inverting mode or noninverting mode. The PGA function may be configured for both positive and negative gains as high as 50 and 49 respectively. The gain is adjusted by changing the values of R1 and R2 as illustrated in Figure 8-8. The schematic in Figure 8-8 shows the configuration and possible resistor settings for the PGA. The gain is switched from inverting and non inverting by changing the shared select value of the both the input muxes. The bandwidth for each gain case is listed in Table 8-3.

Table 8-3. Bandwidth

Gain	Bandwidth
1	6.0 MHz
24	340 kHz
48	220 kHz
50	215 kHz

Figure 8-8. PGA Resistor Settings

The PGA is used in applications where the input signal may not be large enough to achieve the desired resolution in the ADC, or dynamic range of another SC/CT block such as a mixer. The gain is adjustable at runtime, including changing the gain of the PGA prior to each ADC sample.


8.5.4 TIA

The Transimpedance Amplifier (TIA) converts an internal or external current to an output voltage. The TIA uses an internal feedback resistor in a continuous time configuration to convert input current to output voltage. For an input current I_{in}, the output voltage is V_{REF} - I_{in} x R_{fb}, where V_{REF} is the value placed on the non inverting input. The feedback resistor Rfb is programmable between 20 K Ω and 1 M Ω through a configuration register. Table 8-4 shows the possible values of Rfb and associated configuration settings.

Table 8-4. Feedback Resistor Settings

Configuration Word	Nominal $R_{fb}(K\Omega)$
000b	20
001b	30
010b	40
011b	60
100b	120
101b	250
110b	500
111b	1000

Figure 8-9. Continuous Time TIA Schematic

The TIA configuration is used for applications where an external sensor's output is current as a function of some type of stimulus such as temperature, light, magnetic flux etc. In a common application, the voltage DAC output can be connected to the V_{REF} TIA input to allow calibration of the external sensor bias current by adjusting the voltage DAC output voltage.

8.6 LCD Direct Drive

The PSoC LCD driver system is a highly configurable peripheral designed to allow PSoC to directly drive a broad range of LCD glass. All voltages are generated on chip, eliminating the need for external components. With a high multiplex ratio of up to 1/16, the CY8C38 family LCD driver system can drive a maximum of 736 segments. The PSoC LCD driver module was also designed with the conservative power budget of portable devices in mind, enabling different LCD drive modes and power down modes to conserve power.

Figure 11-1. Active Mode Current vs F_{CPU} , V_{DD} = 3.3 V, Temperature = 25 °C

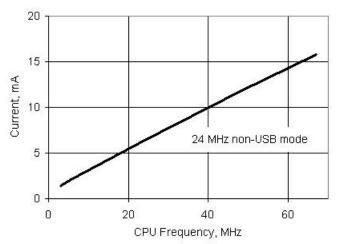


Figure 11-3. Active Mode Current vs V_{DD} and Temperature, F_{CPU} = 24 MHz

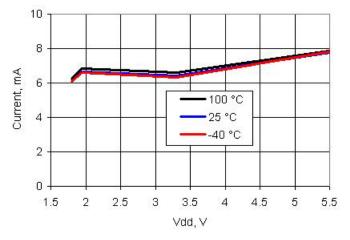
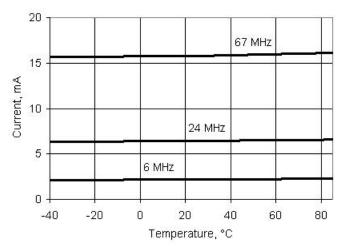



Figure 11-2. Active Mode Current vs Temperature and $F_{CPU},\ V_{DD}$ = 3.3 V

Table 11-13. SIO Comparator Specifications^[45]

Parameter	Description	Conditions	Min	Тур	Max	Units
Vos	Offset voltage	V _{DDIO} = 2 V	_	-	68	mV
		V _{DDIO} = 2.7 V	-	_	72	
		V _{DDIO} = 5.5 V	_	_	82	
TCVos	Offset voltage drift with temp		-	-	250	µV/°C
CMRR	Common mode rejection ratio	V _{DDIO} = 2 V	30	-	-	dB
		V _{DDIO} = 2.7 V	35	_	_	
		V _{DDIO} = 5.5 V	40	-	-	
Tresp	Response time		_	-	30	ns

11.4.3 USBIO

For operation in GPIO mode, the standard range for V_{DDD} applies, see Device Level Specifications on page 72.

Table 11-14. USBIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance	With idle bus	0.900	_	1.575	kΩ
Rusba	USB D+ pull-up resistance	While receiving traffic	1.425	_	3.090	kΩ
Vohusb	Static output high	15 k Ω ±5% to Vss, internal pull-up enabled	2.8	-	3.6	V
Volusb	Static output low	15 k Ω ±5% to Vss, internal pull-up enabled	-	-	0.3	V
Vihgpio	Input voltage high, GPIO mode	$V_{DDD} \ge 3 V$	2	-	-	V
Vilgpio	Input voltage low, GPIO mode	$V_{DDD} \ge 3 V$	-	-	0.8	V
Vohgpio	Output voltage high, GPIO mode	I_{OH} = 4 mA, $V_{DDD} \ge 3 V$	2.4	_	-	V
Volgpio	Output voltage low, GPIO mode	I_{OL} = 4 mA, $V_{DDD} \ge 3 V$	-	_	0.3	V
Vdi	Differential input sensitivity	(D+) – (D–)	-	-	0.2	V
Vcm	Differential input common mode range	-	0.8	-	2.5	V
Vse	Single ended receiver threshold	-	0.8	-	2	V
Rps2	PS/2 pull-up resistance	In PS/2 mode, with PS/2 pull-up enabled	3	-	7	kΩ
Rext	External USB series resistor	In series with each USB pin	21.78 (–1%)	22	22.22 (+1%)	Ω
Zo	USB driver output impedance	Including Rext	28	-	44	Ω
C _{IN}	USB transceiver input capacitance	-	-	-	20	pF
I _{IL} ^[45]	Input leakage current (absolute value)	25 °C, V _{DDD} = 3.0 V	-	-	2	nA

11.4.4 XRES

Table 11-17. XRES DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{IH}	Input voltage high threshold		$0.7 \times V_{DDIO}$	-	-	V
V _{IL}	Input voltage low threshold		-	-	$0.3 \times V_{DDIO}$	V
Rpullup	Pull-up resistor		3.5	5.6	8.5	kΩ
C _{IN}	Input capacitance ^[46]		—	3	_	pF
V _H	Input voltage hysteresis (Schmitt-Trigger) ^[46]		-	100	-	mV
Idiode	Current through protection diode to V_{DDIO} and V_{SSIO}		-	_	100	μA

Table 11-18. XRES AC Specifications

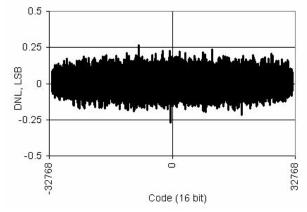
Parameter	Description	Conditions	Min	Тур	Max	Units
T _{RESET}	Reset pulse width		1	-	-	μs

11.5 Analog Peripherals

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.5.1 Opamp

Table 11-19. Opamp DC Specifications


Parameter	Description	Conditions	Min	Тур	Max	Units
VI	Input voltage range		V _{SSA}	-	V _{DDA}	V
V _{OS}	Input offset voltage		-	-	2.5	mV
		Operating temperature –40 °C to 70 °C	-	-	2	mV
TCV _{OS}	Input offset voltage drift with temperature	Power mode = high	-	-	±30	µV/ °C
Ge1	Gain error, unity gain buffer mode	Rload = 1 k Ω	-	-	±0.1	%
C _{IN}	Input capacitance	Routing from pin	-	-	18	pF
V _O	Output voltage range	1 mA, source or sink, power mode = high	V _{SSA} + 0.05	-	V _{DDA} – 0.05	V
I _{OUT}	Output current capability, source or sink	V_{SSA} + 500 mV \leq Vout \leq V_{DDA} –500 mV, V_{DDA} > 2.7 V	25	-	-	mA
		$\label{eq:VSSA} \begin{array}{l} V_{SSA} \mbox{ + 500 mV} \leq \mbox{Vout} \leq \mbox{V}_{DDA} \\ -500 \mbox{ mV}, \mbox{ 1.7 V} \mbox{ = } \mbox{V}_{DDA} \leq \mbox{ 2.7 V} \end{array}$	16	_	-	mA
I _{DD}	Quiescent current	Power mode = min	-	250	400	uA
		Power mode = low	-	250	400	uA
		Power mode = med	-	330	950	uA
		Power mode = high	-	1000	2500	uA
CMRR	Common mode rejection ratio		80	-	-	dB
PSRR	Power supply rejection ratio	$V_{DDA} \ge 2.7 V$	85	-	-	dB
		V _{DDA} < 2.7 V	70	-	-	dB
I _{IB}	Input bias current ^[46]	25 °C	_	10	_	pА

Note

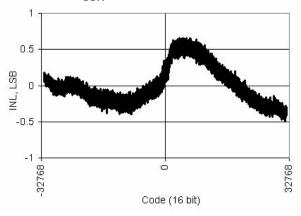

46. Based on device characterization (Not production tested).

Figure 11-37. Delta-sigma ADC DNL vs Output Code, 16-bit, 48 ksps, 25 °C V_{DDA} = 3.3 V

Figure 11-38. Delta-sigma ADC INL vs Output Code, 16-bit, 48 ksps, 25 °C V_{DDA} = 3.3 V

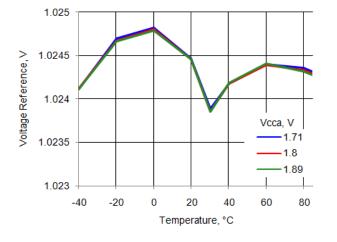
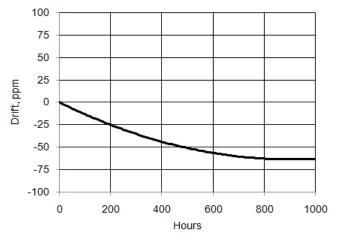

11.5.3 Voltage Reference

Table 11-28. Voltage Reference Specifications


See also ADC external reference specifications in Section 11.5.2.

Parameter	Description	Conditions		Min	Тур	Max	Units
V _{REF} ^[51]	Precision reference voltage	Initial trimming, 25 °C		1.023 (-0.1%)	1.024	1.025 (+0.1%)	V
	After typical PCB assembly,	love the and QEO °C and don reflect	–40 °C	-	±0.5	-	%
	post reflow	Device may be calibrated after	25 °C	-	±0.2	-	%
		assembly to improve performance	85 °C	-	±0.2	-	%
	Temperature drift ^[52]	Box method		-	-	30	ppm/°C
	Long term drift			-	100	-	ppm/khr
	Thermal cycling drift (stability) ^[52, 53]			-	100	_	ppm

Figure 11-39. Voltage Reference vs. Temperature and V_{CCA}

Figure 11-40. Voltage Reference Long-Term Drift

Notes

51. V_{REF} is measured after packaging, and thus accounts for substrate and die attach stresses

52. Based on device characterization (Not production tested).

53. After eight full cycles between -40 °C and 100 °C.

11.5.6 Current Digital-to-analog Converter (IDAC)

All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions on page 12 for details). See the IDAC component data sheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-32. IDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		_	-	8	bits
I _{OUT}	Output current at code = 255	$\label{eq:Range} \begin{array}{l} \mbox{Range} = 2.04 \mbox{ mA}, \mbox{ code} = 255, \\ \mbox{V}_{\mbox{DDA}} \geq 2.7 \mbox{ V}, \mbox{ Rload} = 600 \ \Omega \end{array}$	_	2.04	-	mA
		Range = 2.04 mA, high speed mode, code = 255, $V_{DDA} \le 2.7$ V, Rload = 300 Ω	_	2.04	-	mA
		Range = 255 μ A, code = 255, Rload = 600 Ω	-	255	_	μA
		Range = 31.875 μ A, code = 255, Rload = 600 Ω	-	31.875	-	μA
	Monotonicity		-	-	Yes	
Ezs	Zero scale error		-	0	±1	LSB
Eg	Gain error	Range = 2.04 mA, 25 °C	_	-	±2.5	%
		Range = 255 µA, 25 ° C	_	-	±2.5	%
		Range = 31.875 µA, 25 ° C	-	-	±3.5	%
TC_Eg	Temperature coefficient of gain	Range = 2.04 mA	-	-	0.04	% / °C
	error	Range = 255 µA	-	-	0.04	% / °C
		Range = 31.875 µA	-	-	0.05	% / °C
INL	Integral nonlinearity	Sink mode, range = 255μ A, Codes 8 – 255, Rload = 2.4 k Ω , Cload = 15 pF	_	±0.9	±1	LSB
		Source mode, range = 255 μ A, Codes 8 – 255, Rload = 2.4 k Ω , Cload = 15 pF	_	±1.2	±1.6	LSB
DNL	Differential nonlinearity	Sink mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	-	±0.3	±1	LSB
		Source mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	-	±0.3	±1	LSB
Vcompliance	Dropout voltage, source or sink mode	Voltage headroom at max current, Rload to V_{DDA} or Rload to $V_{SSA},$ Vdiff from V_{DDA}	1	-	-	V

Code = 255

Code = 64

Current noise

is proportional

to scale * code

100

10

kHz

1000

Figure 11-53. IDAC PSRR vs Frequency

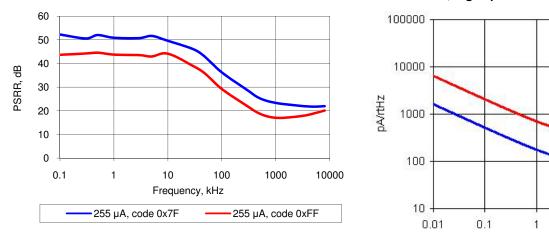


Figure 11-54. IDAC Current Noise, 255 μ A Mode, Source Mode, High speed mode, V_{DDA} = 5 V

11.5.7 Voltage Digital to Analog Converter (VDAC)

See the VDAC component datasheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-34. VDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		—	8	_	bits
V _{OUT}	Output voltage range, code = 255	1 V scale	—	1.02	_	V
		4 V scale, V _{DDA} = 5 V	—	4.08	_	V
INL1	Integral nonlinearity	1 V scale	_	±2.1	±2.5	LSB
INL4	Integral nonlinearity ^[57]	4 V scale	_	±2.1	±2.5	LSB
DNL1	Differential nonlinearity	1 V scale	—	±0.3	±1	LSB
DNL4	Differential nonlinearity ^[57]	4 V scale	—	±0.3	±1	LSB
Rout	Output resistance	1 V scale	_	4	_	kΩ
		4 V scale	—	16	_	kΩ
	Monotonicity		_	-	Yes	-
V _{OS}	Zero scale error		-	0	±0.9	LSB
Eg	Gain error	1 V scale,	_	-	±2.5	%
		4 V scale	_	-	±2.5	%
TC_Eg	Temperature coefficient, gain error	1 V scale,	-	-	0.03	%FSR / °C
		4 V scale	_	-	0.03	%FSR / °C
I _{DD}	Operating current	Low speed mode	-	-	100	μA
		High speed mode	-	-	500	μA

11.6.4 P²C

Table 11-51. Fixed I²C DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	Enabled, configured for 100 kbps	-	-	250	μA
	-	Enabled, configured for 400 kbps	-	-	260	μA
	-	Wake from sleep mode	-	-	30	μA

Table 11-52. Fixed I²C AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate		-	-	1	Mbps

11.6.5 Controller Area Network

Table 11-53. CAN DC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	Block current consumption		-	_	200	μA

Table 11-54. CAN AC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate	Minimum 8 MHz clock	-	-	1	Mbit

11.6.6 Digital Filter Block

Table 11-55. DFB DC Specifications

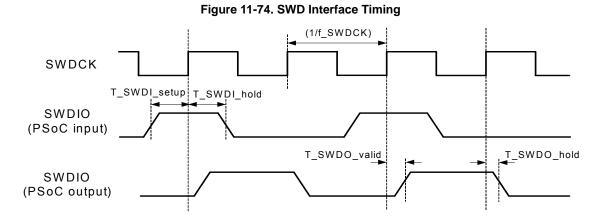

Parameter	Description	Conditions	Min	Тур	Max	Units
	DFB operating current	64-tap FIR at F _{DFB}				
		500 kHz (6.7 ksps)	-	0.16	0.27	mA
		1 MHz (13.4 ksps)	-	0.33	0.53	mA
		10 MHz (134 ksps)	-	3.3	5.3	mA
		48 MHz (644 ksps)	-	15.7	25.5	mA
		67 MHz (900 ksps)	_	21.8	35.6	mA

Table 11-56. DFB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DFB}	DFB operating frequency		DC	-	67.01	MHz

11.8.5 SWD Interface

Table 11-75. SWD Interface AC Specifications^[71]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_SWDCK	SWDCLK frequency	$3.3~V \le V_{DDD} \le 5~V$	_	_	14 ^[72]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V}$	-	_	7 ^[72]	MHz
		1.71 V \leq V _{DDD} < 3.3 V, SWD over USBIO pins	-	-	5.5 ^[72]	MHz
T_SWDI_setup	SWDIO input setup before SWDCK high	T = 1/f_SWDCK max	T/4	-	-	
T_SWDI_hold	SWDIO input hold after SWDCK high	T = 1/f_SWDCK max	T/4	-	-	
T_SWDO_valid	SWDCK high to SWDIO output	T = 1/f_SWDCK max	-	_	2T/5	

11.8.6 SWV Interface

Table 11-76. SWV Interface AC Specifications^[71]

Parameter	Description	Conditions	Min	Тур	Max	Units
	SWV mode SWV bit rate		_	-	33	Mbit

71. Based on device characterization (Not production tested).

72. f_SWDCK must also be no more than 1/3 CPU clock frequency.

12. Ordering Information

In addition to the features listed in Table 12-1, every CY8C38 device includes: a precision on-chip voltage reference, precision oscillators, flash, ECC, DMA, a fixed function I²C, 4 KB trace RAM, JTAG/SWD programming and debug, external memory interface, and more. In addition to these features, the flexible UDBs and analog subsection support a wide range of peripherals. To assist you in selecting the ideal part, PSoC Creator makes a part recommendation after you choose the components required by your application. All CY8C38 derivatives incorporate device and flash security in user-selectable security levels; see the TRM for details.

Table 12-1.	CY8C38 Family	with Sin	ale Cycle 8051
			gio oyoic cooi

	MCU Core				Analog							Digital				I/O ^[83]						
Part Number	CPU Speed (MHz)	Flash (KB)	SRAM (KB)	EEPROM (KB)	LCD Segment Drive	ADC	DAC	Comparator	SC/CT Analog Blocks ^[81]	Opamps	DFB	CapSense	UDBs ^[82]	16-bit Timer/PWM	FS USB	CAN 2.0b	Total I/O	GPIO	SIO	USBIO	Package	JTAG ID ^[84]
32 KB Flash																						
CY8C3865AXI-019	67	32	4	1	>	20-bit Del-Sig	4	4	4	4	5	5	20	4	~	I	72	62	8	2	100-pin TQFP	0×1E013069
CY8C3865LTI-014	67	32	4	1	>	20-bit Del-Sig	4	4	4	4	2	۲	20	4	>	I	48	38	8	2	68-pin QFN	0×1E00E069
CY8C3865AXI-204	67	32	8	1	2	20-bit Del-Sig	2	0	0	0	-	2	16	4	~	١	72	62	8	2	100-pin TQFP	0x1E0CC069
CY8C3865LTI-205	67	32	8	1	~	20-bit Del-Sig	2	0	0	0	I	~	16	4	~	I	48	38	8	2	68-pin QFN	0x1E0CD069
64 KB Flash	64 KB Flash																					
CY8C3866LTI-067	67	64	8	2	2	20-bit Del-Sig	4	4	4	2	~	2	24	4	~	١	31	25	4	2	48-pin QFN	0×1E043069
CY8C3866PVI-021	67	64	8	2	~	20-bit Del-Sig	4	4	4	2	٢	~	24	4	~	I	31	25	4	2	48-pin SSOP	0×1E015069
CY8C3866AXI-035	67	64	8	2	>	20-bit Del-Sig	4	4	4	4	2	>	24	4	Ι	>	70	62	8	0	100-pin TQFP	0x1E023069
CY8C3866AXI-039	67	64	8	2	>	20-bit Del-Sig	4	4	4	4	>	>	24	4	>	I	72	62	8	2	100-pin TQFP	0×1E027069
CY8C3866LTI-030	67	64	8	2	>	20-bit Del-Sig	4	4	4	4	>	>	24	4	>	I	48	38	8	2	68-pin QFN	0×1E01E069
CY8C3866LTI-068	67	64	8	2	2	20-bit Del-Sig	4	4	4	2	~	>	24	4	~	2	31	25	4	2	48-pin QFN	0×1E044069
CY8C3866AXI-040	67	64	8	2	2	20-bit Del-Sig	4	4	4	4	~	۲	24	4	~	2	72	62	8	2	100-pin TQFP	0×1E028069
CY8C3866PVI-070	67	64	8	2	~	20-bit Del-Sig	4	4	4	2	~	>	24	4	-	>	29	25	4	0	48-pin SSOP	0×1E046069
CY8C3866AXI-206	67	64	8	2	>	20-bit Del-Sig	2	2	0	2	~	~	20	4	~	١	72	62	8	2	100-pin TQFP	0x1E0CE069
CY8C3866LTI-207	67	64	8	2	>	20-bit Del-Sig	2	2	0	2	~	>	20	4	~	I	48	38	8	2	68-pin QFN	0x1E0CF069
CY8C3866AXI-208	67	64	8	2	>	20-bit Del-Sig	2	2	2	2	~	>	24	4	~	>	72	62	8	2	100-pin TQFP	0x1E0D0069
CY8C3866LTI-209	67	64	8	2	>	20-bit Del-Sig	2	2	2	2	~	>	24	4	~	>	48	38	8	2	68-pin QFN	0x1E0D1069
CY8C3866FNI-210	67	64	8	2	>	20-bit Del-Sig	4	4	4	4	~	>	24	4	~	5	48	38	8	2	72 WLCSP	0x1E0D2069

Notes

 Analog blocks support a variety of functionality including TIA, PGA, and mixers. See the Example Peripherals on page 44 for more information on how analog blocks can be used.

Be used.
 UDBs support a variety of functionality including SPI, LIN, UART, timer, counter, PWM, PRS, and others. Individual functions may use a fraction of a UDB or multiple UDBs. Multiple functions can share a single UDB. See the Example Peripherals on page 44 for more information on how UDBs can be used.
 The I/O Count includes all types of digital I/O: GPIO, SIO, and the two USB I/O. See the I/O System and Routing on page 37 for details on the functionality of each of

these types of I/O.

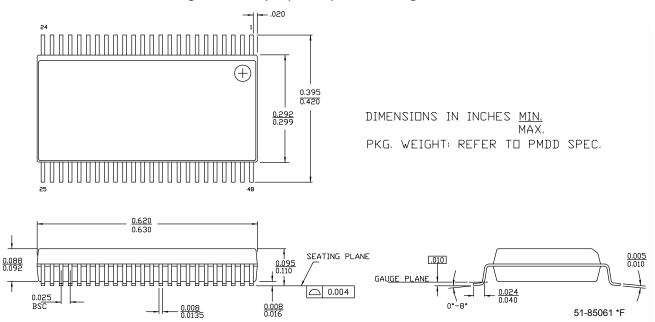
^{84.} The JTAG ID has three major fields. The most significant nibble (left digit) is the version, followed by a 2 byte part number and a 3 nibble manufacturer ID.

□ 6: 64 KB

12.1 Part Numbering Conventions

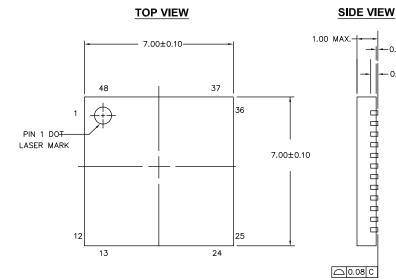
PSoC 3 devices follow the part numbering convention described here. All fields are single character alphanumeric (0, 1, 2, ..., 9, A, B, ..., Z) unless stated otherwise.

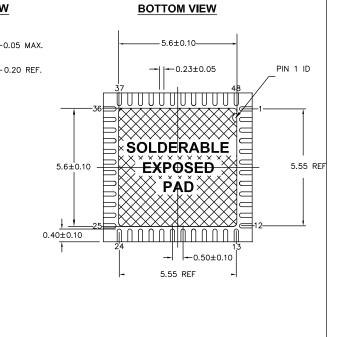
CY8Cabcdefg-xxx	
■ a: Architecture □ 3: PSoC 3 □ 5: PSoC 5	 ef: Package code Two character alphanumeric AX: TQFP
 b: Family group within architecture 4: CY8C34 family 6: CY8C36 family 	□ LT: QFN □ PV: SSOP □ FN: CSP
 □ 8: CY8C38 family ■ c: Speed grade □ 4: 48 MHz □ 6: 67 MHz 	 g: Temperature range □ C: commercial □ I: industrial □ A: automotive
■ d: Flash capacity □ 4: 16 KB □ 5: 32 KB	 xxx: Peripheral set Three character numeric No meaning is associated with these three characters.


Examples CY8C 3 8 6 6 P V I Х хх **Cypress Prefix** 3: PSoC 3 Architecture Family Group within Architecture 8: CY8C38 Family 6: 67 MHz Speed Grade 6: 64 KB Flash Capacity -**PV: SSOP** Package Code -I: Industrial Temperature Range — Peripheral Set —

Tape and reel versions of these devices are available and are marked with a "T" at the end of the part number.

All devices in the PSoC 3 CY8C38 family comply to RoHS-6 specifications, demonstrating the commitment by Cypress to lead-free products. Lead (Pb) is an alloying element in solders that has resulted in environmental concerns due to potential toxicity. Cypress uses nickel-palladium-gold (NiPdAu) technology for the majority of leadframe-based packages.


A high-level review of the Cypress Pb-free position is available on our website. Specific package information is also available. Package Material Declaration data sheets (PMDDs) identify all substances contained within Cypress packages. PMDDs also confirm the absence of many banned substances. The information in the PMDDs will help Cypress customers plan for recycling or other "end of life" requirements.



NOTES:

1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL.

- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION
LT48D	LEAD FREE

001-45616 *E

Description Title: PSoC [®] 3: CY8C38 Family Datasheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-11729									
Revision	ECN	Submission Date	Orig. of Change	Description of Change					
*U	3645908	06/14/2012	MKEA	Section 2: Changed text and added figures describing Vddio source and sink. Corrected example PCB layout figure. Sections 3, 6.2: Added text about usage in externally regulated mode. Section 5.2 and elsewhere: Added text describing flash cache, and updated related text. Section 6.1, 11.91: Changed IMO startup time specification. Section 6.1, 14: Removed text stating that FTW is a wakeup source. Section 6.2.1.4: Added paragraph clarifying limiting the frequency of IO input signals to achieve low hibernate current. Section 6.3: Changed reset status register description text. Section 6.3.1.1, 6.3.1.2: Added text on XRES and PRES re-arm times Sections 6.3.1.1, 1.8.1: Revised description of IPOR and clarified PRES term. Added text on adjustability of buzz frequency. Section 6.4.14, 11.4: Deleted and updated text regarding SIO performance under certain power ramp conditions. Section 6.4.15: Changed text describing SIO modes for overvoltage tolerance. Section 7.8: Changed "compliant with 12C" to "compatible with 12C". Section 9.4: 11.5.6, 11.5.7: Changed DAC high and low speed/power mode descriptions and conditions. Section 9.3: Deleted the text "debug operations are possible while the device is reset". Section 9.3: Deleted the text "debug operations are possible while the device is reset". Section 1.1: Added specification for ESDHBM for when Vssa and Vssd are separate. Changed foot to state that all GPIO input voltages must be less than Vddio. Changed supply ramp rate specification. Section 11.2.1: Added chip Idd specs for active and low-power modes, for multiple voltage, temperature and usage conditions. Section 11.5.3: Updated Vref temperature drift specifications. Added graphs. Section 11.5.4: Changed load capacitor conditions in opamp specifications. Clarified description of opamp lout specification descriptions and values. Section 11.5.4: Changed load capacitor conditions in opamp specifications. Clarified description of opamp lout specification descriptions and values. Section 11.5.4: Changed analog global spe					
*V	3648803	06/18/2012	WKA/MKEA	Updated the description of changes for previous (*U) revision. No technical changes. EROS update.					