

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3866axi-040

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. A	rchitectural Overview	. 4
	inouts	
3. F	in Descriptions	12
	PU	
	4.1 8051 CPU	13
	4.2 Addressing Modes	13
	4.3 Instruction Set	
	4.4 DMA and PHUB	
	4.5 Interrupt Controller	
5. N	lemory	
	5.1 Static RAM	
	5.2 Flash Program Memory	
	5.3 Flash Security	
	5.4 EEPROM 5.5 Nonvolatile Latches (NVLs)	
	5.6 External Memory Interface	2 4 25
	5.7 Memory Map	
6 9	system Integration	
0. 0	6.1 Clocking System	
	6.2 Power System	
	6.3 Reset	
	6.4 I/O System and Routing	37
7. C	igital Subsystem	44
7. C	igital Subsystem 7.1 Example Peripherals	
7. C	7.1 Example Peripherals7.2 Universal Digital Block	44 46
7. C	7.1 Example Peripherals7.2 Universal Digital Block7.3 UDB Array Description	44 46 49
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 	44 46 49 49
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 	44 46 49 49 51
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 	44 46 49 49 51 53
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 	44 49 49 51 53 53
7. C	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 	44 49 49 51 53 53 54
	 7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I²C 7.9 Digital Filter Block 	44 49 49 51 53 53 54 56
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem	44 49 49 51 53 53 54 56 56
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block analog Subsystem 8.1 Analog Routing	44 49 49 51 53 53 53 54 56 57
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC	44 49 51 53 54 56 57 59
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators	44 49 49 51 53 53 54 56 57 59 60
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block malog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks	44 49 49 51 53 53 54 56 57 59 60 61 61
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive	44 49 49 53 53 53 56 57 59 60 61 61 62
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense	44 49 49 53 53 54 56 57 60 61 62 63
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor	44 49 53 53 54 55 57 60 61 62 63 63
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor 8.9 DAC	44 49 53 53 55 56 61 62 63 64
	7.1 Example Peripherals 7.2 Universal Digital Block 7.3 UDB Array Description 7.4 DSI Routing Interface Description 7.5 CAN 7.6 USB 7.7 Timers, Counters, and PWMs 7.8 I ² C 7.9 Digital Filter Block nalog Subsystem 8.1 Analog Routing 8.2 Delta-sigma ADC 8.3 Comparators 8.4 Opamps 8.5 Programmable SC/CT Blocks 8.6 LCD Direct Drive 8.7 CapSense 8.8 Temp Sensor	44 49 53 53 55 56 57 50 61 62 63 64 64

9. Programming, Debug Interfaces, Resources	
9.1 JTAG Interface	
9.2 Serial Wire Debug Interface 9.3 Debug Features	
9.4 Trace Features	
9.5 Single Wire Viewer Interface	
9.6 Programming Features	
9.7 Device Security	
9.8 CSP Package Bootloader	69
10. Development Support	70
10.1 Documentation	70
10.2 Online	
10.3 Tools	
11. Electrical Specifications	
11.1 Absolute Maximum Ratings	
11.2 Device Level Specifications	
11.3 Power Regulators 11.4 Inputs and Outputs	
11.5 Analog Peripherals	
11.6 Digital Peripherals	
11.7 Memory	112
11.8 PSoC System Resources	
11.9 Clocking	119
12. Ordering Information	
12.1 Part Numbering Conventions	
13. Packaging	125
14. Acronyms	129
15. Reference Documents	130
16. Document Conventions	131
16.1 Units of Measure	131
17. Revision History	132
18. Sales, Solutions, and Legal Information	140
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	140

TMS

JTAG test mode select programming and debug port connection.

USBIO, D+

Provides D+ connection directly to a USB 2.0 bus. May be used as a digital I/O pin; it is powered from VDDD instead of from a VDDIO. Pins are Do Not Use (DNU) on devices without USB.

USBIO, D-

Provides D– connection directly to a USB 2.0 bus. May be used as a digital I/O pin; it is powered from VDDD instead of from a VDDIO. Pins are Do Not Use (DNU) on devices without USB.

VBOOST

Power sense connection to boost pump.

VBAT

Battery supply to boost pump.

VCCA.

Output of the analog core regulator or the input to the analog core. Requires a 1uF capacitor to VSSA. The regulator output is not designed to drive external circuits. Note that if you use the device with an external core regulator (externally regulated mode), the voltage applied to this pin must not exceed the allowable range of 1.71 V to 1.89 V. When using the internal core regulator, (internally regulated mode, the default), do not tie any power to this pin. For details see Power System on page 31.

VCCD.

Output of the digital core regulator or the input to the digital core. The two VCCD pins must be shorted together, with the trace between them as short as possible, and a 1uF capacitor to VSSD. The regulator output is not designed to drive external circuits. Note that if you use the device with an external core regulator (externally regulated mode), the voltage applied to this pin must not exceed the allowable range of 1.71 V to 1.89 V. When using the internal core regulator (internally regulated mode, the default), do not tie any power to this pin. For details see Power System on page 31.

VDDA

Supply for all analog peripherals and analog core regulator. VDDA must be the highest voltage present on the device. All other supply pins must be less than or equal to VDDA.

VDDD

Supply for all digital peripherals and digital core regulator. VDDD must be less than or equal to VDDA.

VSSA

Ground for all analog peripherals.

VSSB

Ground connection for boost pump.

VSSD

Ground for all digital logic and I/O pins.

VDDIO0, VDDIO1, VDDIO2, VDDIO3

Supply for I/O pins. Each VDDIO must be tied to a valid operating voltage (1.71 V to 5.5 V), and must be less than or equal to VDDA.

XRES (and configurable XRES)

External reset pin. Active low with internal pull-up. Pin P1[2] may be configured to be a XRES pin; see "Nonvolatile Latches (NVLs)" on page 24.

4. CPU

4.1 8051 CPU

The CY8C38 devices use a single cycle 8051 CPU, which is fully compatible with the original MCS-51 instruction set. The CY8C38 family uses a pipelined RISC architecture, which executes most instructions in 1 to 2 cycles to provide peak performance of up to 33 MIPS with an average of 2 cycles per instruction. The single cycle 8051 CPU runs ten times faster than a standard 8051 processor.

The 8051 CPU subsystem includes these features:

- Single cycle 8051 CPU
- Up to 64 KB of flash memory, up to 2 KB of EEPROM, and up to 8 KB of SRAM
- 512-byte instruction cache between CPU and flash
- Programmable nested vector interrupt controller
- DMA controller
- Peripheral HUB (PHUB)
- External memory interface (EMIF)

4.2 Addressing Modes

The following addressing modes are supported by the 8051:

- Direct Addressing: The operand is specified by a direct 8-bit address field. Only the internal RAM and the SFRs can be accessed using this mode.
- Indirect Addressing: The instruction specifies the register which contains the address of the operand. The registers R0 or R1 are used to specify the 8-bit address, while the data pointer (DPTR) register is used to specify the 16-bit address.
- Register Addressing: Certain instructions access one of the registers (R0 to R7) in the specified register bank. These instructions are more efficient because there is no need for an address field.
- Register Specific Instructions: Some instructions are specific to certain registers. For example, some instructions always act on the accumulator. In this case, there is no need to specify the operand.
- Immediate Constants: Some instructions carry the value of the constants directly instead of an address.
- Indexed Addressing: This type of addressing can be used only for a read of the program memory. This mode uses the Data Pointer as the base and the accumulator value as an offset to read a program memory.
- Bit Addressing: In this mode, the operand is one of 256 bits.

Table 4-3. Data Transfer Instructions

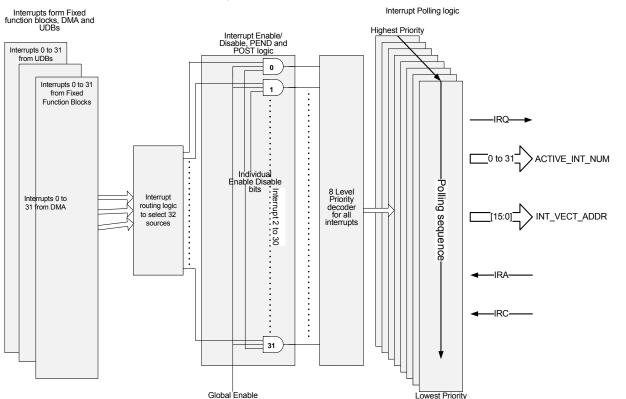
Mr	nemonic	Description	Bytes	Cycles
MOV A,F	Rn	Move register to accumulator	1	1
MOV A,[Direct	Move direct byte to accumulator	2	2
MOV A,@	@Ri	Move indirect RAM to accumulator	1	2
MOV A,#	#data	Move immediate data to accumulator	2	2
MOV Rn	ı,A	Move accumulator to register	1	1
MOV Rn	n,Direct	Move direct byte to register	2	3
MOV Rn	n, #data	Move immediate data to register	2	2
MOV Dir	rect, A	Move accumulator to direct byte	2	2
MOV Dir	rect, Rn	Move register to direct byte	2	2
MOV Dir	rect, Direct	Move direct byte to direct byte	3	3
MOV Dir	rect, @Ri	Move indirect RAM to direct byte	2	3
MOV Dir	rect, #data	Move immediate data to direct byte	3	3
MOV @	Ri, A	Move accumulator to indirect RAM	1	2
MOV @	Ri, Direct	Move direct byte to indirect RAM	2	3
MOV @	Ri, #data	Move immediate data to indirect RAM	2	2
MOV DF	PTR, #data16	Load data pointer with 16 bit constant	3	3
MOVC A,	@A+DPTR	Move code byte relative to DPTR to accumulator	1	5
MOVC A,	@A + PC	Move code byte relative to PC to accumulator	1	4
MOVX A,	@Ri	Move external RAM (8-bit) to accumulator	1	4
MOVX A,	@DPTR	Move external RAM (16-bit) to accumulator	1	3
MOVX @	Ri, A	Move accumulator to external RAM (8-bit)	1	5
MOVX @	DPTR, A	Move accumulator to external RAM (16-bit)	1	4
PUSH Dir	rect	Push direct byte onto stack	2	3
POP Di	rect	Pop direct byte from stack	2	2
XCH A,	Rn	Exchange register with accumulator	1	2
XCH A,	Direct	Exchange direct byte with accumulator	2	3
XCH A,	@Ri	Exchange indirect RAM with accumulator	1	3
XCHD A,	@Ri	Exchange low order indirect digit RAM with accumulator	1	3

Table 4-4. Boolean Instructions

Mnemonic	Description	Bytes	Cycles
CLR C	Clear carry	1	1
CLR bit	Clear direct bit	2	3
SETB C	Set carry	1	1
SETB bit	Set direct bit	2	3
CPL C	Complement carry	1	1
CPL bit	Complement direct bit	2	3
ANL C, bit	AND direct bit to carry	2	2

Table 4-4. Boolean Instructions (continued)

Mnemonic	Description	Bytes	Cycles
ANL C, /bit	AND complement of direct bit to carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to carry	2	2
MOV C, bit	Move direct bit to carry	2	2
MOV bit, C	Move carry to direct bit	2	3
JC rel	Jump if carry is set	2	3
JNC rel	Jump if no carry is set	2	3
JB bit, rel	Jump if direct bit is set	3	5
JNB bit, rel	Jump if direct bit is not set	3	5
JBC bit, rel	Jump if direct bit is set and clear bit	3	5


4.3.1.5 Program Branching Instructions

The 8051 supports a set of conditional and unconditional jump instructions that help to modify the program execution flow. Table 4-5 shows the list of jump instructions.

Table 4-5. Jump Instructions

Mnemonic	Description	Bytes	Cycles
ACALL addr11	Absolute subroutine call	2	4
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	4
RETI	Return from interrupt	1	4
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A + DPTR	Jump indirect relative to DPTR	1	5
JZ rel	Jump if accumulator is zero	2	4
JNZ rel	Jump if accumulator is nonzero 2		4
CJNE A, Direct, rel	Compare direct byte to accumulator and jump if not equal	3	5
CJNE A, #data, rel	Compare immediate data to accumulator and jump if not equal	3	4
CJNE Rn, #data, rel	Compare immediate data to register and jump if not equal	3	4
CJNE @Ri, #data, rel	Compare immediate data to indirect RAM and jump if not equal	3	5
DJNZ Rn,rel	Decrement register and jump if not zero		4
DJNZ Direct, rel	Decrement direct byte and jump if not zero	3	5
NOP	No operation	1	1

disable bit

Figure 4-3. Interrupt Structure

When an interrupt is pending, the current instruction is completed and the program counter is pushed onto the stack. Code execution then jumps to the program address provided by the vector. After the ISR is completed, a RETI instruction is executed and returns execution to the instruction following the previously interrupted instruction. To do this the RETI instruction pops the program counter from the stack.

If the same priority level is assigned to two or more interrupts, the interrupt with the lower vector number is executed first. Each interrupt vector may choose from three interrupt sources: Fixed Function, DMA, and UDB. The fixed function interrupts are

direct connections to the most common interrupt sources and provide the lowest resource cost connection. The DMA interrupt sources provide direct connections to the two DMA interrupt sources provided per DMA channel. The third interrupt source for vectors is from the UDB digital routing array. This allows any digital signal available to the UDB array to be used as an interrupt source. Fixed function interrupts and all interrupt sources may be routed to any interrupt vector using the UDB interrupt source connections.

Table 4-8. Interrupt Vector Table

#	Fixed Function	DMA	UDB
0	LVD	phub_termout0[0]	udb_intr[0]
1	Cache/ECC	phub_termout0[1]	udb_intr[1]
2	Reserved	phub_termout0[2]	udb_intr[2]
3	Sleep (Pwr Mgr)	phub_termout0[3]	udb_intr[3]
4	PICU[0]	phub_termout0[4]	udb_intr[4]
5	PICU[1]	phub_termout0[5]	udb_intr[5]
6	PICU[2]	phub_termout0[6]	udb_intr[6]
7	PICU[3]	phub_termout0[7]	udb_intr[7]
8	PICU[4]	phub_termout0[8]	udb_intr[8]
9	PICU[5]	phub_termout0[9]	udb_intr[9]
10	PICU[6]	phub_termout0[10]	udb_intr[10]
11	PICU[12]	phub_termout0[11]	udb_intr[11]
12	PICU[15]	phub_termout0[12]	udb_intr[12]
13	Comparators Combined	phub_termout0[13]	udb_intr[13]
14	Switched Caps Combined	phub_termout0[14]	udb_intr[14]
15	l ² C	phub_termout0[15]	udb_intr[15]
16	CAN	phub_termout1[0]	udb_intr[16]
17	Timer/Counter0	phub_termout1[1]	udb_intr[17]
18	Timer/Counter1	phub_termout1[2]	udb_intr[18]
19	Timer/Counter2	phub_termout1[3]	udb_intr[19]
20	Timer/Counter3	phub_termout1[4]	udb_intr[20]
21	USB SOF Int	phub_termout1[5]	udb_intr[21]
22	USB Arb Int	phub_termout1[6]	udb_intr[22]
23	USB Bus Int	phub_termout1[7]	udb_intr[23]
24	USB Endpoint[0]	phub_termout1[8]	udb_intr[24]
25	USB Endpoint Data	phub_termout1[9]	udb_intr[25]
26	Reserved	phub_termout1[10]	udb_intr[26]
27	LCD	phub_termout1[11]	udb_intr[27]
28	DFB Int	phub_termout1[12]	udb_intr[28]
29	Decimator Int	phub_termout1[13]	udb_intr[29]
30	PHUB Error Int	phub_termout1[14]	udb_intr[30]
31	EEPROM Fault Int	phub_termout1[15]	udb_intr[31]

5.7.4 XData Space Access SFRs

The 8051 core features dual DPTR registers for faster data transfer operations. The data pointer select SFR, DPS, selects which data pointer register, DPTR0 or DPTR1, is used for the following instructions:

- MOVX @DPTR, A
- MOVX A, @DPTR
- MOVC A, @A+DPTR
- JMP @A+DPTR
- INC DPTR
- MOV DPTR, #data16

The extended data pointer SFRs, DPX0, DPX1, MXAX, and P2AX, hold the most significant parts of memory addresses during access to the xdata space. These SFRs are used only with the MOVX instructions.

During a MOVX instruction using the DPTR0/DPTR1 register, the most significant byte of the address is always equal to the contents of DPX0/DPX1.

During a MOVX instruction using the R0 or R1 register, the most significant byte of the address is always equal to the contents of MXAX, and the next most significant byte is always equal to the contents of P2AX.

5.7.5 I/O Port SFRs

The I/O ports provide digital input sensing, output drive, pin interrupts, connectivity for analog inputs and outputs, LCD, and access to peripherals through the DSI. Full information on I/O ports is found in I/O System and Routing on page 37.

I/O ports are linked to the CPU through the PHUB and are also available in the SFRs. Using the SFRs allows faster access to a limited set of I/O port registers, while using the PHUB allows boot configuration and access to all I/O port registers.

Each SFR supported I/O port provides three SFRs:

- SFRPRTxDR sets the output data state of the port (where × is port number and includes ports 0–6, 12 and 15).
- The SFRPRTxSEL selects whether the PHUB PRTxDR register or the SFRPRTxDR controls each pin's output buffer within the port. If a SFRPRTxSEL[y] bit is high, the corresponding SFRPRTxDR[y] bit sets the output state for that pin. If a SFRPRTxSEL[y] bit is low, the corresponding PRTxDR[y] bit sets the output state of the pin (where y varies from 0 to 7).
- The SFRPRTxPS is a read only register that contains pin state values of the port pins.

5.7.5.1 xdata Space

The 8051 xdata space is 24-bit, or 16 MB in size. The majority of this space is not 'external'—it is used by on-chip components. See Table 5-5. External, that is, off-chip, memory can be accessed using the EMIF. See External Memory Interface on page 25.

Table 5-5. XDATA Data Address Map

Address Range	Purpose
0×00 0000 – 0×00 1FFF	SRAM
0×00 4000 – 0×00 42FF	Clocking, PLLs, and oscillators
0×00 4300 – 0×00 43FF	Power management
0×00 4400 – 0×00 44FF	Interrupt controller
0×00 4500 – 0×00 45FF	Ports interrupt control
0×00 4700 – 0×00 47FF	Flash programming interface
0×00 4800 - 0×00 48FF	Cache controller
0×00 4900 – 0×00 49FF	I ² C controller
0×00 4E00 – 0×00 4EFF	Decimator
0×00 4F00 – 0×00 4FFF	Fixed timer/counter/PWMs
0×00 5000 – 0×00 51FF	I/O ports control
0×00 5400 – 0×00 54FF	EMIF control registers
0×00 5800 – 0×00 5FFF	Analog subsystem interface
0×00 6000 – 0×00 60FF	USB controller
0×00 6400 – 0×00 6FFF	UDB Working Registers
0×00 7000 – 0×00 7FFF	PHUB configuration
0×00 8000 – 0×00 8FFF	EEPROM
0×00 A000 – 0×00 A400	CAN
0×00 C000 – 0×00 C800	DFB
0×01 0000 – 0×01 FFFF	Digital Interconnect configuration
0×05 0220 – 0×05 02F0	Debug controller
0×08 0000 – 0×08 1FFF	Flash ECC bytes
0×80 0000 – 0×FF FFFF	External memory interface

Digital Input Path PRT[x]CTL PRT[x]DBL_SYNC_IN	Naming Convention 'x' = Port Number 'y' = Pin Number
Digital System Input	
PICU[x]INTTYPE[y] PICU[x]INTSTAT Pin Interrupt Signal PICU[x]INTSTAT	
Digital Output Path PRT[x]SLW PRT[x]SYNC_OUT PRT[x]DR Digital System Output PRT[x]DM2 PRT[x]DM0 Bidirectional Control PRT[x]BIE PRT[x]BIE	Vddio Vddio In Drive Logic OE Unit Cnti Cnti Vddio Vddi Vddi
Analog	Switches
LCD PRT[x]LCD_COM_SEG PRT[x]LCD_EN LCD Bias Bus 5	Display Data Logic & MUX

Figure 6-9. GPIO Block Diagram

9.2 Serial Wire Debug Interface

The SWD interface is the preferred alternative to the JTAG interface. It requires only two pins instead of the four or five needed by JTAG. SWD provides all of the programming and debugging features of JTAG at the same speed. SWD does not provide access to scan chains or device chaining. The SWD clock frequency can be up to 1/3 of the CPU clock frequency.

SWD uses two pins, either two of the JTAG pins (TMS and TCK) or the USBIO D+ and D– pins. The USBIO pins are useful for in system programming of USB solutions that would otherwise require a separate programming connector. One pin is used for the data clock and the other is used for data input and output.

SWD can be enabled on only one of the pin pairs at a time. This only happens if, within 8 μ s (key window) after reset, that pin pair

(JTAG or USB) receives a predetermined acquire sequence of 1s and 0s. If the NVL latches are set for SWD (see Section 5.5), this sequence need not be applied to the JTAG pin pair. The acquire sequence must always be applied to the USB pin pair.

SWD is used for debugging or for programming the flash memory.

The SWD interface can be enabled from the JTAG interface or disabled, allowing its pins to be used as GPIO. Unlike JTAG, the SWD interface can always be reacquired on any device during the key window. It can then be used to reenable the JTAG interface, if desired. When using SWD or JTAG pins as standard GPIO, make sure that the GPIO functionality and PCB circuits do not interfere with SWD or JTAG use.

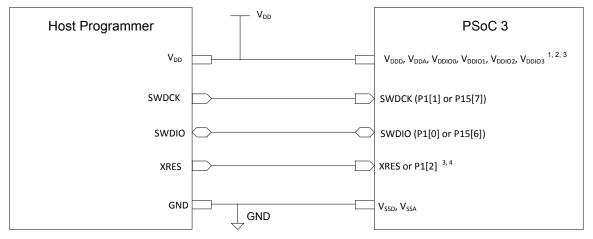


Figure 9-2. SWD Interface Connections between PSoC 3 and Programmer

¹ The voltage levels of the Host Programmer and the PSoC 3 voltage domains involved in Programming should be the same. XRES pin (XRES_N or P1[2]) is powered by V_{DDI01}. The USB SWD pins are powered by V_{DDD}. So for Programming using the USB SWD pins with XRES pin, the V_{DDD}, V_{DDI01} of PSoC 3 should be at the same voltage level as Host V_{DD}. Rest of PSoC 3 voltage domains (V_{DDA}, V_{DDI00}, V_{DDI02}, V_{DDI03}) need not be at the same voltage level as host Programmer. The Port 1 SWD pins are powered by V_{DDI01}. So V_{DDI01} of PSoC 3 should be at same voltage level as host V_{DD} for Port 1 SWD programming. Rest of PSoC 3 voltage domains (V_{DDD}, V_{DDI02}, V_{DDI03}) need not be at the same voltage level as host Programmer.

² Vdda must be greater than or equal to all other power supplies (Vddd, Vddio's) in PSoC 3.

- ³ For Power cycle mode Programming, XRES pin is not required. But the Host programmer must have the capability to toggle power (Vddd, Vdda, All Vddio's) to PSoC 3. This may typically require external interface circuitry to toggle power which will depend on the programming setup. The power supplies can be brought up in any sequence, however, once stable, VDDA must be greater than or equal to all other supplies.
- ⁴ P1[2] will be configured as XRES by default only for 48-pin devices (without dedicated XRES pin). For devices with dedicated XRES pin, P1[2] is GPIO pin by default. So use P1[2] as Reset pin only for 48pin devices, but use dedicated XRES pin for rest of devices.

9.3 Debug Features

Using the JTAG or SWD interface, the CY8C38 supports the following debug features:

- Halt and single-step the CPU
- View and change CPU and peripheral registers, and RAM addresses
- Eight program address breakpoints
- One memory access breakpoint—break on reading or writing any memory address and data value
- Break on a sequence of breakpoints (non recursive)
- Debugging at the full speed of the CPU
- Compatible with PSoC Creator and MiniProg3 programmer and debugger
- Standard JTAG programming and debugging interfaces make CY8C38 compatible with other popular third-party tools (for example, ARM / Keil)

9.4 Trace Features

The CY8C38 supports the following trace features when using JTAG or SWD:

- Trace the 8051 program counter (PC), accumulator register (ACC), and one SFR / 8051 core RAM register
- Trace depth up to 1000 instructions if all registers are traced, or 2000 instructions if only the PC is traced (on devices that include trace memory)
- Program address trigger to start tracing
- Trace windowing, that is, only trace when the PC is within a given range
- Two modes for handling trace buffer full: continuous (overwriting the oldest trace data) or break when trace buffer is full

9.5 Single Wire Viewer Interface

The SWV interface is closely associated with SWD but can also be used independently. SWV data is output on the JTAG interface's TDO pin. If using SWV, you must configure the device for SWD, not JTAG. SWV is not supported with the JTAG interface.

SWV is ideal for application debug where it is helpful for the firmware to output data similar to 'printf' debugging on PCs. The SWV is ideal for data monitoring, because it requires only a single pin and can output data in standard UART format or Manchester encoded format. For example, it can be used to tune a PID control loop in which the output and graphing of the three error terms greatly simplifies coefficient tuning.

The following features are supported in SWV:

- 32 virtual channels, each 32 bits long
- Simple, efficient packing and serializing protocol
- Supports standard UART format (N81)

9.6 Programming Features

The JTAG and SWD interfaces provide full programming support. The entire device can be erased, programmed, and verified. You can increase flash protection levels to protect firmware IP. Flash protection can only be reset after a full device erase. Individual flash blocks can be erased, programmed, and verified, if block security settings permit.

9.7 Device Security

PSoC 3 offers an advanced security feature called device security, which permanently disables all test, programming, and debug ports, protecting your application from external access. The device security is activated by programming a 32-bit key (0×50536F43) to a Write Once Latch (WOL).

The Write Once Latch is a type of nonvolatile latch (NVL). The cell itself is an NVL with additional logic wrapped around it. Each WOL device contains four bytes (32 bits) of data. The wrapper outputs a '1' if a super-majority (28 of 32) of its bits match a pre-determined pattern (0×50536F43); it outputs a '0' if this majority is not reached. When the output is 1, the Write Once NV latch locks the part out of Debug and Test modes; it also permanently gates off the ability to erase or alter the contents of the latch. Matching all bits is intentionally not required, so that single (or few) bit failures do not deassert the WOL output. The state of the NVL bits after wafer processing is truly random with no tendency toward 1 or 0.

The WOL only locks the part after the correct 32-bit key (0×50536F43) is loaded into the NVL's volatile memory, programmed into the NVL's nonvolatile cells, and the part is reset. The output of the WOL is only sampled on reset and used to disable the access. This precaution prevents anyone from reading, erasing, or altering the contents of the internal memory.

The user can write the key into the WOL to lock out external access only if no flash protection is set (see "Flash Security" on page 23). However, after setting the values in the WOL, a user still has access to the part until it is reset. Therefore, a user can write the key into the WOL, program the flash protection data, and then reset the part to lock it.

If the device is protected with a WOL setting, Cypress cannot perform failure analysis and, therefore, cannot accept RMAs from customers. The WOL can be read out through the SWD port to electrically identify protected parts. The user can write the key in WOL to lock out external access only if no flash protection is set. For more information on how to take full advantage of the security features in PSoC see the PSoC 3 TRM.

Disclaimer

Note the following details of the flash code protection features on Cypress devices.

Cypress products meet the specifications contained in their particular Cypress data sheets. Cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Table 11-13. SIO Comparator Specifications^[45]

Parameter	Description	Conditions	Min	Тур	Max	Units
Vos	Offset voltage	V _{DDIO} = 2 V	_	-	68	mV
		V _{DDIO} = 2.7 V	-	_	72	
		V _{DDIO} = 5.5 V	_	_	82	
TCVos	Offset voltage drift with temp		-	-	250	µV/°C
CMRR	Common mode rejection ratio	V _{DDIO} = 2 V	30	-	-	dB
		V _{DDIO} = 2.7 V	35	_	_	
		V _{DDIO} = 5.5 V	40	-	-	
Tresp	Response time		_	-	30	ns

11.4.3 USBIO

For operation in GPIO mode, the standard range for V_{DDD} applies, see Device Level Specifications on page 72.

Table 11-14. USBIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance	With idle bus	0.900	_	1.575	kΩ
Rusba	USB D+ pull-up resistance	While receiving traffic	1.425	_	3.090	kΩ
Vohusb	Static output high	15 k Ω ±5% to Vss, internal pull-up enabled	2.8	-	3.6	V
Volusb	Static output low	15 k Ω ±5% to Vss, internal pull-up enabled	-	-	0.3	V
Vihgpio	Input voltage high, GPIO mode	$V_{DDD} \ge 3 V$	2	-	-	V
Vilgpio	Input voltage low, GPIO mode	$V_{DDD} \ge 3 V$	-	-	0.8	V
Vohgpio	Output voltage high, GPIO mode	I_{OH} = 4 mA, $V_{DDD} \ge 3 V$	2.4	_	-	V
Volgpio	Output voltage low, GPIO mode	I_{OL} = 4 mA, $V_{DDD} \ge 3 V$	-	_	0.3	V
Vdi	Differential input sensitivity	(D+) – (D–)	-	-	0.2	V
Vcm	Differential input common mode range	-	0.8	-	2.5	V
Vse	Single ended receiver threshold	-	0.8	-	2	V
Rps2	PS/2 pull-up resistance	In PS/2 mode, with PS/2 pull-up enabled	3	-	7	kΩ
Rext	External USB series resistor	In series with each USB pin	21.78 (–1%)	22	22.22 (+1%)	Ω
Zo	USB driver output impedance	Including Rext	28	-	44	Ω
C _{IN}	USB transceiver input capacitance	-	-	-	20	pF
I _{IL} ^[45]	Input leakage current (absolute value)	25 °C, V _{DDD} = 3.0 V	-	-	2	nA

Table 11-21. 20-bit Delta-sigma ADC DC Specifications (continued)

Parameter	Description	Conditions	Min	Тур	Max	Units	
Vextref	ADC external reference input voltage, see also internal reference in Voltage Reference on page 95	Pins P0[3], P3[2]	0.9	-	1.3	v	
Current Consumption							
I _{DD_20}	I _{DDA} + I _{DDD} current consumption, 20 bit ^[50]		-	-	1.5	mA	
I _{DD_16}	I _{DDA} + I _{DDD} current consumption, 16 bit ^[50]		-	-	1.5	mA	
I _{DD 12}	I _{DDA} + I _{DDD} current consumption, 12 bit ^[50]	192 ksps, unbuffered	_	-	1.95	mA	
I _{BUFF}	Buffer current consumption ^[50]		-	-	2.5	mA	

Table 11-22. Delta-sigma ADC AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Startup time		_	-	4	Samples
THD	Total harmonic distortion ^[50]	Buffer gain = 1, 16 bit, Range = ±1.024 V	_	-	0.0032	%
20-Bit Resol	ution Mode	- I			•	-
SR20	Sample rate ^[50]	Range = ±1.024 V, unbuffered	7.8	-	187	sps
BW20	Input bandwidth at max sample rate ^[50]	Range = ±1.024 V, unbuffered	_	40	_	Hz
16-Bit Resol	ution Mode	- I			•	-
SR16	Sample rate ^[50]	Range = ±1.024 V, unbuffered	2	-	48	ksps
BW16	Input bandwidth at max sample rate ^[50]	Range = ±1.024 V, unbuffered	_	11	_	kHz
SINAD16int	Signal to noise ratio, 16-bit, internal reference ^[50]	Range = ±1.024V, unbuffered	81	-	-	dB
SINAD16ext	Signal to noise ratio, 16-bit, external reference ^[50]	Range = ±1.024 V, unbuffered	84	-	-	dB
12-Bit Resol	ution Mode			•	•	-
SR12	Sample rate, continuous, high power ^[50]	Range = ±1.024 V, unbuffered	4	-	192	ksps
BW12	Input bandwidth at max sample rate ^[50]	Range = ±1.024 V, unbuffered	_	44	_	kHz
SINAD12int	Signal to noise ratio, 12-bit, internal reference ^[50]	Range = ±1.024 V, unbuffered	66	-	-	dB
8-Bit Resolu	tion Mode			•	•	-
SR8	Sample rate, continuous, high power ^[50]	Range = ±1.024 V, unbuffered	8	-	384	ksps
BW8	Input bandwidth at max sample rate ^[50]	Range = ±1.024 V, unbuffered	_	88	-	kHz
SINAD8int	Signal to noise ratio, 8-bit, internal reference ^[50]	Range = ±1.024 V, unbuffered	43	-	-	dB

Decelution Dite	Cont	inuous	Multi-	Sample	Multi-Sar	nple Turbo
Resolution, Bits	Min	Max	Min	Max	Min	Max
8	8000	384000	1911	91701	1829	87771
9	6400	307200	1543	74024	1489	71441
10	5566	267130	1348	64673	1307	62693
11	4741	227555	1154	55351	1123	53894
12	4000	192000	978	46900	956	45850
13	3283	157538	806	38641	791	37925
14	2783	133565	685	32855	674	32336
15	2371	113777	585	28054	577	27675
16	2000	48000	495	11861	489	11725
17	500	12000	124	2965	282	6766
18	125	3000	31	741	105	2513
19	16	375	4	93	15	357
20	8	187.5	2	46	8	183

Table 11-23. Delta-sigma ADC Sample Rates, Range = ±1.024 V

Figure 11-33. Delta-sigma ADC IDD vs sps, Range = ±1.024 V, Figure 11-34. Delta-sigma ADC Noise Histogram, 1000 Continuous Sample Mode, Input Buffer Bypassed

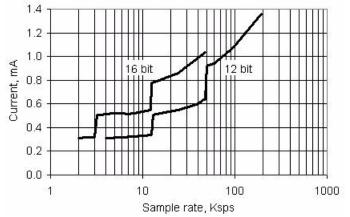
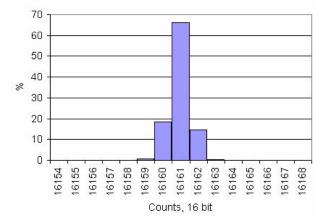



Figure 11-35. Delta-sigma ADC Noise Histogram, 1000 Samples, 16-bit, 48 ksps, Ext Ref, V_{IN} = V_{REF}/2, Range = ±1.024 V

Samples, 20-Bit, 187 sps, Ext Ref, V_{IN} = V_{REF}/2, Range = ±1.024 V

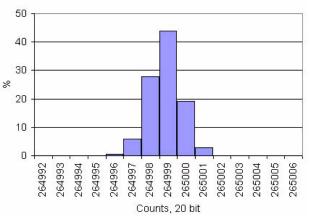
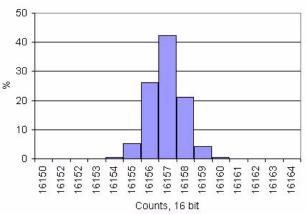



Figure 11-36. Delta-sigma ADC Noise Histogram, 1000 Samples, 16-bit, 48 ksps, Int Ref, V_{IN} = V_{REF}/2, Range = ±1.024 V

11.5.4 Analog Globals

Table 11-29. Analog Globals Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rppag	Resistance pin-to-pin through P2[4], AGL0, DSM INP, AGL1, P2[5] ^[54]	V _{DDA} = 3 V	_	1472	2200	Ω
Rppmuxbus	Resistance pin-to-pin through P2[3], amuxbusL, P2[4] ^[54]	V _{DDA} = 3 V	_	706	1100	Ω

11.5.5 Comparator

Table 11-30. Comparator DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Input offset voltage in fast mode	Factory trim, $V_{DDA} > 2.7 V$, $V_{IN} \ge 0.5 V$	-		10	mV
	Input offset voltage in slow mode	Factory trim, Vin $\ge 0.5 \text{ V}$	-		9	mV
V _{OS}	Input offset voltage in fast mode ^[55]	Custom trim	-	-	4	mV
	Input offset voltage in slow mode ^[55]	Custom trim	-	-	4	mV
	Input offset voltage in ultra low-power mode	V _{DDA} ≤ 4.6 V	-	±12	-	mV
V _{HYST}	Hysteresis	Hysteresis enable mode	-	10	32	mV
V _{ICM}	Input common mode voltage	High current / fast mode	V _{SSA}	-	V _{DDA}	V
		Low current / slow mode	V _{SSA}	-	V _{DDA}	V
		Ultra low-power mode V _{DDA} ≤ 4.6 V	V _{SSA}	-	V _{DDA} – 1.15	V
CMRR	Common mode rejection ratio		-	50	-	dB
I _{CMP}	High current mode/fast mode ^[56]		-	_	400	μA
	Low current mode/slow mode ^[56]		-	_	100	μA
	Ultra low-power mode ^[56]	V _{DDA} ≤ 4.6 V	-	6	-	μA

Table 11-31. Comparator AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Response time, high current mode ^[56]	50 mV overdrive, measured pin-to-pin	-	75	110	ns
T _{RESP}	Response time, low current mode ^[56]	50 mV overdrive, measured pin-to-pin	_	155	200	ns
	Response time, ultra low-power mode ^[56]	50 mV overdrive, measured pin-to-pin, V _{DDA} ≤ 4.6 V	_	55	-	μs

55. The recommended procedure for using a custom trim value for the on-chip comparators can be found in the TRM.

56. Based on device characterization (Not production tested).

Notes
 54. The resistance of the analog global and analog mux bus is high if V_{DDA} ≤ 2.7 V, and the chip is in either sleep or hibernate mode. Use of analog global and analog mux bus under these conditions is not recommended.
 The resistance of the analog global and analog mux bus is high if V_{DDA} ≤ 2.7 V, and the chip is in either sleep or hibernate mode. Use of analog global and analog mux bus under these conditions is not recommended.

11.6.4 P²C

Table 11-51. Fixed I²C DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	Enabled, configured for 100 kbps	-	-	250	μA
	-	Enabled, configured for 400 kbps	-	-	260	μA
	-	Wake from sleep mode	-	-	30	μA

Table 11-52. Fixed I²C AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate		-	-	1	Mbps

11.6.5 Controller Area Network

Table 11-53. CAN DC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	Block current consumption		-	_	200	μA

Table 11-54. CAN AC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate	Minimum 8 MHz clock	-	-	1	Mbit

11.6.6 Digital Filter Block

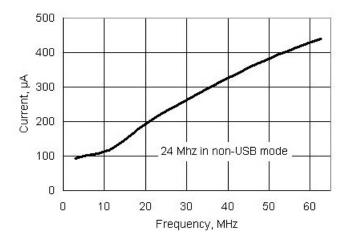
Table 11-55. DFB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	DFB operating current	64-tap FIR at F _{DFB}				
		500 kHz (6.7 ksps)	-	0.16	0.27	mA
		1 MHz (13.4 ksps)	-	0.33	0.53	mA
		10 MHz (134 ksps)	-	3.3	5.3	mA
		48 MHz (644 ksps)	-	15.7	25.5	mA
		67 MHz (900 ksps)	_	21.8	35.6	mA

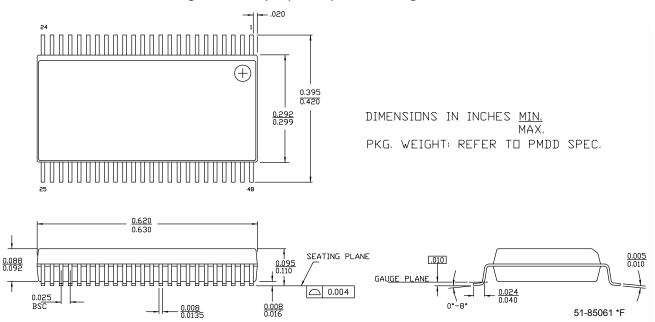
Table 11-56. DFB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DFB}	DFB operating frequency		DC	-	67.01	MHz

11.9 Clocking

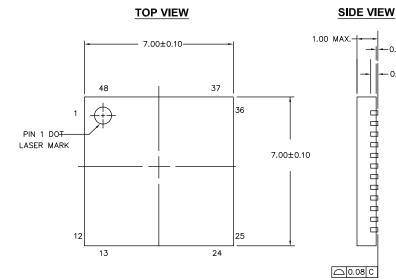

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. Unless otherwise specified, all charts and graphs show typical values.

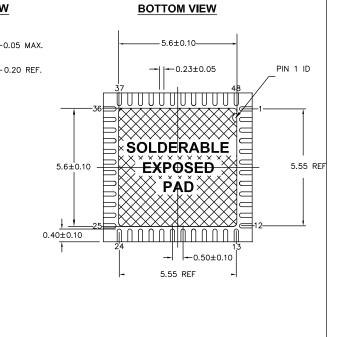
11.9.1 Internal Main Oscillator


Table 11-77. IMO DC Specifications^[73]

Parameter	Description	Conditions	Min	Тур	Max	Units	
	Supply current						
	62.6 MHz		-	-	600	μA	
	48 MHz		-	_	500	μA	
	24 MHz – USB mode	With oscillator locking to USB bus	-	-	500	μA	
	24 MHz – non USB mode		-	-	300	μA	
	12 MHz		-	_	200	μA	
	6 MHz		-	-	180	μA	
	3 MHz		-	-	150	μA	

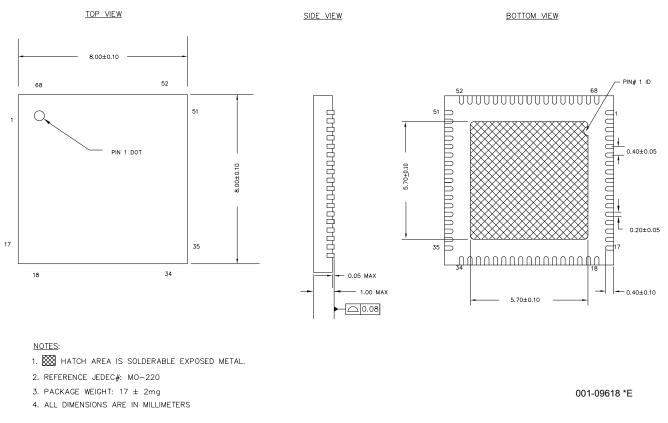
Figure 11-75. IMO Current vs. Frequency





NOTES:

1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL.


- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION	
LT48D	LEAD FREE	

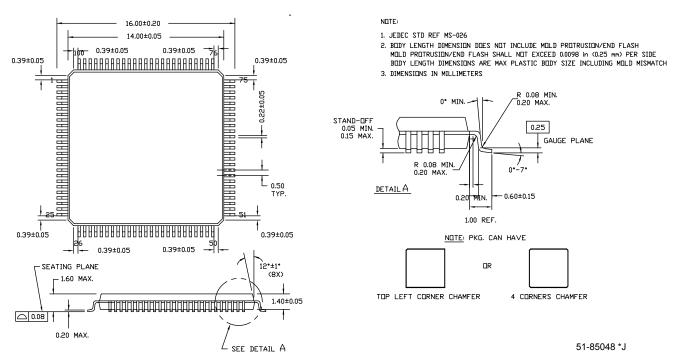

001-45616 *E

Figure 13-4. 100-pin TQFP (14 × 14 × 1.4 mm) Package Outline

Document Number: 001-11729 Rev. AF

Description Title: PSoC [®] 3: CY8C38 Family Datasheet Programmable System-on-Chip (PSoC [®]) (continued) Document Number: 001-11729					
Revision	ECN	Submission Date	Orig. of Change	Description of Change	
*U	3645908	06/14/2012	MKEA	Section 2: Changed text and added figures describing Vddio source and sink. Corrected example PCB layout figure. Sections 3, 6.2: Added text about usage in externally regulated mode. Section 5.2 and elsewhere: Added text describing flash cache, and updated related text. Section 6.1, 11.91: Changed IMO startup time specification. Section 6.1, 14: Removed text stating that FTW is a wakeup source. Section 6.2.1.4: Added paragraph clarifying limiting the frequency of IO input signals to achieve low hibernate current. Section 6.3: Changed reset status register description text. Section 6.3.1.1, 6.3.1.2: Added text on XRES and PRES re-arm times Sections 6.3.1.1, 1.8.1: Revised description of IPOR and clarified PRES term. Added text on adjustability of buzz frequency. Section 6.4.14, 11.4: Deleted and updated text regarding SIO performance under certain power ramp conditions. Section 6.4.15: Changed text describing SIO modes for overvoltage tolerance. Section 7.8: Changed "compliant with 12C" to "compatible with 12C". Section 9.4: 11.5.6, 11.5.7: Changed DAC high and low speed/power mode descriptions and conditions. Section 9.3: Deleted the text "debug operations are possible while the device is reset". Section 9.3: Deleted the text "debug operations are possible while the device is reset". Section 1.1: Added specification for ESDHBM for when Vssa and Vssd are separate. Changed foot to state that all GPIO input voltages must be less than Vddio. Changed supply ramp rate specification. Section 11.2.1: Added chip Idd specs for active and low-power modes, for multiple voltage, temperature and usage conditions. Section 11.5.3: Updated Vref temperature drift specifications. Added graphs. Section 11.5.4: Changed load capacitor conditions in opamp specifications. Clarified description of opamp lout specification descriptions and values. Section 11.5.4: Changed load capacitor conditions in opamp specifications. Clarified description of opamp lout specification descriptions and values. Section 11.5.4: Changed analog global spe	
*V	3648803	06/18/2012	WKA/MKEA	Updated the description of changes for previous (*U) revision. No technical changes. EROS update.	

18. Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other sont, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress parents you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or systems, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-11729 Rev. AF

Revised June 27, 2016

ARM is a registered trademark, and Keil, and RealView are trademarks, of ARM Limited.