

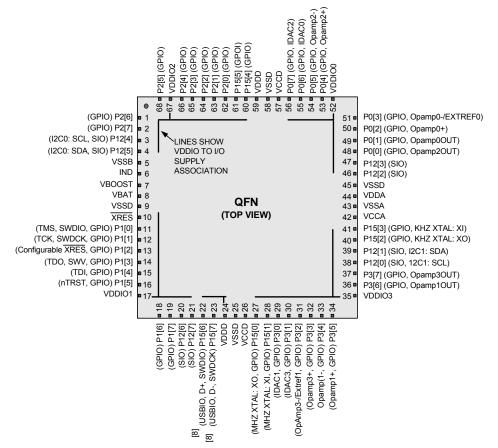
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

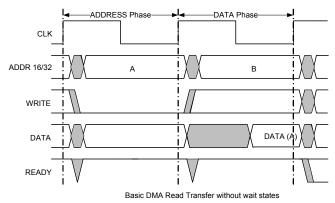
Details


Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3866lti-030

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-5. 68-pin QFN Part Pinout^[7]


Notes

The center pad on the QFN package should be connected to digital ground (V_{SSD}) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal. For more information, see AN72845, Design Guidelines for QFN Devices 7

8. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating

Figure 4-1. DMA Timing Diagram

4.4.4.2 Auto Repeat DMA

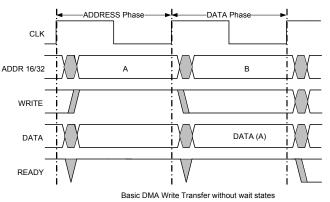
Auto repeat DMA is typically used when a static pattern is repetitively read from system memory and written to a peripheral. This is done with a single TD that chains to itself.

4.4.4.3 Ping Pong DMA

A ping pong DMA case uses double buffering to allow one buffer to be filled by one client while another client is consuming the data previously received in the other buffer. In its simplest form, this is done by chaining two TDs together so that each TD calls the opposite TD when complete.

4.4.4.4 Circular DMA

Circular DMA is similar to ping pong DMA except it contains more than two buffers. In this case there are multiple TDs; after the last TD is complete it chains back to the first TD.


4.4.4.5 Scatter Gather DMA

In the case of scatter gather DMA, there are multiple noncontiguous sources or destinations that are required to effectively carry out an overall DMA transaction. For example, a packet may need to be transmitted off of the device and the packet elements, including the header, payload, and trailer, exist in various noncontiguous locations in memory. Scatter gather DMA allows the segments to be concatenated together by using multiple TDs in a chain. The chain gathers the data from the multiple locations. A similar concept applies for the reception of data onto the device. Certain parts of the received data may need to be scattered to various locations in memory for software processing convenience. Each TD in the chain specifies the location for each discrete element in the chain.

4.4.4.6 Packet Queuing DMA

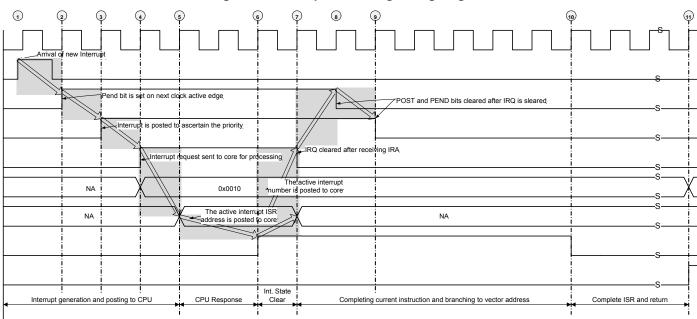
Packet queuing DMA is similar to scatter gather DMA but specifically refers to packet protocols. With these protocols, there may be separate configuration, data, and status phases associated with sending or receiving a packet.

For instance, to transmit a packet, a memory mapped configuration register can be written inside a peripheral, specifying the overall length of the ensuing data phase. The CPU can set up this configuration information anywhere in system memory and copy it with a simple TD to the peripheral. After the configuration phase, a data phase TD (or a series of data phase TDs) can begin (potentially using scatter gather). When the data

phase TD(s) finish, a status phase TD can be invoked that reads some memory mapped status information from the peripheral and copies it to a location in system memory specified by the CPU for later inspection. Multiple sets of configuration, data, and status phase 'subchains' can be strung together to create larger chains that transmit multiple packets in this way. A similar concept exists in the opposite direction to receive the packets.

4.4.4.7 Nested DMA

One TD may modify another TD, as the TD configuration space is memory mapped similar to any other peripheral. For example, a first TD loads a second TD's configuration and then calls the second TD. The second TD moves data as required by the application. When complete, the second TD calls the first TD, which again updates the second TD's configuration. This process repeats as often as necessary.

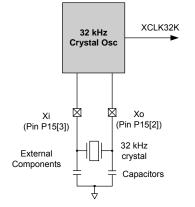

4.5 Interrupt Controller

The interrupt controller provides a mechanism for hardware resources to change program execution to a new address, independent of the current task being executed by the main code. The interrupt controller provides enhanced features not found on original 8051 interrupt controllers:

- Thirty-two interrupt vectors
- Jumps directly to ISR anywhere in code space with dynamic vector addresses
- Multiple sources for each vector
- Flexible interrupt to vector matching
- Each interrupt vector is independently enabled or disabled
- Each interrupt can be dynamically assigned one of eight priorities
- Eight level nestable interrupts
- Multiple I/O interrupt vectors
- Software can send interrupts
- Software can clear pending interrupts

Figure 4-2 on page 20 represents typical flow of events when an interrupt triggered. Figure 4-3 on page 21 shows the interrupt structure and priority polling.

Figure 4-2. Interrupt Processing Timing Diagram


Notes

- 1: Interrupt triggered asynchronous to the clock
- 2: The PEND bit is set on next active clock edge to indicate the interrupt arrival
- 3: POST bit is set following the PEND bit
- 4: Interrupt request and the interrupt number sent to CPU core after evaluation priority (Takes 3 clocks)
- 5: ISR address is posted to CPU core for branching
- 6: CPU acknowledges the interrupt request
- 7: ISR address is read by CPU for branching
- 8, 9: PEND and POST bits are cleared respectively after receiving the IRA from core
- 10: IRA bit is cleared after completing the current instruction and starting the instruction execution from ISR location (Takes 7 cycles)
- 11: IRC is set to indicate the completion of ISR, Active int. status is restored with previous status
- The total interrupt latency (ISR execution)
 - = POST + PEND + IRQ + IRA + Completing current instruction and branching
 - = 1+1+1+2+7 cycles

= 12 cycles

Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal have a load capacitance (CL) of 6 pF or 12.5 pF. Check the crystal manufacturer's datasheet. The two external capacitors, CL1 and CL2, are typically of the same value, and their total capacitance, CL1CL2 / (CL1 + CL2), including pin and trace capacitance, should equal the crystal CL value. For more information, refer to application note AN54439: PSoC 3 and PSoC 5 External Oscillators. See also pin capacitance specifications in the "GPIO" section on page 80.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock oscillators connected to I/O. The oscillators can also be generated within the device in the digital system and UDBs.

While the primary DSI clock input provides access to all clocking resources, up to eight other DSI clocks (internally or externally generated) may be routed directly to the eight digital clock dividers. This is only possible if there are multiple precision clock sources.

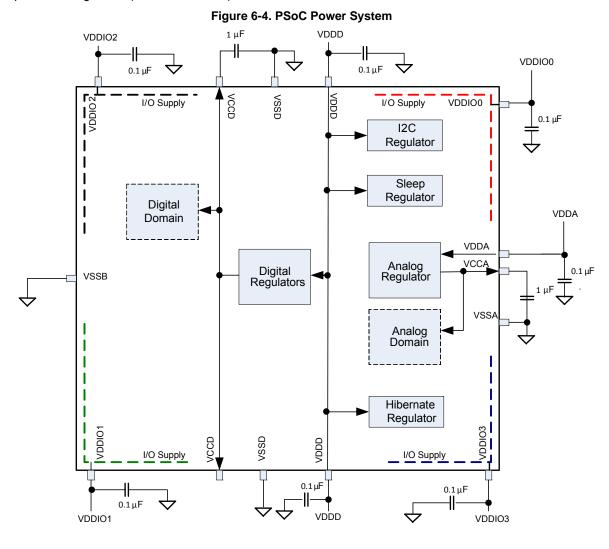
6.1.3 Clock Distribution

All seven clock sources are inputs to the central clock distribution system. The distribution system is designed to create multiple high precision clocks. These clocks are customized for the design's requirements and eliminate the common problems found with limited resolution prescalers attached to peripherals. The clock distribution system generates several types of clock trees.

- The master clock is used to select and supply the fastest clock in the system for general clock requirements and clock synchronization of the PSoC device.
- Bus clock 16-bit divider uses the master clock to generate the bus clock used for data transfers. Bus clock is the source clock for the CPU clock divider.
- Eight fully programmable 16-bit clock dividers generate digital system clocks for general use in the digital system, as configured by the design's requirements. Digital system clocks can generate custom clocks derived from any of the seven clock sources for any purpose. Examples include baud rate generators, accurate PWM periods, and timer clocks, and many others. If more than eight digital clock dividers are required, the UDBs and fixed function timer/counter/PWMs can also generate clocks.
- Four 16-bit clock dividers generate clocks for the analog system components that require clocking, such as ADC and mixers. The analog clock dividers include skew control to ensure that critical analog events do not occur simultaneously with digital switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit clock divider (divide by 2 and higher) that generates ~50 percent duty cycle clocks, master clock resynchronization logic, and deglitch logic. The outputs from each digital clock tree can be routed into the digital system interconnect and then brought back into the clock system as an input, allowing clock chaining of up to 32 bits.

6.1.4 USB Clock Domain


The USB clock domain is unique in that it operates largely asynchronously from the main clock network. The USB logic contains a synchronous bus interface to the chip, while running on an asynchronous clock to process USB data. The USB logic requires a 48 MHz frequency. This frequency can be generated from different sources, including DSI clock at 48 MHz or doubled value of 24 MHz from internal oscillator, DSI signal, or crystal oscillator.

6.2 Power System

The power system consists of separate analog, digital, and I/O supply pins, labeled VDDA, VDDD, and VDDIOX, respectively. It also includes two internal 1.8-V regulators that provide the digital (VCCD) and analog (VCCA) supplies for the internal core logic. The output pins of the regulators (VCCD and VCCA) and the

VDDIO pins must have capacitors connected as shown in Figure 6-4. The two VCCD pins must be shorted together, with as short a trace as possible, and connected to a $1-\mu$ F ±10-percent X5R capacitor. The power system also contains a sleep regulator, an I²C regulator, and a hibernate regulator.

Notes

- The two VCCD pins must be connected together with as short a trace as possible. A trace under the device is recommended, as shown in Figure 2-8 on page 12.
- It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the DC bias (VDDX or VCCX in Figure 6-4) is a significant percentage of the rated working voltage.
- You can power the device in internally regulated mode, where the voltage applied to the VDDx pins is as high as 5.5 V, and the internal regulators provide the core voltages. In this mode, do not apply power to the VCCx pins, and do not tie the VDDx pins to the VCCx pins.
- You can also power the device in externally regulated mode, that is, by directly powering the VCCD and VCCA pins. In this configuration, the VDDD pins should be shorted to the VCCD pins and the VDDA pin should be shorted to the VCCA pin. The allowed supply range in this configuration is 1.71 V to 1.89 V. After power up in this configuration, the internal regulators are on by default, and should be disabled to reduce power consumption.

6.4 I/O System and Routing

PSoC I/Os are extremely flexible. Every GPIO has analog and digital I/O capability. All I/Os have a large number of drive modes, which are set at POR. PSoC also provides up to four individual I/O voltage domains through the VDDIO pins.

There are two types of I/O pins on every device; those with USB provide a third type. Both GPIO and SIO provide similar digital functionality. The primary differences are their analog capability and drive strength. Devices that include USB also provide two USBIO pins that support specific USB functionality as well as limited GPIO capability.

All I/O pins are available for use as digital inputs and outputs for both the CPU and digital peripherals. In addition, all I/O pins can generate an interrupt. The flexible and advanced capabilities of the PSoC I/O, combined with any signal to any pin routability, greatly simplify circuit design and board layout. All GPIO pins can be used for analog input, CapSense^[13], and LCD segment drive, while SIO pins are used for voltages in excess of VDDA and for programmable output voltages.

- Features supported by both GPIO and SIO:
 - User programmable port reset state
 - Separate I/O supplies and voltages for up to four groups of I/O
 - Digital peripherals use DSI to connect the pins
 - □ Input or output or both for CPU and DMA
 - Eight drive modes
 - Every pin can be an interrupt source configured as rising edge, falling edge or both edges. If required, level sensitive interrupts are supported through the DSI
 - Dedicated port interrupt vector for each port

- Slew rate controlled digital output drive mode
- Access port control and configuration registers on either port basis or pin basis
- Separate port read (PS) and write (DR) data registers to avoid read modify write errors
- □ Special functionality on a pin by pin basis
- Additional features only provided on the GPIO pins:
 LCD segment drive on LCD equipped devices
 - □ CapSense^[13]
 - Analog input and output capability
 - □ Continuous 100 µA clamp current capability
 - □ Standard drive strength down to 1.7 V
- Additional features only provided on SIO pins:
 - Higher drive strength than GPIO
 - Hot swap capability (5 V tolerance at any operating V_{DD})
 - Programmable and regulated high input and output drive levels down to 1.2 V
 - No analog input, CapSense, or LCD capability
 - Dver voltage tolerance up to 5.5 V
- □ SIO can act as a general purpose analog comparator
- USBIO features:
 - □ Full speed USB 2.0 compliant I/O
 - Highest drive strength for general purpose use
 - □ Input, output, or both for CPU and DMA
 - □ Input, output, or both for digital peripherals
 - Digital output (CMOS) drive mode
 - Each pin can be an interrupt source configured as rising edge, falling edge, or both edges

6.4.5 Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the system. All eight pins in each port interface to their own Port Interrupt Control Unit (PICU) and associated interrupt vector. Each pin of the port is independently configurable to detect rising edge, falling edge, both edge interrupts, or to not generate an interrupt.

Depending on the configured mode for each pin, each time an interrupt event occurs on a pin, its corresponding status bit of the interrupt status register is set to '1' and an interrupt request is sent to the interrupt controller. Each PICU has its own interrupt vector in the interrupt controller and the pin status register providing easy determination of the interrupt source down to the pin level.

Port pin interrupts remain active in all sleep modes allowing the PSoC device to wake from an externally generated interrupt. While level sensitive interrupts are not directly supported; UDB provide this functionality to the system when needed.

6.4.6 Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level for the default CMOS input thresholds or the optional LVTTL input thresholds. All input buffers incorporate Schmitt triggers for input hysteresis. Additionally, individual pin input buffers can be disabled in any drive mode.

6.4.7 I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the device and package. Each I/O supply must be less than or equal to the voltage on the chip's analog (VDDA) pin. This feature allows users to provide different I/O voltage levels for different pins on the device. Refer to the specific device package pinout to determine VDDIO capability for a given port and pin. The SIO port pins support an additional regulated high output capability, as described in Adjustable Output Level.

6.4.8 Analog Connections

These connections apply only to GPIO pins. All GPIO pins may be used as analog inputs or outputs. The analog voltage present on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs. Each GPIO may connect to one of the analog global busses or to one of the analog mux buses to connect any pin to any internal analog resource such as ADC or comparators. In addition, select pins provide direct connections to specific analog features such as the high current DACs or uncommitted opamps.

6.4.9 CapSense

This section applies only to GPIO pins. All GPIO pins may be used to create CapSense buttons and sliders^[15]. See the "CapSense" section on page 63 for more information.

6.4.10 LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be used to generate Segment and Common drive signals for direct glass drive of LCD glass. See the "LCD Direct Drive" section on page 62 for details.

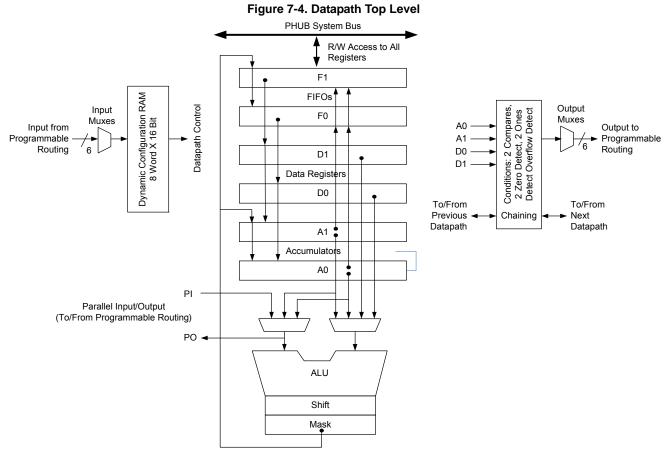
6.4.11 Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the ability to provide a regulated high output level for interface to external signals that are lower in voltage than the SIO's respective VDDIO. SIO pins are individually configurable to output either the standard VDDIO level or the regulated output, which is based on an internally generated reference. Typically a voltage DAC (VDAC) is used to generate the reference (see Figure 6-13). The "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins. Resistive pullup and pull-down drive modes are not available with SIO in regulated output mode.

6.4.12 Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support the standard CMOS and LVTTL input levels but also support a differential mode with programmable levels. SIO pins are grouped into pairs. Each pair shares a reference generator block which, is used to set the digital input buffer reference level for interface to external signals that differ in voltage from VDDIO. The reference sets the pins voltage threshold for a high logic level (see Figure 6-13). Available input thresholds are:

- 0.5 × VDDIO
- 0.4 × VDDIO
- $\blacksquare 0.5 \times V_{REF}$
- V_{REF}


Typically a voltage DAC (VDAC) generates the V_{REF} reference. "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins.

^{15.} GPIOs with opamp outputs are not recommended for use with CapSense.

7.2.2 Datapath Module

The datapath contains an 8-bit single cycle ALU, with associated compare and condition generation logic. This datapath block is optimized to implement embedded functions, such as timers, counters, integrators, PWMs, PRS, CRC, shifters and dead band generators and many others.

7.2.2.1 Working Registers

The datapath contains six primary working registers, which are accessed by CPU firmware or DMA during normal operation.

Table 7-1.	Working	Datapath	Registers
------------	---------	----------	-----------

Name	Function	Description
A0 and A1	Accumulators	These are sources and sinks for the ALU and also sources for the compares.
D0 and D1	Data Registers	These are sources for the ALU and sources for the compares.
F0 and F1	FIFOs	These are the primary interface to the system bus. They can be a data source for the data registers and accumulators or they can capture data from the accumulators or ALU. Each FIFO is four bytes deep.

7.2.2.2 Dynamic Configuration RAM

Dynamic configuration is the ability to change the datapath function and internal configuration on a cycle-by-cycle basis, under sequencer control. This is implemented using the 8-word × 16-bit configuration RAM, which stores eight unique 16-bit wide configurations. The address input to this RAM controls the sequence, and can be routed from any block connected to the UDB routing matrix, most typically PLD logic, I/O pins, or from the outputs of this or other datapath blocks.

ALU

The ALU performs eight general purpose functions. They are: Increment

- Decrement
- Add
- Subtract
- Logical AND
- Logical OR
- Logical XOR
- Pass, used to pass a value through the ALU to the shift register, mask, or another UDB register.

11.4.4 XRES

Table 11-17. XRES DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{IH}	Input voltage high threshold		$0.7 \times V_{DDIO}$	-	-	V
V _{IL}	Input voltage low threshold		-	-	$0.3 \times V_{DDIO}$	V
Rpullup	Pull-up resistor		3.5	5.6	8.5	kΩ
C _{IN}	Input capacitance ^[46]		-	3	_	pF
V _H	Input voltage hysteresis (Schmitt-Trigger) ^[46]		-	100	-	mV
Idiode	Current through protection diode to V_{DDIO} and V_{SSIO}		-	_	100	μA

Table 11-18. XRES AC Specifications

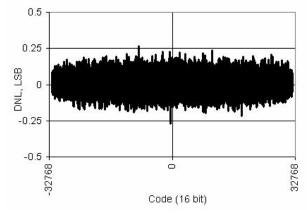
Parameter	Description	Conditions	Min	Тур	Max	Units
T _{RESET}	Reset pulse width		1	-	-	μs

11.5 Analog Peripherals

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.5.1 Opamp

Table 11-19. Opamp DC Specifications


Parameter	Description	Conditions	Min	Тур	Max	Units
VI	Input voltage range		V _{SSA}	-	V _{DDA}	V
V _{OS}	Input offset voltage		-	-	2.5	mV
		Operating temperature –40 °C to 70 °C	-	-	2	mV
TCV _{OS}	Input offset voltage drift with temperature	Power mode = high	-	-	±30	µV/ °C
Ge1	Gain error, unity gain buffer mode	Rload = 1 k Ω	-	-	±0.1	%
C _{IN}	Input capacitance	Routing from pin	-	-	18	pF
V _O	Output voltage range	1 mA, source or sink, power mode = high	V _{SSA} + 0.05	-	V _{DDA} – 0.05	V
I _{OUT}	Output current capability, source or sink	V_{SSA} + 500 mV \leq Vout \leq V_{DDA} –500 mV, V_{DDA} > 2.7 V	25	-	-	mA
		$\label{eq:VSSA} \begin{array}{l} V_{SSA} \mbox{ + 500 mV} \leq \mbox{Vout} \leq \mbox{V}_{DDA} \\ -500 \mbox{ mV}, \mbox{ 1.7 V} \mbox{ = } \mbox{V}_{DDA} \leq \mbox{ 2.7 V} \end{array}$	16	_	-	mA
I _{DD}	Quiescent current	Power mode = min	-	250	400	uA
		Power mode = low	-	250	400	uA
		Power mode = med	-	330	950	uA
		Power mode = high	-	1000	2500	uA
CMRR	Common mode rejection ratio		80	-	-	dB
PSRR	Power supply rejection ratio	$V_{DDA} \ge 2.7 V$	85	-	-	dB
		V _{DDA} < 2.7 V	70	-	-	dB
I _{IB}	Input bias current ^[46]	25 °C	_	10	_	pА

Note

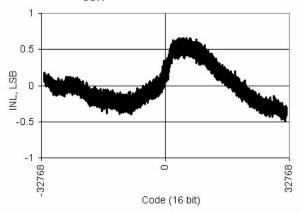

46. Based on device characterization (Not production tested).

Figure 11-37. Delta-sigma ADC DNL vs Output Code, 16-bit, 48 ksps, 25 $^\circ C$ V_{DDA} = 3.3 V

Figure 11-38. Delta-sigma ADC INL vs Output Code, 16-bit, 48 ksps, 25 °C V_{DDA} = 3.3 V

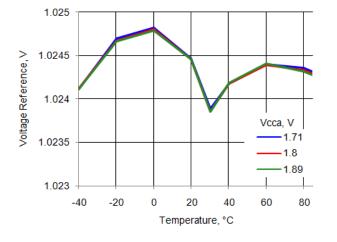
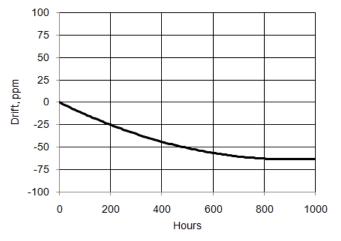

11.5.3 Voltage Reference

Table 11-28. Voltage Reference Specifications


See also ADC external reference specifications in Section 11.5.2.

Parameter	Description	Conditions		Min	Тур	Max	Units
V _{REF} ^[51]	Precision reference voltage	Initial trimming, 25 °C		1.023 (-0.1%)	1.024	1.025 (+0.1%)	V
	post reflow layout and 250 °C solder reflow.		–40 °C	-	±0.5	-	%
		25 °C	-	±0.2	-	%	
		Device may be calibrated after assembly to improve performance 85	85 °C	-	±0.2	_	%
	Temperature drift ^[52]	Box method		-	-	30	ppm/°C
	Long term drift			-	100	-	ppm/khr
	Thermal cycling drift (stability) ^[52, 53]			-	100	-	ppm

Figure 11-39. Voltage Reference vs. Temperature and V_{CCA}

Figure 11-40. Voltage Reference Long-Term Drift

Notes

51. V_{REF} is measured after packaging, and thus accounts for substrate and die attach stresses

52. Based on device characterization (Not production tested).

53. After eight full cycles between -40 °C and 100 °C.

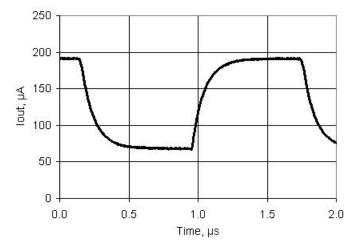
11.5.6 Current Digital-to-analog Converter (IDAC)

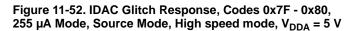
All specifications are based on use of the low-resistance IDAC output pins (see Pin Descriptions on page 12 for details). See the IDAC component data sheet in PSoC Creator for full electrical specifications and APIs.

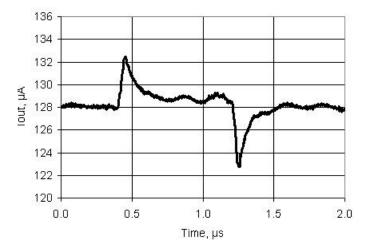
Unless otherwise specified, all charts and graphs show typical values.

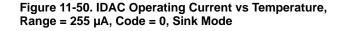
Table 11-32. IDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		_	-	8	bits
I _{OUT}	Output current at code = 255	$\label{eq:Range} \begin{array}{l} \mbox{Range} = 2.04 \mbox{ mA}, \mbox{ code} = 255, \\ \mbox{V}_{\mbox{DDA}} \geq 2.7 \mbox{ V}, \mbox{ Rload} = 600 \ \Omega \end{array}$	_	2.04	-	mA
		Range = 2.04 mA, high speed mode, code = 255, $V_{DDA} \le 2.7$ V, Rload = 300 Ω	-	2.04	-	mA
		Range = 255 μ A, code = 255, Rload = 600 Ω	-	255	_	μA
		Range = 31.875 μ A, code = 255, Rload = 600 Ω	-	31.875	-	μA
	Monotonicity		-	-	Yes	
Ezs	Zero scale error		-	0	±1	LSB
Eg	Gain error	Range = 2.04 mA, 25 °C	_	-	±2.5	%
		Range = 255 µA, 25 ° C	_	-	±2.5	%
		Range = 31.875 µA, 25 ° C	-	-	±3.5	%
TC_Eg	Temperature coefficient of gain error	Range = 2.04 mA	-	-	0.04	% / °C
		Range = 255 µA	-	-	0.04	% / °C
		Range = 31.875 µA	-	-	0.05	% / °C
INL	Integral nonlinearity	Sink mode, range = 255μ A, Codes 8 – 255, Rload = 2.4 k Ω , Cload = 15 pF	_	±0.9	±1	LSB
		Source mode, range = 255 μ A, Codes 8 – 255, Rload = 2.4 k Ω , Cload = 15 pF	_	±1.2	±1.6	LSB
DNL	Differential nonlinearity	Sink mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	-	±0.3	±1	LSB
		Source mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	-	±0.3	±1	LSB
Vcompliance	Dropout voltage, source or sink mode	Voltage headroom at max current, Rload to V_{DDA} or Rload to $V_{SSA},$ Vdiff from V_{DDA}	1	-	-	V


400 350 Fast mode Operating Current, µA 300 250 200 150 100 Slow mode 50 0 0 40 60 80 -40 -20 20 Temperature, °C


Figure 11-49. IDAC Operating Current vs Temperature, Range = 255 μ A, Code = 0, Source Mode


Table 11-33. IDAC AC Specifications


Parameter Description Conditions Min Тур Max Units Update rate 8 Msps FDAC _ — Settling time to 0.5 LSB Range = 31.875 µA or 255 µA, full _ 125 **T_{SETTLE}** ns scale transition, High speed mode, 600 Ω 15-pF load Range = 255 µA, source mode, 340 pA/sqrtHz Current noise _ _ High speed mode, $V_{DDA} = 5 V$, 10 kHz

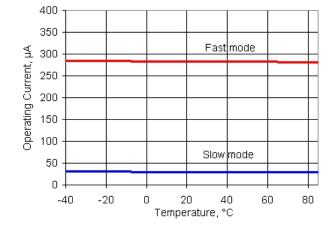

Figure 11-51. IDAC Step Response, Codes 0x40 - 0xC0, 255 μ A Mode, Source Mode, High speed mode, V_{DDA} = 5 V

Figure 11-55. VDAC INL vs Input Code, 1 V Mode

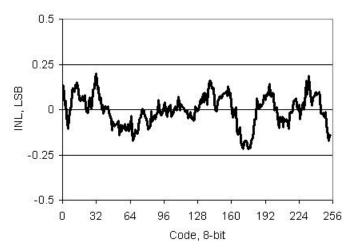


Figure 11-57. VDAC INL vs Temperature, 1 V Mode

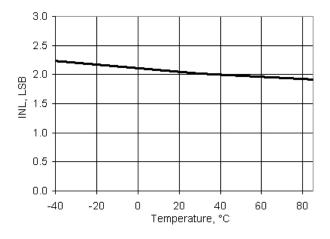


Figure 11-59. VDAC Full Scale Error vs Temperature, 1 V Mode

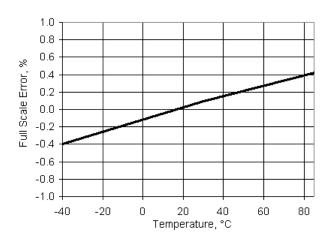


Figure 11-56. VDAC DNL vs Input Code, 1 V Mode

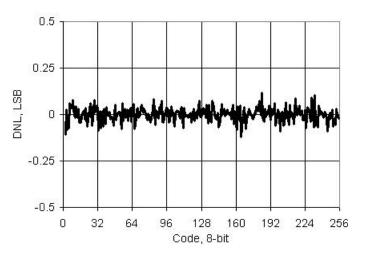


Figure 11-58. VDAC DNL vs Temperature, 1 V Mode

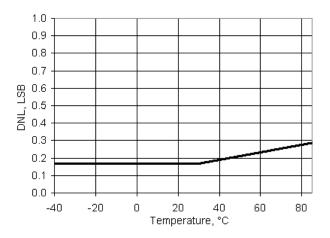
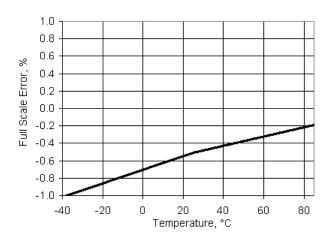



Figure 11-60. VDAC Full Scale Error vs Temperature, 4 V Mode

11.5.9 Transimpedance Amplifier

The TIA is created using a SC/CT analog block; see the TIA component data sheet in PSoC Creator for full electrical specifications and APIs.

Table 11-38.	Transimpedance	Amplifier ((TIA) DC	Specifications
--------------	----------------	-------------	----------	----------------

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{IOFF}	Input offset voltage		-	-	10	mV
Rconv	Conversion resistance ^[58]	R = 20K; 40 pF load	-25	-	+35	%
		R = 30K; 40 pF load	-25	-	+35	%
		R = 40K; 40 pF load	-25	-	+35	%
		R = 80K; 40 pF load	-25	-	+35	%
		R = 120K; 40 pF load	-25	-	+35	%
		R = 250K; 40 pF load	-25	-	+35	%
		R= 500K; 40 pF load	-25	-	+35	%
		R = 1M; 40 pF load	-25	-	+35	%
	Quiescent current		-	1.1	2	mA

Table 11-39. Transimpedance Amplifier (TIA) AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
BW	Input bandwidth (-3 dB)	R = 20K; –40 pF load	1500	-	-	kHz
		R = 120K;	240	-	-	kHz
		R = 1M; –40 pF load	25	-	-	kHz

Note

58. Conversion resistance values are not calibrated. Calibrated values and details about calibration are provided in PSoC Creator component data sheets. External precision resistors can also be used.

Table 11-44. LCD Direct Drive AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
f _{LCD}	LCD frame rate		10	50	150	Hz

11.6 Digital Peripherals

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.6.1 Timer

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode. Timers can also be implemented in UDBs; for more information, see the Timer component data sheet in PSoC Creator.

Table 11-45. Timer DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit timer, at listed input clock frequency	-	-	-	μA
	3 MHz		-	15	-	μA
	12 MHz		-	60	-	μA
	48 MHz		-	260	-	μA
	67 MHz		-	350	-	μA

Table 11-46. Timer AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Operating frequency		DC	-	67.01	MHz
	Capture pulse width (Internal)		15	-	-	ns
	Capture pulse width (external)		30	_	_	ns
	Timer resolution		15	-	-	ns
	Enable pulse width		15	-	-	ns
	Enable pulse width (external)		30	_	-	ns
	Reset pulse width		15	-	-	ns
	Reset pulse width (external)		30	-	-	ns

11.6.2 Counter

The following specifications apply to the Timer/Counter/PWM peripheral, in counter mode. Counters can also be implemented in UDBs; for more information, see the Counter component data sheet in PSoC Creator.

Table 11-47. Counter DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit counter, at listed input clock frequency	-	-	-	μA
	3 MHz		-	15	_	μA
	12 MHz		-	60	_	μA
	48 MHz		-	260	-	μA
	67 MHz		-	350	-	μA

Table 11-48. Counter AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Operating frequency		DC	-	67.01	MHz
	Capture pulse		15	-	-	ns
	Resolution		15	-	-	ns
	Pulse width		15	-	-	ns
	Pulse width (external)		30			ns
	Enable pulse width		15	-	-	ns
	Enable pulse width (external)		30	-	-	ns
	Reset pulse width		15	-	-	ns
	Reset pulse width (external)		30	-	-	ns

11.6.3 Pulse Width Modulation

The following specifications apply to the Timer/Counter/PWM peripheral, in PWM mode. PWM components can also be implemented in UDBs; for more information, see the PWM component data sheet in PSoC Creator.

Table 11-49. PWM DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit PWM, at listed input clock frequency	-	-	-	μA
	3 MHz		_	15	-	μA
	12 MHz		-	60	-	μA
	48 MHz		_	260	-	μA
	67 MHz		-	350	_	μA

Table 11-50. Pulse Width Modulation (PWM) AC Specifications

Description	Conditions	Min	Тур	Max	Units
Operating frequency		DC	_	67.01	MHz
Pulse width		15	-	_	ns
Pulse width (external)		30	-	-	ns
Kill pulse width		15	_	_	ns
Kill pulse width (external)		30	-	_	ns
Enable pulse width		15	-	-	ns
Enable pulse width (external)		30	_	_	ns
Reset pulse width		15	-	-	ns
Reset pulse width (external)		30	-	-	ns
	Operating frequency Pulse width Pulse width (external) Kill pulse width Kill pulse width (external) Enable pulse width Enable pulse width (external) Reset pulse width	Operating frequency Pulse width Pulse width (external) Kill pulse width Kill pulse width (external) Enable pulse width (external) Enable pulse width (external) Reset pulse width	Operating frequencyDCPulse width15Pulse width (external)30Kill pulse width15Kill pulse width (external)30Enable pulse width15Enable pulse width (external)30Reset pulse width15	Operating frequencyDC-Pulse width15-Pulse width (external)30-Kill pulse width15-Kill pulse width (external)30-Enable pulse width15-Enable pulse width (external)30-Reset pulse width15-Reset pulse width15-	Operating frequencyDC-67.01Pulse width15Pulse width (external)30Kill pulse width15Kill pulse width (external)30Enable pulse width (external)30Enable pulse width (external)30Reset pulse width (external)30

11.6.7 USB

Table 11-57. USB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{USB_5}	Device supply (V _{DDD}) for USB operation	USB configured, USB regulator enabled	4.35	-	5.25	V
V _{USB_3.3}		USB configured, USB regulator bypassed	3.15	_	3.6	V
V _{USB_3}		USB configured, USB regulator bypassed ^[60]	2.85	_	3.6	V
IUSB_Configured	Device supply current in device	V _{DDD} = 5 V, F _{CPU} = 1.5 MHz	-	10	-	mA
	active mode, bus clock and IMO = 24 MHz	V _{DDD} = 3.3 V, F _{CPU} = 1.5 MHz	-	8	-	mA
IUSB_Suspended	Device supply current in device sleep mode	V _{DDD} = 5 V, connected to USB host, PICU configured to wake on USB resume signal	_	0.5	-	mA
		V _{DDD} = 5 V, disconnected from USB host	-	0.3	-	mA
		V _{DDD} = 3.3 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 3.3 V, disconnected from USB host	-	0.3	-	mA

11.6.8 Universal Digital Blocks (UDBs)

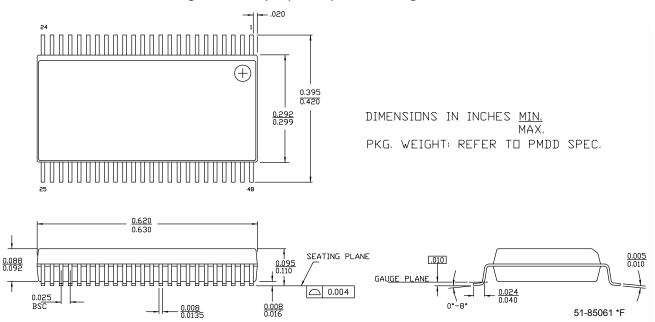
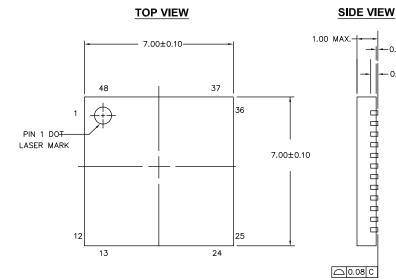
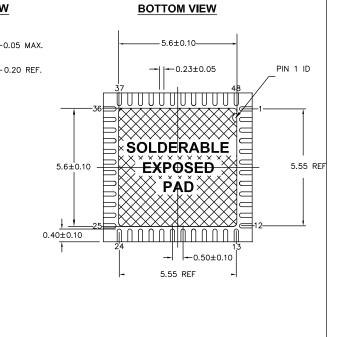

PSoC Creator provides a library of prebuilt and tested standard digital peripherals (UART, SPI, LIN, PRS, CRC, timer, counter, PWM, AND, OR, and so on) that are mapped to the UDB array. See the component data sheets in PSoC Creator for full AC/DC specifications, APIs, and example code.

Table 11-58. UDB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Datapath Per	formance					
F _{MAX_TIMER}	Maximum frequency of 16-bit timer in a UDB pair		-	-	67.01	MHz
F _{MAX_ADDER}	Maximum frequency of 16-bit adder in a UDB pair		-	-	67.01	MHz
F _{MAX_CRC}	Maximum frequency of 16-bit CRC/PRS in a UDB pair		-	-	67.01	MHz
PLD Perform	ance					
F _{MAX_PLD}	Maximum frequency of a two-pass PLD function in a UDB pair		-	-	67.01	MHz
Clock to Outp	but Performance					
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-70.	25 °C, $V_{DDD} \ge 2.7 V$	-	20	25	ns
t _{CLK_OUT}	Propagation delay for clock in to data out, see Figure 11-70.	Worst-case placement, routing, and pin selection	_	-	55	ns


Note 60. Rise/fall time matching (TR) not guaranteed, see USB Driver AC Specifications on page 87.



NOTES:

1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL.

- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION
LT48D	LEAD FREE

001-45616 *E

16. Document Conventions

16.1 Units of Measure

Table 16-1. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibels
fF	femtofarads
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohours
kHz	kilohertz
kΩ	kilohms
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	megaohms
Msps	megasamples per second
μA	microamperes
μF	microfarads
μH	microhenrys
μs	microseconds
μV	microvolts
μW	microwatts
mA	milliamperes
ms	milliseconds
mV	millivolts
nA	nanoamperes
ns	nanoseconds
nV	nanovolts
Ω	ohms
pF	picofarads
ppm	parts per million
ps	picoseconds
S	seconds
sps	samples per second
sqrtHz	square root of hertz
V	volts

18. Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2006-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other sont, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress parents you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or systems, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-11729 Rev. AF

Revised June 27, 2016

ARM is a registered trademark, and Keil, and RealView are trademarks, of ARM Limited.