

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	67MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x20b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3866lti-068t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

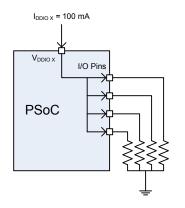
It also contains a separate, very low-power internal low-speed oscillator (ILO) for the sleep and watchdog timers. A 32.768-kHz external watch crystal is also supported for use in real-time clock (RTC) applications. The clocks, together with programmable clock dividers, provide the flexibility to integrate most timing requirements.

The CY8C38 family supports a wide supply operating range from 1.71 V to 5.5 V. This allows operation from regulated supplies such as $1.8 V \pm 5\%$, $2.5 V \pm 10\%$, $3.3 V \pm 10\%$, or $5.0 V \pm 10\%$, or directly from a wide range of battery types. In addition, it provides an integrated high efficiency synchronous boost converter that can power the device from supply voltages as low as 0.5 V. This enables the device to be powered directly from a single battery or solar cell. In addition, you can use the boost converter to generate other voltages required by the device, such as a 3.3-V supply for LCD glass drive. The boost's output is available on the VBOOST pin, allowing other devices in the application to be powered from the PSoC.

PSoC supports a wide range of low-power modes. These include a 200-nA hibernate mode with RAM retention and a $1-\mu$ A sleep mode with RTC. In the second mode, the optional 32.768-kHz watch crystal runs continuously and maintains an accurate RTC.

Power to all major functional blocks, including the programmable digital and analog peripherals, can be controlled independently by firmware. This allows low-power background processing when some peripherals are not in use. This, in turn, provides a total device current of only 1.2 mA when the CPU is running at 6 MHz, or 0.8 mA running at 3 MHz.

The details of the PSoC power modes are covered in the "Power System" section on page 31 of this data sheet.


PSoC uses JTAG (4-wire) or SWD (2-wire) interfaces for programming, debug, and test. The 1-wire SWV may also be used for 'printf' style debugging. By combining SWD and SWV, you can implement a full debugging interface with just three pins. Using these standard interfaces you can debug or program the PSoC with a variety of hardware solutions from Cypress or third party vendors. PSoC supports on-chip break points and 4-KB instruction and data race memory for debug. Details of the programming, test, and debugging interfaces are discussed in the "Programming, Debug Interfaces, Resources" section on page 65 of this data sheet.

2. Pinouts

Each VDDIO pin powers a specific set of I/O pins. (The USBIOs are powered from VDDD.) Using the VDDIO pins, a single PSoC can support multiple voltage levels, reducing the need for off-chip level shifters. The black lines drawn on the pinout diagrams in Figure 2-3 through Figure 2-6, as well as Table 2-1, show the pins that are powered by each VDDIO.

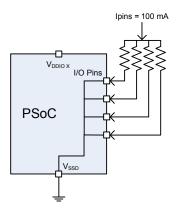
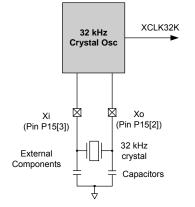

Each VDDIO may source up to 100 mA total to its associated I/O pins, as shown in Figure 2-1.

Figure 2-1. VDDIO Current Limit

Conversely, for the 100-pin and 68-pin devices, the set of I/O pins associated with any VDDIO may sink up to 100 mA total, as shown in Figure 2-2.


Figure 2-2. I/O Pins Current Limit

For the 48-pin devices, the set of I/O pins associated with VDDIO0 plus VDDIO2 may sink up to 100 mA total. The set of I/O pins associated with VDDIO1 plus VDDIO3 may sink up to a total of 100 mA.

Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal have a load capacitance (CL) of 6 pF or 12.5 pF. Check the crystal manufacturer's datasheet. The two external capacitors, CL1 and CL2, are typically of the same value, and their total capacitance, CL1CL2 / (CL1 + CL2), including pin and trace capacitance, should equal the crystal CL value. For more information, refer to application note AN54439: PSoC 3 and PSoC 5 External Oscillators. See also pin capacitance specifications in the "GPIO" section on page 80.

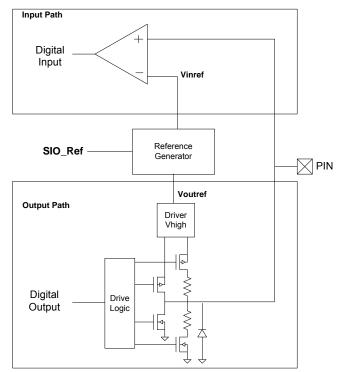
6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock oscillators connected to I/O. The oscillators can also be generated within the device in the digital system and UDBs.

While the primary DSI clock input provides access to all clocking resources, up to eight other DSI clocks (internally or externally generated) may be routed directly to the eight digital clock dividers. This is only possible if there are multiple precision clock sources.

6.1.3 Clock Distribution

All seven clock sources are inputs to the central clock distribution system. The distribution system is designed to create multiple high precision clocks. These clocks are customized for the design's requirements and eliminate the common problems found with limited resolution prescalers attached to peripherals. The clock distribution system generates several types of clock trees.


- The master clock is used to select and supply the fastest clock in the system for general clock requirements and clock synchronization of the PSoC device.
- Bus clock 16-bit divider uses the master clock to generate the bus clock used for data transfers. Bus clock is the source clock for the CPU clock divider.
- Eight fully programmable 16-bit clock dividers generate digital system clocks for general use in the digital system, as configured by the design's requirements. Digital system clocks can generate custom clocks derived from any of the seven clock sources for any purpose. Examples include baud rate generators, accurate PWM periods, and timer clocks, and many others. If more than eight digital clock dividers are required, the UDBs and fixed function timer/counter/PWMs can also generate clocks.
- Four 16-bit clock dividers generate clocks for the analog system components that require clocking, such as ADC and mixers. The analog clock dividers include skew control to ensure that critical analog events do not occur simultaneously with digital switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit clock divider (divide by 2 and higher) that generates ~50 percent duty cycle clocks, master clock resynchronization logic, and deglitch logic. The outputs from each digital clock tree can be routed into the digital system interconnect and then brought back into the clock system as an input, allowing clock chaining of up to 32 bits.

6.1.4 USB Clock Domain

The USB clock domain is unique in that it operates largely asynchronously from the main clock network. The USB logic contains a synchronous bus interface to the chip, while running on an asynchronous clock to process USB data. The USB logic requires a 48 MHz frequency. This frequency can be generated from different sources, including DSI clock at 48 MHz or doubled value of 24 MHz from internal oscillator, DSI signal, or crystal oscillator.

Figure 6-13. SIO Reference for Input and Output

6.4.13 SIO as Comparator

This section applies only to SIO pins. The adjustable input level feature of the SIOs as explained in the Adjustable Input Level section can be used to construct a comparator. The threshold for the comparator is provided by the SIO's reference generator. The reference generator has the option to set the analog signal routed through the analog global line as threshold for the comparator. Note that a pair of SIO pins share the same threshold. The digital input path in Figure 6-10 on page 39 illustrates this functionality. In the figure, 'Reference level' is the analog signal routed through the analog global. The hysteresis feature can also be enabled for the input buffer of the SIO, which increases noise immunity for the comparator.

6.4.14 Hot Swap

This section applies only to SIO pins. SIO pins support 'hot swap' capability to plug into an application without loading the signals that are connected to the SIO pins even when no power is applied to the PSoC device. This allows the unpowered PSoC to maintain a high impedance load to the external device while also preventing the PSoC from being powered through a SIO pin's protection diode.

Powering the device up or down while connected to an operational I^2C bus may cause transient states on the SIO pins. The overall I^2C bus design should take this into account.

6.4.15 Over Voltage Tolerance

All I/O pins provide an over voltage tolerance feature at any operating $\rm V_{\rm DD}.$

- There are no current limitations for the SIO pins as they present a high impedance load to the external circuit where VDDIO ≤ V_{IN} ≤ 5.5 V.
- The GPIO pins must be limited to 100 µA using a current limiting resistor. GPIO pins clamp the pin voltage to approximately one diode above the VDDIO supply where VDDIO ≤ V_{IN} ≤ VDDA.
- In case of a GPIO pin configured for analog input/output, the analog voltage on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs.

A common application for this feature is connection to a bus such as I²C where different devices are running from different supply voltages. In the I²C case, the PSoC chip is configured into the Open Drain, Drives Low mode for the SIO pin. This allows an external pull-up to pull the I²C bus voltage above the PSoC pin supply. For example, the PSoC chip could operate at 1.8 V, and an external device could run from 5 V. Note that the SIO pin's V_{IH} and V_{IL} levels are determined by the associated VDDIO supply pin. The SIO pin must be in one of the following modes: 0 (high impedance analog), 1 (high impedance digital), or 4 (open drain drives low). See Figure 6-12 for details. Absolute maximum ratings for the device must be observed for all I/O pins.

6.4.16 Reset Configuration

While reset is active all I/Os are reset to and held in the High Impedance Analog state. After reset is released, the state can be reprogrammed on a port-by-port basis to pull-down or pull-up. To ensure correct reset operation, the port reset configuration data is stored in special nonvolatile registers. The stored reset data is automatically transferred to the port reset configuration registers at reset release.

6.4.17 Low-Power Functionality

In all low-power modes the I/O pins retain their state until the part is awakened and changed or reset. To awaken the part, use a pin interrupt, because the port interrupt logic continues to function in all low-power modes.

6.4.18 Special Pin Functionality

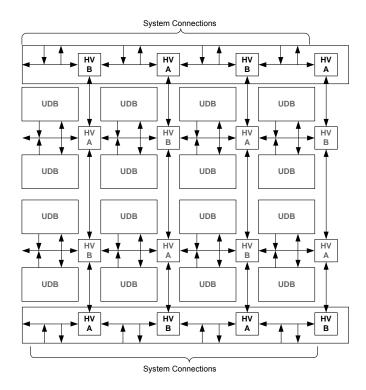
Some pins on the device include additional special functionality in addition to their GPIO or SIO functionality. The specific special function pins are listed in Pinouts on page 6. The special features are:

Digital

- 4- to 25-MHz crystal oscillator
- □ 32.768-kHz crystal oscillator
- Wake from sleep on I²C address match. Any pin can be used for I²C if wake from sleep is not required.
- JTAG interface pins
- SWD interface pins
- SWV interface pins
- External reset
- Analog
 - Deamp inputs and outputs
 - High current IDAC outputs
 - External reference inputs

6.4.19 JTAG Boundary Scan

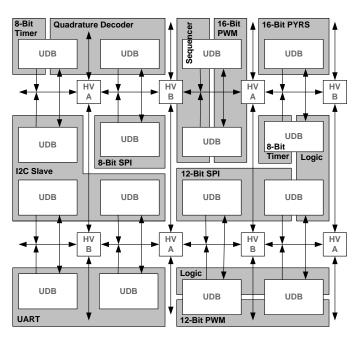
The device supports standard JTAG boundary scan chains on all I/O pins for board level test.


7.2.3.2 Clock Generation

Each subcomponent block of a UDB including the two PLDs, the datapath, and Status and Control, has a clock selection and control block. This promotes a fine granularity with respect to allocating clocking resources to UDB component blocks and allows unused UDB resources to be used by other functions for maximum system efficiency.

7.3 UDB Array Description

Figure 7-7 shows an example of a 16 UDB array. In addition to the array core, there are a DSI routing interfaces at the top and bottom of the array. Other interfaces that are not explicitly shown include the system interfaces for bus and clock distribution. The UDB array includes multiple horizontal and vertical routing channels each comprised of 96 wires. The wire connections to UDBs, at horizontal/vertical intersection and at the DSI interface are highly permutable providing efficient automatic routing in PSoC Creator. Additionally the routing allows wire by wire segmentation along the vertical and horizontal routing to further increase routing flexibility and capability.


Figure 7-7. Digital System Interface Structure

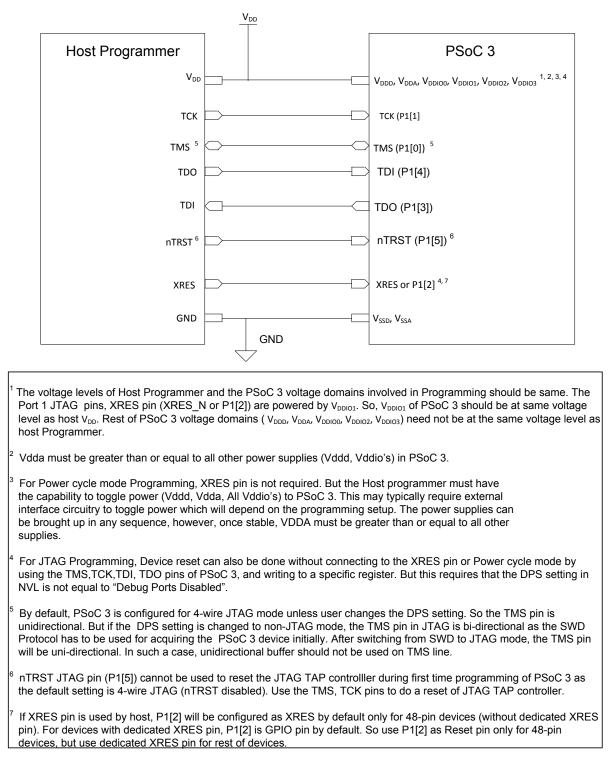
7.3.1 UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into a bank of 16 UDBs. The primary programmable resources of the UDB are two PLDs, one datapath and one status/control register. These resources are allocated independently, because they have independently selectable clocks, and therefore unused blocks are allocated to other unrelated functions. An example of this is the 8-bit timer in the upper left corner of the array. This function only requires one datapath in the UDB, and therefore the PLD resources may be allocated to another function. A function such as a Quadrature Decoder may require more PLD logic than one UDB can supply and in this case can utilize the unused PLD blocks in the 8-bit Timer UDB. Programmable resources in the UDB array are generally homogeneous so functions can be mapped to arbitrary boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4 DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and vertical routing channels at the top and bottom of the UDB array core. It provides general purpose programmable routing between device peripherals, including UDBs, I/Os, analog peripherals, interrupts, DMA and fixed function peripherals.


Figure 7-9 illustrates the concept of the digital system interconnect, which connects the UDB array routing matrix with other device peripherals. Any digital core or fixed function peripheral that needs programmable routing is connected to this interface.

Signals in this category include:

- Interrupt requests from all digital peripherals in the system.
- DMA requests from all digital peripherals in the system.
- Digital peripheral data signals that need flexible routing to I/Os.
- Digital peripheral data signals that need connections to UDBs.
- Connections to the interrupt and DMA controllers.
- Connection to I/O pins.
- Connection to analog system digital signals.

Figure 9-1. JTAG Interface Connections between PSoC 3 and Programmer

11.4.2 SIO

Table 11-11. SIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Vinmax	Maximum input voltage	All allowed values of V_{DDIO} and V_{DDD} , see Section 11.1	-	-	5.5	V
Vinref	Input voltage reference (Differential input mode)		0.5	-	$0.52 \times V_{DDIO}$	V
	Output voltage reference (Regulat	ed output mode)	L II			
Voutref		V _{DDIO} > 3.7	1	_	V _{DDIO} – 1	V
		V _{DDIO} < 3.7	1	_	- 5.5 - $0.52 \times V_{DDIO}$ - $V_{DDIO} - 1$ - $V_{DDIO} - 0.5$ - $V_{DDIO} - 0.5$ - $-$ - $-$ - $-$ - $-$ - $-$ - $-$ - $0.3 \times V_{DDIO}$ - 0.4 - 0.4 - 0.4 - 0.4 - 0.4 - 14 - 10 - 7 40 - 35 -	V
	Input voltage high threshold		L II			
V _{IH}	GPIO mode	CMOS input	$0.7 \times V_{DDIO}$	-	-	V
	Differential input mode ^[42]	Hysteresis disabled	SIO_ref + 0.2	- 5.5 1 - $0.52 \times V_{DDIO}$ 1 - $V_{DDIO} - 1$ N - $V_{DDIO} - 0.5$ N - $V_{DDIO} - 0.5$ N - $ N$ - $ N$ - $0.3 \times V_{DDIO}$ N - $ N$ - $0.3 \times V_{DDIO}$ N - 0.4 N - 0.4 N - 0.4 N - 14 n - 14 n - 7 <t< td=""><td>V</td></t<>	V	
	Input voltage low threshold	1	L I		-1	
V _{IL}	GPIO mode	CMOS input	_	_	$0.3 \times V_{DDIO}$	V
	Differential input mode ^[42]	Hysteresis disabled	_	_	SIO_ref - 0.2	V
	Output voltage high		I		-1	
N/	Unregulated mode	I _{OH} = 4 mA, V _{DDIO} = 3.3 V	V _{DDIO} – 0.4	_	-	V
V _{OH}	Regulated mode ^[42]	I _{OH} = 1 mA	SIO_ref-0.65	-	SIO_ref + 0.2	V
	Regulated mode ^[42]	I _{OH} = 0.1 mA	SIO_ref – 0.3	-	SIO_ref + 0.2	V
V _{OL}	Output voltage low	V _{DDIO} = 3.30 V, I _{OL} = 25 mA	_	-	$\begin{array}{c c} 5.5 \\ \hline 0.52 \times V_{DDIO} \\ \hline V_{DDIO} - 1 \\ \hline V_{DDIO} - 0.5 \\ \hline \\ \hline \\ - \\ \hline \\ 0.3 \times V_{DDIO} \\ \hline \\ SIO_ref - 0.2 \\ \hline \\ SIO_ref + 0.2 \\ \hline \\ SIO_ref + 0.2 \\ \hline \\ SIO_ref + 0.2 \\ \hline \\ 0.8 \\ \hline \\ 0.4 \\ \hline \\ 0.4 \\ \hline \\ 0.4 \\ \hline \\ 8.5 \\ \hline \\ 8.5 \\ \hline \\ 8.5 \\ \hline \\ 14 \\ 10 \\ \hline \\ 7 \\ - \\ \hline \\ - \\ -$	V
		V _{DDIO} = 3.30 V, I _{OL} = 20 mA	_	-	0.4	V
		V _{DDIO} = 1.80 V, I _{OL} = 4 mA	_	_	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V
Rpullup	Pull-up resistor		3.5	5.6	8.5	kΩ
Rpulldown	Pull-down resistor		3.5	5.6	8.5	kΩ
IIL	Input leakage current (Absolute value) ^[43]					
	V _{IH} ≤ Vddsio	25 °C, Vddsio = 3.0 V , V_{IH} = 3.0 V	_	_	14	nA
	V _{IH} > Vddsio	25 °C, Vddsio = 0 V, V _{IH} = 3.0 V	_	_	10	μA
C _{IN}	Input Capacitance ^[43]		_	_	7	pF
V _H	Input voltage hysteresis (Schmitt-Trigger) ^[43]	Single ended mode (GPIO mode)	-	40	-	mV
		Differential mode	_	35	-	mV
Idiode	Current through protection diode to V_{SSIO}		-	-	100	μA

42. See Figure 6-10 on page 39 and Figure 6-13 on page 43 for more information on SIO reference.
43. Based on device characterization (Not production tested).

Figure 11-17. SIO Output High Voltage and Current, Unregulated Mode

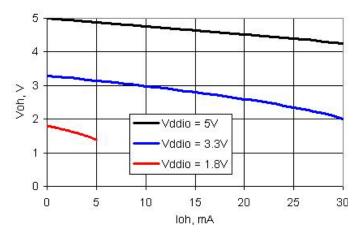


Figure 11-19. SIO Output High Voltage and Current, Regulated Mode

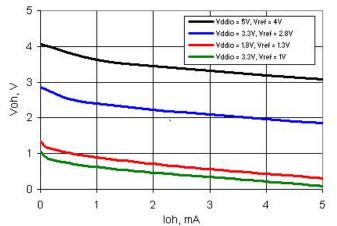


 Table 11-12.
 SIO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
TriseF	Rise time in fast strong mode (90/10%) ^[44]	Cload = 25 pF, V _{DDIO} = 3.3 V	-	-	12	ns
TfallF	Fall time in fast strong mode (90/10%) ^[44]	Cload = 25 pF, V _{DDIO} = 3.3 V	-	_	12	ns
TriseS	Rise time in slow strong mode (90/10%) ^[44]	Cload = 25 pF, V _{DDIO} = 3.0 V	-	_	75	ns
TfallS	Fall time in slow strong mode (90/10%) ^[44]	Cload = 25 pF, V_{DDIO} = 3.0 V	Ι	_	60	ns

Figure 11-18. SIO Output Low Voltage and Current, Unregulated Mode

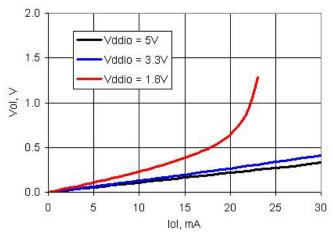
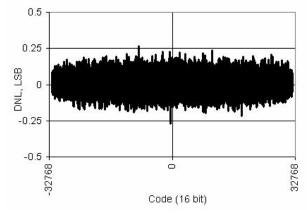
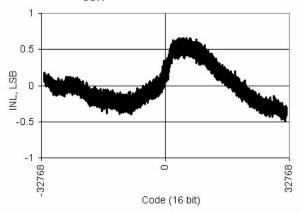




Figure 11-37. Delta-sigma ADC DNL vs Output Code, 16-bit, 48 ksps, 25 $^\circ C$ V_{DDA} = 3.3 V

Figure 11-38. Delta-sigma ADC INL vs Output Code, 16-bit, 48 ksps, 25 °C V_{DDA} = 3.3 V

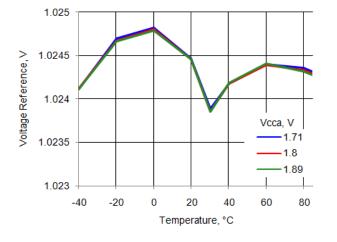
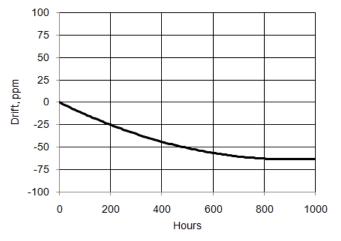

11.5.3 Voltage Reference

Table 11-28. Voltage Reference Specifications


See also ADC external reference specifications in Section 11.5.2.

Parameter	Description	Conditions		Min	Тур	Max	Units
V _{REF} ^[51]	Precision reference voltage	Initial trimming, 25 °C		1.023 (-0.1%)	1.024	1.025 (+0.1%)	V
	After typical PCB assembly,		–40 °C	-	±0.5	-	%
	post reflow		25 °C	-	±0.2	-	%
			85 °C	-	±0.2	_	%
	Temperature drift ^[52]	Box method		-	-	30	ppm/°C
	Long term drift			-	100	-	ppm/khr
	Thermal cycling drift (stability) ^[52, 53]			-	100	-	ppm

Figure 11-39. Voltage Reference vs. Temperature and V_{CCA}

Figure 11-40. Voltage Reference Long-Term Drift

Notes

51. V_{REF} is measured after packaging, and thus accounts for substrate and die attach stresses

52. Based on device characterization (Not production tested).

53. After eight full cycles between -40 °C and 100 °C.

Figure 11-43. IDAC DNL vs Input Code, Range = 255 $\mu\text{A},$ Source Mode



Figure 11-45. IDAC INL vs Temperature, Range = 255 $\mu A,$ High speed mode

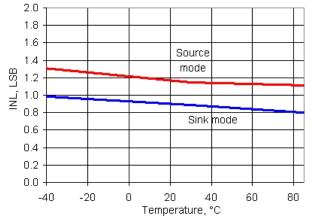


Figure 11-47. IDAC Full Scale Error vs Temperature, Range = 255 μA, Source Mode

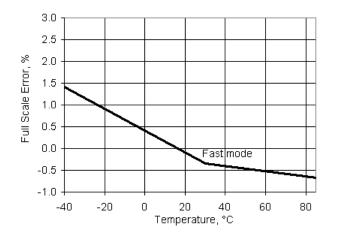


Figure 11-44. IDAC DNL vs Input Code, Range = 255 μ A, Sink Mode

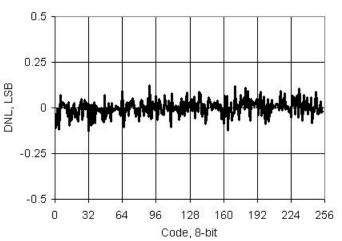
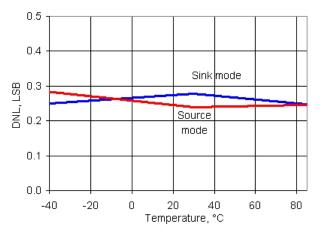
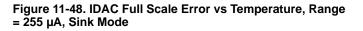
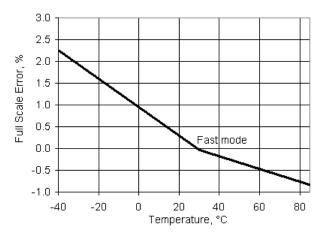
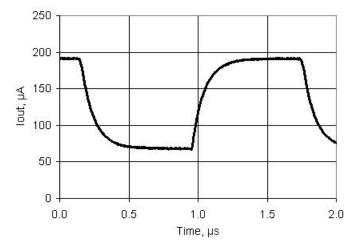
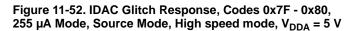
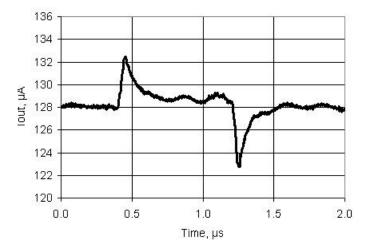
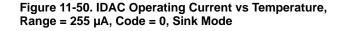





Figure 11-46. IDAC DNL vs Temperature, Range = 255 μ A, High speed mode


400 350 Fast mode Operating Current, µA 300 250 200 150 100 Slow mode 50 0 0 40 60 80 -40 -20 20 Temperature, °C


Figure 11-49. IDAC Operating Current vs Temperature, Range = 255 μ A, Code = 0, Source Mode


Table 11-33. IDAC AC Specifications


Parameter Description Conditions Min Тур Max Units Update rate 8 Msps FDAC _ — Settling time to 0.5 LSB Range = 31.875 µA or 255 µA, full _ 125 **T_{SETTLE}** ns scale transition, High speed mode, 600 Ω 15-pF load Range = 255 µA, source mode, 340 pA/sqrtHz Current noise _ _ High speed mode, $V_{DDA} = 5 V$, 10 kHz

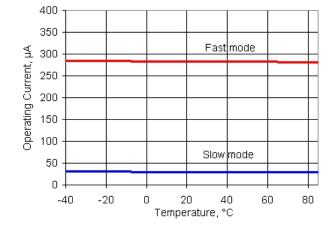

Figure 11-51. IDAC Step Response, Codes 0x40 - 0xC0, 255 μ A Mode, Source Mode, High speed mode, V_{DDA} = 5 V

Figure 11-55. VDAC INL vs Input Code, 1 V Mode

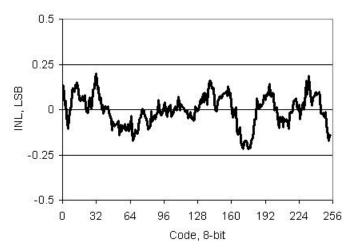


Figure 11-57. VDAC INL vs Temperature, 1 V Mode

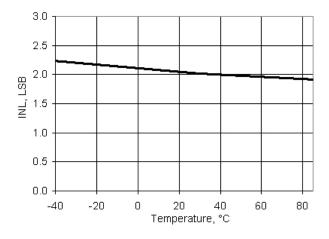


Figure 11-59. VDAC Full Scale Error vs Temperature, 1 V Mode

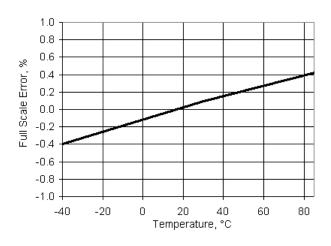


Figure 11-56. VDAC DNL vs Input Code, 1 V Mode

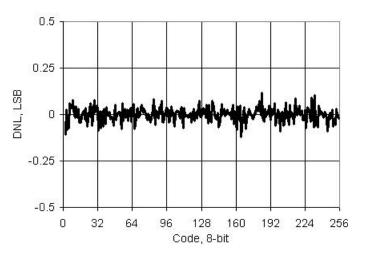


Figure 11-58. VDAC DNL vs Temperature, 1 V Mode

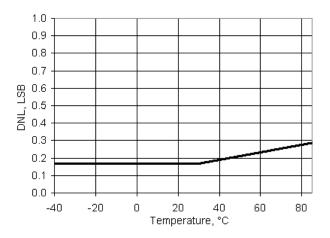
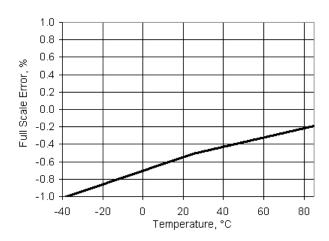



Figure 11-60. VDAC Full Scale Error vs Temperature, 4 V Mode

Table 11-41. PGA AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
BW1	–3 dB bandwidth	Power mode = high, gain = 1, input = 100 mV peak-to-peak	6.7	8	-	MHz
SR1	Slew rate	Power mode = high, gain = 1, 20% to 80%	3	-	-	V/µs
e _n	Input noise density	Power mode = high, V _{DDA} = 5 V, at 100 kHz	-	43	-	nV/sqrtHz

Figure 11-68. Bandwidth vs. Temperature, at Different Gain Settings, Power Mode = High

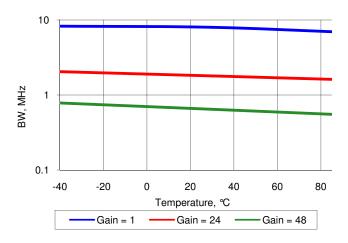
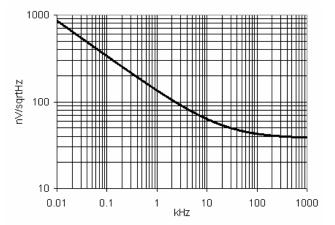



Figure 11-69. Noise vs. Frequency, $V_{DDA} = 5 V$, Power Mode = High

11.5.11 Temperature Sensor

Table 11-42. Temperature Sensor Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Temp sensor accuracy	Range: –40 °C to +85 °C	_	±5	-	°C

11.5.12 LCD Direct Drive

Table 11-43. LCD Direct Drive DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{CC}	LCD system operating current	Device sleep mode with wakeup at 400-Hz rate to refresh LCDs, bus clock = 3 MHz, $V_{DDIO} = V_{DDA} = 3 V$, 4 commons, 16 segments, 1/4 duty cycle, 50 Hz frame rate, no glass connected	_	38	-	μΑ
I _{CC_SEG}	Current per segment driver	Strong drive mode	-	260	-	μA
V _{BIAS}	LCD bias range (V _{BIAS} refers to the main output voltage(V0) of LCD DAC)	$V_{DDA} \geq 3~V$ and $V_{DDA} \geq V_{BIAS}$	2	-	5	V
	LCD bias step size	$V_{DDA} \ge 3 \text{ V} \text{ and } V_{DDA} \ge V_{BIAS}$	-	9.1 × V _{DDA}	-	mV
	LCD capacitance per segment/common driver	Drivers may be combined	-	500	5000	pF
	Long term segment offset		-	-	20	mV
I _{OUT}	Output drive current per segment driver)	V _{DDIO} = 5.5V, strong drive mode	355	-	710	μA

11.6.2 Counter

The following specifications apply to the Timer/Counter/PWM peripheral, in counter mode. Counters can also be implemented in UDBs; for more information, see the Counter component data sheet in PSoC Creator.

Table 11-47. Counter DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit counter, at listed input clock frequency	-	-	-	μA
	3 MHz		-	15	_	μA
	12 MHz		-	60	_	μA
	48 MHz		-	260	-	μA
	67 MHz		-	350	-	μA

Table 11-48. Counter AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Operating frequency		DC	-	67.01	MHz
	Capture pulse		15	-	-	ns
	Resolution		15	-	-	ns
	Pulse width		15	-	-	ns
	Pulse width (external)		30			ns
	Enable pulse width		15	-	-	ns
	Enable pulse width (external)		30	-	-	ns
	Reset pulse width		15	-	-	ns
	Reset pulse width (external)		30	-	-	ns

11.6.3 Pulse Width Modulation

The following specifications apply to the Timer/Counter/PWM peripheral, in PWM mode. PWM components can also be implemented in UDBs; for more information, see the PWM component data sheet in PSoC Creator.

Table 11-49. PWM DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit PWM, at listed input clock frequency	-	-	-	μA
	3 MHz		_	15	-	μA
	12 MHz		-	60	-	μA
	48 MHz		_	260	-	μA
	67 MHz		-	350	_	μA

Table 11-50. Pulse Width Modulation (PWM) AC Specifications

Description	Conditions	Min	Тур	Max	Units
Operating frequency		DC	_	67.01	MHz
Pulse width		15	-	_	ns
Pulse width (external)		30	-	-	ns
Kill pulse width		15	_	_	ns
Kill pulse width (external)		30	-	_	ns
Enable pulse width		15	-	-	ns
Enable pulse width (external)		30	_	_	ns
Reset pulse width		15	-	-	ns
Reset pulse width (external)		30	-	-	ns
	Operating frequency Pulse width Pulse width (external) Kill pulse width Kill pulse width (external) Enable pulse width Enable pulse width (external) Reset pulse width	Operating frequency Pulse width Pulse width (external) Kill pulse width Kill pulse width (external) Enable pulse width (external) Enable pulse width (external) Reset pulse width	Operating frequencyDCPulse width15Pulse width (external)30Kill pulse width15Kill pulse width (external)30Enable pulse width15Enable pulse width (external)30Reset pulse width15	Operating frequencyDC-Pulse width15-Pulse width (external)30-Kill pulse width15-Kill pulse width (external)30-Enable pulse width15-Enable pulse width (external)30-Reset pulse width15-Reset pulse width15-	Operating frequencyDC-67.01Pulse width15Pulse width (external)30Kill pulse width15Kill pulse width (external)30Enable pulse width (external)30Enable pulse width (external)30Reset pulse width (external)30Reset pulse width (external)30

11.6.4 P²C

Table 11-51. Fixed I²C DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	Enabled, configured for 100 kbps	-	-	250	μA
	-	Enabled, configured for 400 kbps	-	-	260	μA
	-	Wake from sleep mode	-	-	30	μA

Table 11-52. Fixed I²C AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate		-	-	1	Mbps

11.6.5 Controller Area Network

Table 11-53. CAN DC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	Block current consumption		-	_	200	μA

Table 11-54. CAN AC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate	Minimum 8 MHz clock	-	-	1	Mbit

11.6.6 Digital Filter Block

Table 11-55. DFB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	DFB operating current	64-tap FIR at F _{DFB}				
		500 kHz (6.7 ksps)	-	0.16	0.27	mA
		1 MHz (13.4 ksps)	-	0.33	0.53	mA
		10 MHz (134 ksps)	-	3.3	5.3	mA
		48 MHz (644 ksps)	-	15.7	25.5	mA
		67 MHz (900 ksps)	_	21.8	35.6	mA

Table 11-56. DFB AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DFB}	DFB operating frequency		DC	-	67.01	MHz

11.7.2 EEPROM

Table 11-61. EEPROM DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Erase and program voltage		1.71	1	5.5	V

Table 11-62. EEPROM AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{WRITE}	Single row erase/write cycle time		-	10	20	ms
	retention period measured from last erase cycle	Average ambient temp, T _A ≤ 25 °C, 1M erase/program cycles	20	-	-	years
		Average ambient temp, T _A ≤ 55 °C, 100 K erase/program cycles	20	_	-	
		Average ambient temp. T _A ≤ 85 °C, 10 K erase/program cycles	10	_	-	

11.7.3 Nonvolatile Latches (NVL))

Table 11-63. NVL DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Erase and program voltage	V _{DDD} pin	1.71	-	5.5	V

Table 11-64. NVL AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	NVL endurance	Programmed at 25 °C	1K	-	_	program/erase cycles
		Programmed at 0 °C to 70 °C	100	-	_	program/erase cycles
	NVL data retention time	Average ambient temp. $T_A \le 55 \degree C$	20	-	_	years
		Average ambient temp. T _A ≤ 85 °C	10	-		years

11.7.4 SRAM

Table 11-65. SRAM DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
V _{SRAM}	SRAM retention voltage		1.2	1		V

Table 11-66. SRAM AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{SRAM}	SRAM operating frequency		DC	-	67.01	MHz

11.8 PSoC System Resources

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.8.1 POR with Brown Out

For brown out detect in regulated mode, V_{DDD} and V_{DDA} must be \geq 2.0 V. Brown out detect is not available in externally regulated mode.

Table 11-69. Precise Low-Voltage Reset (PRES) with Brown Out DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
PRESR	Rising trip voltage	Factory trim	1.64	_	1.68	V
PRESF	Falling trip voltage		1.62	-	1.66	V

Table 11-70. Power On Reset (POR) with Brown Out AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
PRES_TR	Response time		-	_	0.5	μs
	V _{DDD} /V _{DDA} droop rate	Sleep mode	-	5	-	V/sec

11.8.2 Voltage Monitors

Table 11-71. Voltage Monitors DC Specifications

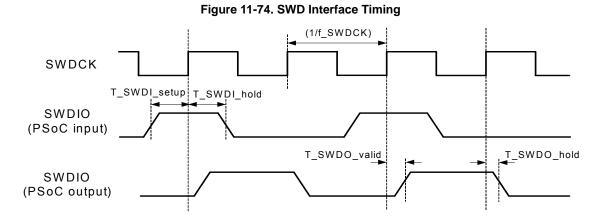

Parameter	Description	Conditions	Min	Тур	Max	Units
LVI	Trip voltage					
	LVI_A/D_SEL[3:0] = 0000b		1.68	1.73	1.77	V
	LVI_A/D_SEL[3:0] = 0001b		1.89	1.95	2.01	V
	LVI_A/D_SEL[3:0] = 0010b		2.14	2.20	2.27	V
	LVI_A/D_SEL[3:0] = 0011b		2.38	2.45	2.53	V
	LVI_A/D_SEL[3:0] = 0100b		2.62	2.71	2.79	V
	LVI_A/D_SEL[3:0] = 0101b		2.87	2.95	3.04	V
	LVI_A/D_SEL[3:0] = 0110b		3.11	3.21	3.31	V
	LVI_A/D_SEL[3:0] = 0111b		3.35	3.46	3.56	V
	LVI_A/D_SEL[3:0] = 1000b		3.59	3.70	3.81	V
	LVI_A/D_SEL[3:0] = 1001b		3.84	3.95	4.07	V
	LVI_A/D_SEL[3:0] = 1010b		4.08	4.20	4.33	V
	LVI_A/D_SEL[3:0] = 1011b		4.32	4.45	4.59	V
	LVI_A/D_SEL[3:0] = 1100b		4.56	4.70	4.84	V
	LVI_A/D_SEL[3:0] = 1101b		4.83	4.98	5.13	V
	LVI_A/D_SEL[3:0] = 1110b		5.05	5.21	5.37	V
	LVI_A/D_SEL[3:0] = 1111b		5.30	5.47	5.63	V
HVI	Trip voltage		5.57	5.75	5.92	V

Table 11-72. Voltage Monitors AC Specifications

Parameter		Conditions	Min	Тур	Max	Units
	Response time ^[68]		-	-	1	μs

11.8.5 SWD Interface

Table 11-75. SWD Interface AC Specifications^[71]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_SWDCK	SWDCLK frequency	$3.3~V \le V_{DDD} \le 5~V$	_	_	14 ^[72]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V}$	-	_	7 ^[72]	MHz
		1.71 V \leq V _{DDD} < 3.3 V, SWD over USBIO pins	-	-	5.5 ^[72]	MHz
T_SWDI_setup	SWDIO input setup before SWDCK high	T = 1/f_SWDCK max	T/4	-	-	
T_SWDI_hold	SWDIO input hold after SWDCK high	T = 1/f_SWDCK max	T/4	-	-	
T_SWDO_valid	SWDCK high to SWDIO output	T = 1/f_SWDCK max	-	_	2T/5	

11.8.6 SWV Interface

Table 11-76. SWV Interface AC Specifications^[71]

Parameter	Description	Conditions	Min	Тур	Max	Units
	SWV mode SWV bit rate		_	-	33	Mbit

71. Based on device characterization (Not production tested).

72. f_SWDCK must also be no more than 1/3 CPU clock frequency.

11.9.4 kHz External Crystal Oscillator

Table 11-83. kHzECO DC Specifications^[78]

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{CC}	Operating current	Low-power mode; CL = 6 pF	-	0.25	1.0	μA
DL	Drive level		-	-	1	μW

Table 11-84. kHzECO AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F	Frequency		_	32.768	_	kHz
T _{ON}	Startup time	High power mode	_	1	_	S

11.9.5 External Clock Reference

Table 11-85. External Clock Reference AC Specifications^[78]

Parameter	Description	Conditions	Min	Тур	Max	Units
	External frequency range		0	_	33	MHz
	Input duty cycle range	Measured at V _{DDIO} /2	30	50	70	%
	Input edge rate	V _{IL} to V _{IH}	0.51	_	_	V/ns

11.9.6 Phase-Locked Loop

Table 11-86. PLL DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	PLL operating current	In = 3 MHz, Out = 67 MHz	_	400	_	μA
		In = 3 MHz, Out = 24 MHz	_	200	_	μA

Table 11-87. PLL AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Fpllin	PLL input frequency ^[79]		1	-	48	MHz
	PLL intermediate frequency ^[80]	Output of prescaler	1	-	3	MHz
Fpllout	PLL output frequency ^[79]		24	-	67	MHz
	Lock time at startup		-	-	250	μs
Jperiod-rms	Jitter (rms) ^[78]		_	_	250	ps

78. Based on device characterization (Not production tested).

79. This specification is guaranteed by testing the PLL across the specified range using the IMO as the source for the PLL. 80. PLL input divider, Q, must be set so that the input frequency is divided down to the intermediate frequency range. Value for Q ranges from 1 to 16.

Notes

Table 14-1. Acronyms Used in this Document (continued)

Acronym	Description
PHUB	peripheral hub
PHY	physical layer
PICU	port interrupt control unit
PLA	programmable logic array
PLD	programmable logic device, see also PAL
PLL	phase-locked loop
PMDD	package material declaration data sheet
POR	power-on reset
PRES	precise low-voltage reset
PRS	pseudo random sequence
PS	port read data register
PSoC [®]	Programmable System-on-Chip™
PSRR	power supply rejection ratio
PWM	pulse-width modulator
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RTL	register transfer language
RTR	remote transmission request
RX	receive
SAR	successive approximation register
SC/CT	switched capacitor/continuous time
SCL	I ² C serial clock
SDA	l ² C serial data
S/H	sample and hold
SINAD	signal to noise and distortion ratio
SIO	special input/output, GPIO with advanced features. See GPIO.
SOC	start of conversion

Table 14-1. Acronyms Used in this Document (continued)

Acronym	Description
SOF	start of frame
SPI	Serial Peripheral Interface, a communications protocol
SR	slew rate
SRAM	static random access memory
SRES	software reset
SWD	serial wire debug, a test protocol
SWV	single-wire viewer
TD	transaction descriptor, see also DMA
THD	total harmonic distortion
TIA	transimpedance amplifier
TRM	technical reference manual
TTL	transistor-transistor logic
ТХ	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UDB	universal digital block
USB	Universal Serial Bus
USBIO	USB input/output, PSoC pins used to connect to a USB port
VDAC	voltage DAC, see also DAC, IDAC
WDT	watchdog timer
WOL	write once latch, see also NVL
WRES	watchdog timer reset
XRES	external reset I/O pin
XTAL	crystal

15. Reference Documents

PSoC® 3, PSoC® 5 Architecture TRM PSoC® 3 Registers TRM

17. Revision History

Revision	ECN	Submission Date	Orig. of Change	Description of Change
**	571504	See ECN	HMT	New data sheet for new device Part Number family.
*A	754416	See ECN	HMT	Prepare Preliminary for PR1.
*В	2253366	See ECN	DSG	Prepare Preliminary2 for PR3total rewrite.
*C	2350209	See ECN	DSG	Minor change: Added "Confidential" watermark. Corrected typo on 68QFN pinout: pin 13 XREF to XRES.
*D	2481747	See ECN	SFV	Changed part numbers and data sheet title.
*E	2521877	See ECN	DSG	Prelim3 release-extensive spec, writing, and formatting changes
۴F	2660161	02/16/09	GDK	Reorganized content to be consistent with the TRM. Added Xdata Space Access SFRs and DAC sections. Updated Boost Converter section and Conversion Signals section. Classified Ordering Information according to CP speed; added information on security features and ROHS compliance Added a section on XRES Specifications under Electrical Specification. Updated Analog Subsystem and CY8C35/55 Architecture block diagrams. Updated Electrical Specifications. Renamed CyDesigner as PSoC Creator
*G	2712468	05/29/09	MKEA	Updates to Electrical Specifications. Added Analog Routing section Updates to Ordering Information table
*H	2758970	09/02/09	MKEA	Updated Part Numbering Conventions. Added Section 11.7.5 (EMIF Figures and Tables). Updated GPIO and SIO AC specifications. Updated XRES Pin Description and Xdata Address Map specifications. Updated DFB and Comparator specifications. Updated PHUB features section and RTC in slee mode. Updated IDAC and VDAC DC and Analog Global specifications Updated USBIO AC and Delta Sigma ADC specifications. Updated PPOR an Voltage Monitors DC specifications. Updated Drive Mode diagram Added 48-QFN Information. Updated other electrical specifications
*	2824546	12/09/09	MKEA	Updated I2C section to reflect 1 Mbps. Updated Table 11-6 and 11-7 (Boost AC and DC specs); also added Shottky Diode specs. Changed current for sleep/hibernate mode to include SIO; Added footnote to analog global specs Updated Figures 1-1, 6-2, 7-14, and 8-1. Updated Table 6-2 and Table 6-3 (Hibernate and Sleep rows) and Power Modes section. Updated GPIO and SIA AC specifications. Updated Gain error in IDAC and VDAC specifications. Updated description of V _{DDA} spec in Table 11-1 and removed GPIO Clamp Current parameter. Updated number of UDBs on page 1. Moved FILO from ILO DC to AC table. Added PCB Layout and PCB Schematic diagrams. Updated Fgpioout spec (Table 11-9). Added duty cycle frequency in PLL AC spec table. Added note for Sleep and Hibernate modes and Active Mode spec in Table 11-2. Linked URL in Section 10.3 to PSoC Creator site. Updated Ja and Jc values in Table 13-1. Updated Single Sample Mode and Fast FIR Mode sections. Updated Input Resistance specification in Del-Sig ADC table. Added Tio_init parameter. Updated PGA and UGB AC Specs. Removed SPC ADC. Updated Boost Converter section. Added section 'SIO as Comparator'; updated Hysteresis spec (differential mode) in Table 11-10. Updated V _{BAT} condition and deleted Vstart parameter in Table 11-6. Added 'Bytes' column for Tables 4-1 to 4-5.
*ل	2873322	02/04/10	MKEA	Changed maximum value of PPOR_TR to '1'. Updated V _{BIAS} specification. Updated PCB Schematic. Updated Figure 8-1 and Figure 6-3. Updated Interrupt Vector table, Updated Sales links. Updated JTAG and SWD specifications. Removed Jp-p and Jperiod from ECO AC Spec table. Added note of sleep timer in Table 11-2. Updated ILO AC and DC specifications. Added Resolution parameter in VDAC and IDAC tables. Updated I _{OUT} typical and maximum values. Changed Temperature Sensor range to -40 °C to +85 °C Removed Latchup specification from Table 11-1.