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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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For more details on the peripherals see the “Example 
Peripherals” section on page 44 of this data sheet. For 
information on UDBs, DSI, and other digital blocks, see the 
“Digital Subsystem” section on page 44 of this data sheet.

PSoC’s analog subsystem is the second half of its unique 
configurability. All analog performance is based on a highly 
accurate absolute voltage reference with less than 0.1-percent 
error over temperature and voltage. The configurable analog 
subsystem includes:

 Analog muxes

 Comparators

 Voltage references

 Analog-to-digital converter (ADC)

 Digital-to-analog converters (DACs)

 Digital filter block (DFB)

All GPIO pins can route analog signals into and out of the device 
using the internal analog bus. This allows the device to interface 
up to 62 discrete analog signals. The heart of the analog 
subsystem is a fast, accurate, configurable delta-sigma ADC 
with these features:

 Less than 100 µV offset

 A gain error of 0.2 percent

 INL less than ±2 LSB

 DNL less than ±1 LSB

 SINAD better than 84 dB in 16-bit mode

This converter addresses a wide variety of precision analog 
applications, including some of the most demanding sensors. 
The output of the ADC can optionally feed the programmable 
DFB through the DMA without CPU intervention. You can 
configure the DFB to perform IIR and FIR digital filters and 
several user-defined custom functions. The DFB can implement 
filters with up to 64 taps. It can perform a 48-bit 
multiply-accumulate (MAC) operation in one clock cycle.

Four high-speed voltage or current DACs support 8-bit output 
signals at an update rate of up to 8 Msps. They can be routed 
out of any GPIO pin. You can create higher resolution voltage 
PWM DAC outputs using the UDB array. This can be used to 
create a pulse width modulated (PWM) DAC of up to 10 bits, at 
up to 48 kHz. The digital DACs in each UDB support PWM, PRS, 
or delta-sigma algorithms with programmable widths. In addition 
to the ADC, DACs, and DFB, the analog subsystem provides 
multiple:

 Uncommitted opamps

 Configurable switched capacitor/continuous time (SC/CT) 
blocks. These support: 
 Transimpedance amplifiers 
 Programmable gain amplifiers
 Mixers
 Other similar analog components

See the “Analog Subsystem” section on page 56 of this data 
sheet for more details.

PSoC’s 8051 CPU subsystem is built around a single cycle 
pipelined 8051 8-bit processor running at up to 67 MHz. The 
CPU subsystem includes a programmable nested vector 
interrupt controller, DMA controller, and RAM. PSoC’s nested 
vector interrupt controller provides low latency by allowing the 
CPU to vector directly to the first address of the interrupt service 
routine, bypassing the jump instruction required by other 
architectures. The DMA controller enables peripherals to 
exchange data without CPU involvement. This allows the CPU 
to run slower (saving power) or use those CPU cycles to improve 
the performance of firmware algorithms. The single cycle 8051 
CPU runs ten times faster than a standard 8051 processor. The 
processor speed itself is configurable, allowing you to tune active 
power consumption for specific applications.

PSoC’s nonvolatile subsystem consists of flash, byte-writeable 
EEPROM, and nonvolatile configuration options. It provides up 
to 64 KB of on-chip flash. The CPU can reprogram individual 
blocks of flash, enabling bootloaders. You can enable an error 
correcting code (ECC) for high reliability applications. A powerful 
and flexible protection model secures the user's sensitive 
information, allowing selective memory block locking for read 
and write protection. Up to 2 KB of byte-writeable EEPROM is 
available on-chip to store application data. Additionally, selected 
configuration options such as boot speed and pin drive mode are 
stored in nonvolatile memory. This allows settings to activate 
immediately after POR.

The three types of PSoC I/O are extremely flexible. All I/Os have 
many drive modes that are set at POR. PSoC also provides up 
to four I/O voltage domains through the VDDIO pins. Every GPIO 
has analog I/O, LCD drive[3], CapSense[4], flexible interrupt 
generation, slew rate control, and digital I/O capability. The SIOs 
on PSoC allow VOH to be set independently of Vddio when used 
as outputs. When SIOs are in input mode they are high 
impedance. This is true even when the device is not powered or 
when the pin voltage goes above the supply voltage. This makes 
the SIO ideally suited for use on an I2C bus where the PSoC may 
not be powered when other devices on the bus are. The SIO pins 
also have high current sink capability for applications such as 
LED drives. The programmable input threshold feature of the 
SIO can be used to make the SIO function as a general purpose 
analog comparator. For devices with Full-Speed USB the USB 
physical interface is also provided (USBIO). When not using 
USB these pins may also be used for limited digital functionality 
and device programming. All of the features of the PSoC I/Os are 
covered in detail in the “I/O System and Routing” section on 
page 37 of this data sheet.

The PSoC device incorporates flexible internal clock generators, 
designed for high stability and factory trimmed for high accuracy. 
The internal main oscillator (IMO) is the clock base for the 
system, and has 1-percent accuracy at 3 MHz. The IMO can be 
configured to run from 3 MHz up to 62 MHz. Multiple clock 
derivatives can be generated from the main clock frequency to 
meet application needs. The device provides a PLL to generate 
clock frequencies up to 67 MHz from the IMO, external crystal, 
or external reference clock. 

Notes
3. This feature on select devices only. See Ordering Information on page 123 for details.
4. GPIOs with opamp outputs are not recommended for use with CapSense. 
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4.4  DMA and PHUB

The PHUB and the DMA controller are responsible for data 
transfer between the CPU and peripherals, and also data 
transfers between peripherals. The PHUB and DMA also control 
device configuration during boot. The PHUB consists of:

 A central hub that includes the DMA controller, arbiter, and 
router

Multiple spokes that radiate outward from the hub to most 
peripherals

There are two PHUB masters: the CPU and the DMA controller. 
Both masters may initiate transactions on the bus. The DMA 
channels can handle peripheral communication without CPU 
intervention. The arbiter in the central hub determines which 
DMA channel is the highest priority if there are multiple requests.

4.4.1  PHUB Features

 CPU and DMA controller are both bus masters to the PHUB

 Eight multi-layer AHB bus parallel access paths (spokes) for 
peripheral access

 Simultaneous CPU and DMA access to peripherals located on 
different spokes

 Simultaneous DMA source and destination burst transactions 
on different spokes

 Supports 8-, 16-, 24-, and 32-bit addressing and data

4.4.2  DMA Features

 24 DMA channels

 Each channel has one or more transaction descriptors (TD) to 
configure channel behavior. Up to 128 total TDs can be defined

 TDs can be dynamically updated

 Eight levels of priority per channel

 Any digitally routable signal, the CPU, or another DMA channel, 
can trigger a transaction

 Each channel can generate up to two interrupts per transfer

 Transactions can be stalled or canceled

 Supports transaction size of infinite or 1 to 64 KB

 TDs may be nested and/or chained for complex transactions

4.4.3  Priority Levels

The CPU always has higher priority than the DMA controller 
when their accesses require the same bus resources. Due to the 
system architecture, the CPU can never starve the DMA. DMA 
channels of higher priority (lower priority number) may interrupt 
current DMA transfers. In the case of an interrupt, the current 
transfer is allowed to complete its current transaction. To ensure 
latency limits when multiple DMA accesses are requested 
simultaneously, a fairness algorithm guarantees an interleaved 
minimum percentage of bus bandwidth for priority levels 2 
through 7. Priority levels 0 and 1 do not take part in the fairness 
algorithm and may use 100 percent of the bus bandwidth. If a tie 
occurs on two DMA requests of the same priority level, a simple 
round robin method is used to evenly share the allocated 
bandwidth. The round robin allocation can be disabled for each 
DMA channel, allowing it to always be at the head of the line. 
Priority levels 2 to 7 are guaranteed the minimum bus bandwidth 
shown in Table 4-7 after the CPU and DMA priority levels 0 and 
1 have satisfied their requirements. 

When the fairness algorithm is disabled, DMA access is granted 
based solely on the priority level; no bus bandwidth guarantees 
are made.

4.4.4  Transaction Modes Supported

The flexible configuration of each DMA channel and the ability to 
chain multiple channels allow the creation of both simple and 
complex use cases. General use cases include, but are not 
limited to:

4.4.4.1 Simple DMA

In a simple DMA case, a single TD transfers data between a 
source and sink (peripherals or memory location). The basic 
timing diagrams of DMA read and write cycles are shown in 
Figure 4-1. For more description on other transfer modes, refer 
to the Technical Reference Manual.

Table 4-6.  PHUB Spokes and Peripherals

PHUB Spokes Peripherals

0 SRAM

1 IOs, PICU, EMIF

2 PHUB local configuration, Power manager, 
Clocks, IC, SWV, EEPROM, Flash 
programming interface

3 Analog interface and trim, Decimator

4 USB, CAN, I2C, Timers, Counters, and PWMs

5 DFB

6 UDBs group 1

7 UDBs group 2

Table 4-7.  Priority Levels

Priority Level % Bus Bandwidth

0 100.0

1 100.0

2 50.0

3 25.0

4 12.5

5 6.2

6 3.1

7 1.5
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5.6  External Memory Interface

CY8C38 provides an EMIF for connecting to external memory 
devices. The connection allows read and write accesses to 
external memories. The EMIF operates in conjunction with 
UDBs, I/O ports, and other hardware to generate external 
memory address and control signals. At 33 MHz, each memory 
access cycle takes four bus clock cycles. Figure 5-1 is the EMIF 
block diagram. The EMIF supports synchronous and 
asynchronous memories. The CY8C38 supports only one type 
of external memory device at a time. External memory can be 
accessed through the 8051 xdata space; up to 24 address bits 
can be used. See “xdata Space” section on page 27. The 
memory can be 8 or 16 bits wide. 

Figure 5-1. EMIF Block Diagram
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Figure 6-3. 32kHzECO Block Diagram

It is recommended that the external 32.768-kHz watch crystal 
have a load capacitance (CL) of 6 pF or 12.5 pF. Check the 
crystal manufacturer's datasheet. The two external capacitors, 
CL1 and CL2, are typically of the same value, and their total 
capacitance, CL1CL2 / (CL1 + CL2), including pin and trace 
capacitance, should equal the crystal CL value. For more 
information, refer to application note AN54439: PSoC 3 and 
PSoC 5 External Oscillators. See also pin capacitance 
specifications in the “GPIO” section on page 80.

6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock 
oscillators connected to I/O. The oscillators can also be 
generated within the device in the digital system and UDBs. 

While the primary DSI clock input provides access to all clocking 
resources, up to eight other DSI clocks (internally or externally 
generated) may be routed directly to the eight digital clock 
dividers. This is only possible if there are multiple precision clock 
sources.

6.1.3  Clock Distribution 

All seven clock sources are inputs to the central clock distribution 
system. The distribution system is designed to create multiple 
high precision clocks. These clocks are customized for the 
design’s requirements and eliminate the common problems 
found with limited resolution prescalers attached to peripherals. 

The clock distribution system generates several types of clock 
trees.

 The master clock is used to select and supply the fastest clock 
in the system for general clock requirements and clock 
synchronization of the PSoC device. 

 Bus clock 16-bit divider uses the master clock to generate the 
bus clock used for data transfers. Bus clock is the source clock 
for the CPU clock divider.

 Eight fully programmable 16-bit clock dividers generate digital 
system clocks for general use in the digital system, as 
configured by the design’s requirements. Digital system clocks 
can generate custom clocks derived from any of the seven 
clock sources for any purpose. Examples include baud rate 
generators, accurate PWM periods, and timer clocks, and 
many others. If more than eight digital clock dividers are 
required, the UDBs and fixed function timer/counter/PWMs can 
also generate clocks. 

 Four 16-bit clock dividers generate clocks for the analog system 
components that require clocking, such as ADC and mixers. 
The analog clock dividers include skew control to ensure that 
critical analog events do not occur simultaneously with digital 
switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit 
clock divider (divide by 2 and higher) that generates ~50 percent 
duty cycle clocks, master clock resynchronization logic, and 
deglitch logic. The outputs from each digital clock tree can be 
routed into the digital system interconnect and then brought back 
into the clock system as an input, allowing clock chaining of up 
to 32 bits. 

6.1.4  USB Clock Domain 

The USB clock domain is unique in that it operates largely 
asynchronously from the main clock network. The USB logic 
contains a synchronous bus interface to the chip, while running 
on an asynchronous clock to process USB data. The USB logic 
requires a 48 MHz frequency. This frequency can be generated 
from different sources, including DSI clock at 48 MHz or doubled 
value of 24 MHz from internal oscillator, DSI signal, or crystal 
oscillator.

Xo
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32 kHz 
Crystal Osc

XCLK32K

32 kHz 
crystal

Capacitors

External 
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Figure 6-5. Power Mode Transitions

6.2.1.1 Active Mode 

Active mode is the primary operating mode of the device. When 
in active mode, the active configuration template bits control 
which available resources are enabled or disabled. When a 
resource is disabled, the digital clocks are gated, analog bias 
currents are disabled, and leakage currents are reduced as 
appropriate. User firmware can dynamically control subsystem 
power by setting and clearing bits in the active configuration 
template. The CPU can disable itself, in which case the CPU is 
automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always 
returned to active, and the CPU is automatically enabled, 
regardless of its template settings. Active mode is the default 
global power mode upon boot. 

6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate 
active mode, fewer subsystems are enabled, to reduce power 
consumption. One possible configuration is to turn off the CPU 
and flash, and run peripherals at full speed.

6.2.1.3 Sleep Mode 

Sleep mode reduces power consumption when a resume time of 
15 µs is acceptable. The wake time is used to ensure that the 
regulator outputs are stable enough to directly enter active 
mode.

6.2.1.4 Hibernate Mode 

In hibernate mode nearly all of the internal functions are 
disabled. Internal voltages are reduced to the minimal level to 
keep vital systems alive. Configuration state is preserved in 
hibernate mode and SRAM memory is retained. GPIOs 
configured as digital outputs maintain their previous values and 
external GPIO pin interrupt settings are preserved. The device 
can only return from hibernate mode in response to an external 
I/O interrupt. The resume time from hibernate mode is less than 
100 µs.

To achieve an extremely low current, the hibernate regulator has 
limited capacity. This limits the frequency of any signal present 
on the input pins - no GPIO should toggle at a rate greater than 
10 kHz while in hibernate mode. If pins must be toggled at a high 
rate while in a low power mode, use sleep mode instead.

6.2.1.5 Wakeup Events

Wakeup events are configurable and can come from an interrupt 
or device reset. A wakeup event restores the system to active 
mode. Firmware enabled interrupt sources include internally 
generated interrupts, power supervisor, central timewheel, and 
I/O interrupts. Internal interrupt sources can come from a variety 
of peripherals, such as analog comparators and UDBs. The 
central timewheel provides periodic interrupts to allow the 
system to wake up, poll peripherals, or perform real-time 
functions. Reset event sources include the external reset I/O pin 
(XRES), WDT, and precision reset (PRES). 

6.2.2  Boost Converter

Applications that use a supply voltage of less than 1.71 V, such
as solar panels or single cell battery supplies, may use the
on-chip boost converter to generate a minimum of 1.8 V supply
voltage. The boost converter may also be used in any system
that requires a higher operating voltage than the supply provides
such as driving 5.0 V LCD glass in a 3.3 V system. With the
addition of an inductor, Schottky diode, and capacitors, it
produces a selectable output voltage sourcing enough current to
operate the PSoC and other on-board components. 

The boost converter accepts an input voltage VBAT from 0.5 V to
3.6 V, and can start up with VBAT as low as 0.5 V. The converter
provides a user configurable output voltage of 1.8 to 5.0 V (VOUT)
in 100 mV increments. VBAT is typically less than VOUT; if VBAT is
greater than or equal to VOUT, then VOUT will be slightly less than
VBAT due to resistive losses in the boost converter. The block can
deliver up to 50 mA (IBOOST) depending on configuration to both
the PSoC device and external components. The sum of all
current sinks in the design including the PSoC device, PSoC I/O
pin loads, and external component loads must be less than the
IBOOST specified maximum current.
Four pins are associated with the boost converter: VBAT, VSSB,
VBOOST, and IND. The boosted output voltage is sensed at the
VBOOST pin and must be connected directly to the chip’s supply
inputs; VDDA, VDDD, and VDDIO if used to power the PSoC
device. 

The boost converter requires four components in addition to
those required in a non-boost design, as shown in Figure 6-6 on
page 34. A 22 µF capacitor (CBAT) is required close to the VBAT
pin to provide local bulk storage of the battery voltage and
provide regulator stability. A diode between the battery and VBAT
pin should not be used for reverse polarity protection because
the diodes forward voltage drop reduces the VBAT voltage.
Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH,
or 22 µH is required. The inductor value can be optimized to
increase the boost converter efficiency based on input voltage,
output voltage, temperature, and current. Inductor size is
determined by following the design guidance in this chapter and
electrical specifications. The inductor must be placed within 1 cm
of the VBAT and IND pins and have a minimum saturation
current of 750 mA. Between the IND and VBOOST pins, place a
Schottky diode within 1 cm of the pins. The Schottky diode shall
have a forward current rating of at least 1.0 A and a reverse
voltage of at least 20 V. Connect a 22-µF bulk capacitor
(CBOOST) close to VBOOST to provide regulator output
stability. It is important to sum the total capacitance connected to
the VBOOST pin and ensure the maximum CBOOST
specification is not exceeded. All capacitors must be rated for a
minimum of 10 V to minimize capacitive losses due to voltage
de-rating.
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Figure 6-10. SIO Input/Output Block Diagram

Figure 6-11. USBIO Block Diagram
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6.4.5  Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the 
system. All eight pins in each port interface to their own Port 
Interrupt Control Unit (PICU) and associated interrupt vector. 
Each pin of the port is independently configurable to detect rising 
edge, falling edge, both edge interrupts, or to not generate an 
interrupt. 

Depending on the configured mode for each pin, each time an 
interrupt event occurs on a pin, its corresponding status bit of the 
interrupt status register is set to ‘1’ and an interrupt request is 
sent to the interrupt controller. Each PICU has its own interrupt 
vector in the interrupt controller and the pin status register 
providing easy determination of the interrupt source down to the 
pin level.

Port pin interrupts remain active in all sleep modes allowing the 
PSoC device to wake from an externally generated interrupt. 
While level sensitive interrupts are not directly supported; UDB 
provide this functionality to the system when needed.

6.4.6  Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level 
for the default CMOS input thresholds or the optional LVTTL 
input thresholds. All input buffers incorporate Schmitt triggers for 
input hysteresis. Additionally, individual pin input buffers can be 
disabled in any drive mode.

6.4.7  I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the 
device and package. Each I/O supply must be less than or equal 
to the voltage on the chip’s analog (VDDA) pin. This feature 
allows users to provide different I/O voltage levels for different 
pins on the device. Refer to the specific device package pinout 
to determine VDDIO capability for a given port and pin. The SIO 
port pins support an additional regulated high output capability, 
as described in Adjustable Output Level.

6.4.8  Analog Connections

These connections apply only to GPIO pins. All GPIO pins may 
be used as analog inputs or outputs. The analog voltage present 
on the pin must not exceed the VDDIO supply voltage to which 
the GPIO belongs. Each GPIO may connect to one of the analog 
global busses or to one of the analog mux buses to connect any 
pin to any internal analog resource such as ADC or comparators. 
In addition, select pins provide direct connections to specific 
analog features such as the high current DACs or uncommitted 
opamps. 

6.4.9  CapSense

This section applies only to GPIO pins. All GPIO pins may be 
used to create CapSense buttons and sliders[15]. See the 
“CapSense” section on page 63 for more information. 

6.4.10  LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be 
used to generate Segment and Common drive signals for direct 
glass drive of LCD glass. See the “LCD Direct Drive” section on 
page 62 for details.

6.4.11  Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the 
ability to provide a regulated high output level for interface to 
external signals that are lower in voltage than the SIO’s 
respective VDDIO. SIO pins are individually configurable to 
output either the standard VDDIO level or the regulated output, 
which is based on an internally generated reference. Typically a 
voltage DAC (VDAC) is used to generate the reference (see 
Figure 6-13). The “DAC” section on page 64 has more details on 
VDAC use and reference routing to the SIO pins. Resistive 
pullup and pull-down drive modes are not available with SIO in 
regulated output mode.

6.4.12  Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support 
the standard CMOS and LVTTL input levels but also support a 
differential mode with programmable levels. SIO pins are 
grouped into pairs. Each pair shares a reference generator block 
which, is used to set the digital input buffer reference level for 
interface to external signals that differ in voltage from VDDIO. 
The reference sets the pins voltage threshold for a high logic 
level (see Figure 6-13). Available input thresholds are:

 0.5 VDDIO

 0.4 VDDIO

 0.5 VREF

 VREF

Typically a voltage DAC (VDAC) generates the VREF reference. 
“DAC” section on page 64 has more details on VDAC use and 
reference routing to the SIO pins.

Note
15. GPIOs with opamp outputs are not recommended for use with CapSense.
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7.2  Universal Digital Block

The UDB represents an evolutionary step to the next generation 
of PSoC embedded digital peripheral functionality. The 
architecture in first generation PSoC digital blocks provides 
coarse programmability in which a few fixed functions with a 
small number of options are available. The new UDB 
architecture is the optimal balance between configuration 
granularity and efficient implementation. A cornerstone of this 
approach is to provide the ability to customize the devices digital 
operation to match application requirements.

To achieve this, UDBs consist of a combination of uncommitted 
logic (PLD), structured logic (Datapath), and a flexible routing 
scheme to provide interconnect between these elements, I/O 
connections, and other peripherals. UDB functionality ranges 
from simple self contained functions that are implemented in one 
UDB, or even a portion of a UDB (unused resources are 
available for other functions), to more complex functions that 
require multiple UDBs. Examples of basic functions are timers, 
counters, CRC generators, PWMs, dead band generators, and 
communications functions, such as UARTs, SPI, and I2C. Also, 
the PLD blocks and connectivity provide full featured general 
purpose programmable logic within the limits of the available 
resources. 

Figure 7-2. UDB Block Diagram

The main component blocks of the UDB are:

 PLD blocks – There are two small PLDs per UDB. These blocks 
take inputs from the routing array and form registered or 
combinational sum-of-products logic. PLDs are used to 
implement state machines, state bits, and combinational logic 
equations. PLD configuration is automatically generated from 
graphical primitives.

 Datapath module – This 8-bit wide datapath contains structured 
logic to implement a dynamically configurable ALU, a variety 
of compare configurations and condition generation. This block 
also contains input/output FIFOs, which are the primary parallel 
data interface between the CPU/DMA system and the UDB.

 Status and control module – The primary role of this block is to 
provide a way for CPU firmware to interact and synchronize 
with UDB operation.

 Clock and reset module – This block provides the UDB clocks 
and reset selection and control.

7.2.1  PLD Module

The primary purpose of the PLD blocks is to implement logic 
expressions, state machines, sequencers, lookup tables, and 
decoders. In the simplest use model, consider the PLD blocks as 
a standalone resource onto which general purpose RTL is 
synthesized and mapped. The more common and efficient use 
model is to create digital functions from a combination of PLD 
and datapath blocks, where the PLD implements only the 
random logic and state portion of the function while the datapath 
(ALU) implements the more structured elements.

Figure 7-3. PLD 12C4 Structure

One 12C4 PLD block is shown in Figure 7-3. This PLD has 12 
inputs, which feed across eight product terms. Each product term 
(AND function) can be from 1 to 12 inputs wide, and in a given 
product term, the true (T) or complement (C) of each input can 
be selected. The product terms are summed (OR function) to 
create the PLD outputs. A sum can be from 1 to 8 product terms 
wide. The 'C' in 12C4 indicates that the width of the OR gate (in 
this case 8) is constant across all outputs (rather than variable 
as in a 22V10 device). This PLA like structure gives maximum 
flexibility and insures that all inputs and outputs are permutable 
for ease of allocation by the software tools. There are two 12C4 
PLDs in each UDB.
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7.2.2  Datapath Module

The datapath contains an 8-bit single cycle ALU, with associated compare and condition generation logic. This datapath block is 
optimized to implement embedded functions, such as timers, counters, integrators, PWMs, PRS, CRC, shifters and dead band 
generators and many others.

Figure 7-4. Datapath Top Level

7.2.2.1 Working Registers

The datapath contains six primary working registers, which are 
accessed by CPU firmware or DMA during normal operation.

7.2.2.2 Dynamic Configuration RAM

Dynamic configuration is the ability to change the datapath 
function and internal configuration on a cycle-by-cycle basis, 
under sequencer control. This is implemented using the 8-word 
× 16-bit configuration RAM, which stores eight unique 16-bit 
wide configurations. The address input to this RAM controls the 
sequence, and can be routed from any block connected to the 
UDB routing matrix, most typically PLD logic, I/O pins, or from 
the outputs of this or other datapath blocks.

ALU

The ALU performs eight general purpose functions. They are:
 Increment
 Decrement
 Add
 Subtract
 Logical AND
 Logical OR
 Logical XOR
 Pass, used to pass a value through the ALU to the shift register, 

mask, or another UDB register.
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Table 7-1.  Working Datapath Registers

Name Function Description

A0 and A1 Accumulators These are sources and sinks for 
the ALU and also sources for the 
compares.

D0 and D1 Data Registers These are sources for the ALU 
and sources for the compares.

F0 and F1 FIFOs These are the primary interface 
to the system bus. They can be a 
data source for the data registers 
and accumulators or they can 
capture data from the 
accumulators or ALU. Each FIFO 
is four bytes deep.
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Figure 8-2. CY8C38 Analog Interconnect
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The opamp and resistor array is programmable to perform 
various analog functions including

 Naked operational amplifier – Continuous mode

 Unity-gain buffer – Continuous mode

 PGA – Continuous mode

 Transimpedance amplifier (TIA) – Continuous mode

 Up/down mixer – Continuous mode

 Sample and hold mixer (NRZ S/H) – Switched cap mode

 First order analog to digital modulator – Switched cap mode

8.5.1  Naked Opamp

The Naked Opamp presents both inputs and the output for 
connection to internal or external signals. The opamp has a unity 
gain bandwidth greater than 6.0 MHz and output drive current up 
to 650 µA. This is sufficient for buffering internal signals (such as 
DAC outputs) and driving external loads greater than 7.5 kohms.

8.5.2  Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly 
connected to the inverting input for a gain of 1.00. It has a –3 dB 
bandwidth greater than 6.0 MHz.

8.5.3  PGA

The PGA amplifies an external or internal signal. The PGA can 
be configured to operate in inverting mode or noninverting mode. 
The PGA function may be configured for both positive and 
negative gains as high as 50 and 49 respectively. The gain is 
adjusted by changing the values of R1 and R2 as illustrated in 
Figure 8-8. The schematic in Figure 8-8 shows the configuration 
and possible resistor settings for the PGA. The gain is switched 
from inverting and non inverting by changing the shared select 
value of the both the input muxes. The bandwidth for each gain 
case is listed in Table 8-3.

Figure 8-8. PGA Resistor Settings

The PGA is used in applications where the input signal may not 
be large enough to achieve the desired resolution in the ADC, or 
dynamic range of another SC/CT block such as a mixer. The gain 
is adjustable at runtime, including changing the gain of the PGA 
prior to each ADC sample.

8.5.4  TIA

The Transimpedance Amplifier (TIA) converts an internal or 
external current to an output voltage. The TIA uses an internal 
feedback resistor in a continuous time configuration to convert 
input current to output voltage. For an input current Iin, the output 
voltage is VREF - Iin x Rfb, where VREF is the value placed on the 
non inverting input. The feedback resistor Rfb is programmable 
between 20 K and 1 M through a configuration register. 
Table 8-4 shows the possible values of Rfb and associated 
configuration settings.

Figure 8-9. Continuous Time TIA Schematic

The TIA configuration is used for applications where an external 
sensor's output is current as a function of some type of stimulus 
such as temperature, light, magnetic flux etc. In a common 
application, the voltage DAC output can be connected to the 
VREF TIA input to allow calibration of the external sensor bias 
current by adjusting the voltage DAC output voltage.

8.6  LCD Direct Drive

The PSoC LCD driver system is a highly configurable peripheral 
designed to allow PSoC to directly drive a broad range of LCD 
glass. All voltages are generated on chip, eliminating the need 
for external components. With a high multiplex ratio of up to 1/16, 
the CY8C38 family LCD driver system can drive a maximum of 
736 segments. The PSoC LCD driver module was also designed 
with the conservative power budget of portable devices in mind, 
enabling different LCD drive modes and power down modes to 
conserve power.

Table 8-3.  Bandwidth

Gain Bandwidth

1 6.0 MHz

24 340 kHz

48 220 kHz

50 215 kHz

R1 R2

20 k to 980 k

S

20 k or 40 k
1

0

1

0

Vin

Vref

Vref

Vin

Table 8-4.  Feedback Resistor Settings

Configuration Word Nominal Rfb (K)

000b 20

001b 30

010b 40

011b 60

100b 120

101b 250

110b 500

111b 1000

Vref
Vout

I in

R fb



PSoC® 3: CY8C38 Family Datasheet

Document Number: 001-11729 Rev. AF Page 64 of 140

8.9  DAC

The CY8C38 parts contain up to four Digital to Analog 
Convertors (DACs). Each DAC is 8-bit and can be configured for 
either voltage or current output. The DACs support CapSense, 
power supply regulation, and waveform generation. Each DAC 
has the following features:

 Adjustable voltage or current output in 255 steps

 Programmable step size (range selection)

 Eight bits of calibration to correct ± 25 percent of gain error

 Source and sink option for current output 

 High and low speed / power modes

 8 Msps conversion rate for current output

 1 Msps conversion rate for voltage output

Monotonic in nature

 Data and strobe inputs can be provided by the CPU or DMA, 
or routed directly from the DSI

 Dedicated low-resistance output pin for high-current mode

Figure 8-11. DAC Block Diagram

8.9.1  Current DAC

The current DAC (IDAC) can be configured for the ranges 0 to 
31.875 µA, 0 to 255 µA, and 0 to 2.04 mA. The IDAC can be 
configured to source or sink current.

8.9.2  Voltage DAC

For the voltage DAC (VDAC), the current DAC output is routed 
through resistors. The two ranges available for the VDAC are 0 
to 1.02 V and 0 to 4.08 V. In voltage mode any load connected 
to the output of a DAC should be purely capacitive (the output of 
the VDAC is not buffered).

8.10  Up/Down Mixer

In continuous time mode, the SC/CT block components are used 
to build an up or down mixer. Any mixing application contains an 
input signal frequency and a local oscillator frequency. The 
polarity of the clock, Fclk, switches the amplifier between 
inverting or noninverting gain. The output is the product of the 
input and the switching function from the local oscillator, with 
frequency components at the local oscillator plus and minus the 
signal frequency (Fclk + Fin and Fclk – Fin) and reduced-level 
frequency components at odd integer multiples of the local 
oscillator frequency. The local oscillator frequency is provided by 
the selected clock source for the mixer. 

Continuous time up and down mixing works for applications with 
input signals and local oscillator frequencies up to 1 MHz.

Figure 8-12. Mixer Configuration

8.11  Sample and Hold

The main application for a sample and hold, is to hold a value 
stable while an ADC is performing a conversion. Some 
applications require multiple signals to be sampled 
simultaneously, such as for power calculations (V and I).
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Figure 8-13. Sample and Hold Topology 
(1 and 2 are opposite phases of a clock)

8.11.1  Down Mixer

The SC/CT block can be used as a mixer to down convert an 
input signal. This circuit is a high bandwidth passive sample 
network that can sample input signals up to 14 MHz. This 
sampled value is then held using the opamp with a maximum 
clock rate of 4 MHz. The output frequency is at the difference 
between the input frequency and the highest integer multiple of 
the Local Oscillator that is less than the input. 

8.11.2  First Order Modulator – SC Mode

A first order modulator is constructed by placing the SC/CT block 
in an integrator mode and using a comparator to provide a 1-bit 
feedback to the input. Depending on this bit, a reference voltage 
is either subtracted or added to the input signal. The block output 
is the output of the comparator and not the integrator in the 
modulator case. The signal is downshifted and buffered and then 
processed by a decimator to make a delta-sigma converter or a 
counter to make an incremental converter. The accuracy of the 
sampled data from the first-order modulator is determined from 
several factors. 

The main application for this modulator is for a low-frequency 
ADC with high accuracy. Applications include strain gauges, 
thermocouples, precision voltage, and current measurement.

9.  Programming, Debug Interfaces, 
Resources

PSoC devices include extensive support for programming, 
testing, debugging, and tracing both hardware and firmware. 
Three interfaces are available: JTAG, SWD, and SWV. JTAG and 
SWD support all programming and debug features of the device. 
JTAG also supports standard JTAG scan chains for board level 
test and chaining multiple JTAG devices to a single JTAG 
connection.

For more information on PSoC 3 Programming, refer to the 
PSoC® 3 Device Programming Specifications.

Complete Debug on Chip (DoC) functionality enables full device 
debugging in the final system using the standard production 

device. It does not require special interfaces, debugging pods, 
simulators, or emulators. Only the standard programming 
connections are required to fully support debug.

The PSoC Creator IDE software provides fully integrated 
programming and debug support for PSoC devices. The low cost 
MiniProg3 programmer and debugger is designed to provide full 
programming and debug support of PSoC devices in conjunction 
with the PSoC Creator IDE. PSoC JTAG, SWD, and SWV 
interfaces are fully compatible with industry standard third party 
tools.

All DOC circuits are disabled by default and can only be enabled 
in firmware. If not enabled, the only way to reenable them is to 
erase the entire device, clear flash protection, and reprogram the 
device with new firmware that enables DOC. Disabling DOC 
features, robust flash protection, and hiding custom analog and 
digital functionality inside the PSoC device provide a level of 
security not possible with multichip application solutions. 
Additionally, all device interfaces can be permanently disabled 
(Device Security) for applications concerned about phishing 
attacks due to a maliciously reprogrammed device. Permanently 
disabling interfaces is not recommended in most applications 
because you cannot access the device later. Because all 
programming, debug, and test interfaces are disabled when 
device security is enabled, PSoCs with Device Security enabled 
may not be returned for failure analysis.

9.1  JTAG Interface

The IEEE 1149.1 compliant JTAG interface exists on four or five 
pins (the nTRST pin is optional). The JTAG interface is used for 
programming the flash memory, debugging, I/O scan chains, and 
JTAG device chaining.

PSoC 3 has certain timing requirements to be met for entering 
programming mode through the JTAG interface. Due to these 
timing requirements, not all standard JTAG programmers, or 
standard JTAG file formats such as SVF or STAPL, can support 
PSoC 3 programming. The list of programmers that support 
PSoC 3 programming is available at 
http://www.cypress.com/go/programming.

The JTAG clock frequency can be up to 14 MHz, or 1/3 of the 
CPU clock frequency for 8 and 16-bit transfers, or 1/5 of the CPU 
clock frequency for 32-bit transfers. By default, the JTAG pins are 
enabled on new devices but the JTAG interface can be disabled, 
allowing these pins to be used as GPIO instead.
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Table 9-1.  Debug Configurations

Debug and Trace Configuration GPIO Pins Used

All debug and trace disabled 0

JTAG 4 or 5

SWD 2

SWV 1

SWD + SWV 3

http://www.cypress.com/go/programming
http://www.cypress.com/?rID=44327
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Figure 11-1. Active Mode Current vs FCPU, VDD = 3.3 V, 
Temperature = 25 °C

Figure 11-2. Active Mode Current vs Temperature and FCPU, 
VDD = 3.3 V

Figure 11-3. Active Mode Current vs VDD and Temperature, 
FCPU = 24 MHz
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Figure 11-4. FCPU vs. VDD

Table 11-3.  AC Specifications[33]

Parameter Description Conditions Min Typ Max Units

FCPU CPU frequency 1.71 V  VDDD  5.5 V DC – 67.01 MHz

FBUSCLK Bus frequency 1.71 V  VDDD  5.5 V DC – 67.01 MHz

Svdd VDD ramp rate – – 0.066 V/µs

TIO_INIT Time from VDDD/VDDA/VCCD/VCCA 
IPOR to I/O ports set to their reset 
states

– – 10 µs

TSTARTUP Time from VDDD/VDDA/VCCD/VCCA 
 PRES to CPU executing code at 
reset vector

VCCA/VDDA = regulated from 
VDDA/VDDD, no PLL used, fast IMO 
boot mode (48 MHz typ.)

– – 40 µs

VCCA/VCCD = regulated from 
VDDA/VDDD, no PLL used, slow 
IMO boot mode (12 MHz typ.)

– – 74 µs

TSLEEP Wakeup from sleep mode – 
Application of non-LVD interrupt to 
beginning of execution of next CPU 
instruction

– – 15 µs

THIBERNATE Wakeup from hibernate mode – 
Application of external interrupt to 
beginning of execution of next CPU 
instruction

– – 100 µs

5.5 V

1.71 V

0.5 V

0 V

DC 1 MHz 10 MHz 67 MHz

3.3 V
Valid Operating Region

Valid Operating Region with SMP

CPU Frequency

V
d

d 
V

o
lta

g
e

Note
33. Based on device characterization (Not production tested).
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. 

Figure 11-30. Opamp Noise vs Frequency, Power Mode = 
High, VDDA = 5V

Figure 11-31. Opamp Step Response, Rising

Figure 11-32. Opamp Step Response, Falling

Table 11-20.  Opamp AC Specifications

Parameter Description Conditions Min Typ Max Units

GBW Gain-bandwidth product Power mode = minimum, 15 pF load 1 – – MHz

Power mode = low, 15 pF load 2 – – MHz

Power mode = medium, 200 pF load 1 – – MHz

Power mode = high, 200 pF load 3 – – MHz

SR Slew rate, 20% - 80% Power mode = low, 15 pF load 1.1 – – V/µs

Power mode = medium, 200 pF load 0.9 – – V/µs

Power mode = high, 200 pF load 3 – – V/µs

en Input noise density Power mode = high, VDDA = 5 V, 
at 100 kHz

– 45 – nV/sqrtHz
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Table 11-22.  Delta-sigma ADC AC Specifications

Vextref
ADC external reference input voltage, see 
also internal reference in Voltage 
Reference on page 95

Pins P0[3], P3[2] 0.9 – 1.3 V

Current Consumption

IDD_20 IDDA + IDDD current consumption, 20 bit[50] 187 sps, unbuffered – – 1.5 mA

IDD_16 IDDA + IDDD current consumption, 16 bit[50] 48 ksps, unbuffered – – 1.5 mA

IDD_12 IDDA + IDDD current consumption, 12 bit[50] 192 ksps, unbuffered – – 1.95 mA

IBUFF Buffer current consumption[50] – – 2.5 mA

Parameter Description Conditions Min Typ Max Units

Startup time – – 4 Samples

THD Total harmonic distortion[50] Buffer gain = 1, 16 bit, 
Range = ±1.024 V

– – 0.0032 %

20-Bit Resolution Mode

SR20 Sample rate[50] Range = ±1.024 V, unbuffered 7.8 – 187 sps

BW20 Input bandwidth at max sample rate[50] Range = ±1.024 V, unbuffered – 40 – Hz

16-Bit Resolution Mode

SR16 Sample rate[50] Range = ±1.024 V, unbuffered 2 – 48 ksps

BW16 Input bandwidth at max sample rate[50] Range = ±1.024 V, unbuffered – 11 – kHz

SINAD16int Signal to noise ratio, 16-bit, internal 
reference[50]

Range = ±1.024V, unbuffered 81 – – dB

SINAD16ext Signal to noise ratio, 16-bit, external 
reference[50]

Range = ±1.024 V, unbuffered 84 – – dB

12-Bit Resolution Mode

SR12 Sample rate, continuous, high power[50] Range = ±1.024 V, unbuffered 4 – 192 ksps

BW12 Input bandwidth at max sample rate[50] Range = ±1.024 V, unbuffered – 44 – kHz

SINAD12int Signal to noise ratio, 12-bit, internal 
reference[50]

Range = ±1.024 V, unbuffered 66 – – dB

8-Bit Resolution Mode

SR8 Sample rate, continuous, high power[50] Range = ±1.024 V, unbuffered 8 – 384 ksps

BW8 Input bandwidth at max sample rate[50] Range = ±1.024 V, unbuffered – 88 – kHz

SINAD8int Signal to noise ratio, 8-bit, internal 
reference[50]

Range = ±1.024 V, unbuffered 43 – – dB

Table 11-21.  20-bit Delta-sigma ADC DC Specifications (continued) 

Parameter Description Conditions Min Typ Max Units

Note
50. Based on device characterization (Not production tested).



PSoC® 3: CY8C38 Family Datasheet

Document Number: 001-11729 Rev. AF Page 104 of 140

Figure 11-65. VDAC PSRR vs Frequency Figure 11-66. VDAC Voltage Noise, 1 V Mode, High speed 
mode, VDDA = 5 V

11.5.8  Mixer

The mixer is created using a SC/CT analog block; see the Mixer component data sheet in PSoC Creator for full electrical specifications 
and APIs.
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Table 11-36.  Mixer DC Specifications

Parameter Description Conditions Min Typ Max Units

VOS Input offset voltage – – 15 mV

Quiescent current – 0.9 2 mA

G Gain – 0 – dB

Table 11-37.  Mixer AC Specifications

Parameter Description Conditions Min Typ Max Units

fLO Local oscillator frequency Down mixer mode – – 4 MHz

fin Input signal frequency Down mixer mode – – 14 MHz

fLO Local oscillator frequency Up mixer mode – – 1 MHz

fin Input signal frequency Up mixer mode – – 1 MHz

SR Slew rate 3 – – V/µs
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11.6.2  Counter

The following specifications apply to the Timer/Counter/PWM peripheral, in counter mode. Counters can also be implemented in 
UDBs; for more information, see the Counter component data sheet in PSoC Creator. 

11.6.3  Pulse Width Modulation

The following specifications apply to the Timer/Counter/PWM peripheral, in PWM mode. PWM components can also be implemented 
in UDBs; for more information, see the PWM component data sheet in PSoC Creator.  

Table 11-47.  Counter DC Specifications

Parameter Description Conditions Min Typ Max Units

Block current consumption 16-bit counter, at listed input clock 
frequency

– – – µA

3 MHz – 15 – µA

12 MHz – 60 – µA

48 MHz – 260 – µA

67 MHz – 350 – µA

Table 11-48.  Counter AC Specifications

Parameter Description Conditions Min Typ Max Units

Operating frequency DC – 67.01 MHz

Capture pulse 15 – – ns

Resolution 15 – – ns

Pulse width 15 – – ns

Pulse width (external) 30 ns

Enable pulse width 15 – – ns

Enable pulse width (external) 30 – – ns

Reset pulse width 15 – – ns

Reset pulse width (external) 30 – – ns

Table 11-49.  PWM DC Specifications

Parameter Description Conditions Min Typ Max Units

Block current consumption 16-bit PWM, at listed input clock 
frequency

– – – µA

3 MHz – 15 – µA

12 MHz – 60 – µA

48 MHz – 260 – µA

67 MHz – 350 – µA

Table 11-50.  Pulse Width Modulation (PWM) AC Specifications

Parameter Description Conditions Min Typ Max Units

Operating frequency DC – 67.01 MHz

Pulse width 15 – – ns

Pulse width (external) 30 – – ns

Kill pulse width 15 – – ns

Kill pulse width (external) 30 – – ns

Enable pulse width 15 – – ns

Enable pulse width (external) 30 – – ns

Reset pulse width 15 – – ns

Reset pulse width (external) 30 – – ns
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11.7.5  External Memory Interface 

Figure 11-71. Asynchronous Write and Read Cycle Timing, No Wait States

Notes
62. Based on device characterization (Not production tested).
63. EMIF signal timings are limited by GPIO frequency limitations. See “GPIO” section on page 80.
64. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.

Tbus_clock

Bus Clock

EM_Addr

EM_CE

EM_WE

EM_OE

EM_Data

Write Cycle Read Cycle

Minimum of 4 bus clock cycles between successive EMIF accesses

Trd_setup Trd_hold

Twr_setup

Table 11-67.  Asynchronous Write and Read Timing Specifications[62]

Parameter Description Conditions Min Typ Max Units

Fbus_clock Bus clock frequency[63] – – 33 MHz

Tbus_clock Bus clock period[64] 30.3 – – ns

Twr_Setup Time from EM_data valid to rising edge 
of EM_WE and EM_CE

Tbus_clock – 10 – – ns

Trd_setup Time that EM_data must be valid before 
rising edge of EM_OE

5 – – ns

Trd_hold Time that EM_data must be valid after 
rising edge of EM_OE

5 – – ns


