

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

# Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | 8051                                                                        |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 67MHz                                                                       |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, LINbus, SPI, UART/USART                  |
| Peripherals                | CapSense, DMA, LCD, POR, PWM, WDT                                           |
| Number of I/O              | 25                                                                          |
| Program Memory Size        | 64KB (64K x 8)                                                              |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 2K x 8                                                                      |
| RAM Size                   | 8K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V                                                                |
| Data Converters            | A/D 16x20b; D/A 4x8b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 48-BSSOP (0.295", 7.50mm Width)                                             |
| Supplier Device Package    | 48-SSOP                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3866pvi-070t |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



For more details on the peripherals see the "Example Peripherals" section on page 44 of this data sheet. For information on UDBs, DSI, and other digital blocks, see the "Digital Subsystem" section on page 44 of this data sheet.

PSoC's analog subsystem is the second half of its unique configurability. All analog performance is based on a highly accurate absolute voltage reference with less than 0.1-percent error over temperature and voltage. The configurable analog subsystem includes:

- Analog muxes
- Comparators
- Voltage references
- Analog-to-digital converter (ADC)
- Digital-to-analog converters (DACs)
- Digital filter block (DFB)

All GPIO pins can route analog signals into and out of the device using the internal analog bus. This allows the device to interface up to 62 discrete analog signals. The heart of the analog subsystem is a fast, accurate, configurable delta-sigma ADC with these features:

- Less than 100 µV offset
- A gain error of 0.2 percent
- INL less than ±2 LSB
- DNL less than ±1 LSB
- SINAD better than 84 dB in 16-bit mode

This converter addresses a wide variety of precision analog applications, including some of the most demanding sensors. The output of the ADC can optionally feed the programmable DFB through the DMA without CPU intervention. You can configure the DFB to perform IIR and FIR digital filters and several user-defined custom functions. The DFB can implement filters with up to 64 taps. It can perform a 48-bit multiply-accumulate (MAC) operation in one clock cycle.

Four high-speed voltage or current DACs support 8-bit output signals at an update rate of up to 8 Msps. They can be routed out of any GPIO pin. You can create higher resolution voltage PWM DAC outputs using the UDB array. This can be used to create a pulse width modulated (PWM) DAC of up to 10 bits, at up to 48 kHz. The digital DACs in each UDB support PWM, PRS, or delta-sigma algorithms with programmable widths. In addition to the ADC, DACs, and DFB, the analog subsystem provides multiple:

- Uncommitted opamps
- Configurable switched capacitor/continuous time (SC/CT) blocks. These support:
  - Transimpedance amplifiers
  - Programmable gain amplifiers
  - Mixers
  - Other similar analog components

See the "Analog Subsystem" section on page 56 of this data sheet for more details.

PSoC's 8051 CPU subsystem is built around a single cycle pipelined 8051 8-bit processor running at up to 67 MHz. The CPU subsystem includes a programmable nested vector interrupt controller, DMA controller, and RAM. PSoC's nested vector interrupt controller provides low latency by allowing the CPU to vector directly to the first address of the interrupt service routine, bypassing the jump instruction required by other architectures. The DMA controller enables peripherals to exchange data without CPU involvement. This allows the CPU to run slower (saving power) or use those CPU cycles to improve the performance of firmware algorithms. The single cycle 8051 CPU runs ten times faster than a standard 8051 processor. The processor speed itself is configurable, allowing you to tune active power consumption for specific applications.

PSoC's nonvolatile subsystem consists of flash, byte-writeable EEPROM, and nonvolatile configuration options. It provides up to 64 KB of on-chip flash. The CPU can reprogram individual blocks of flash, enabling bootloaders. You can enable an error correcting code (ECC) for high reliability applications. A powerful and flexible protection model secures the user's sensitive information, allowing selective memory block locking for read and write protection. Up to 2 KB of byte-writeable EEPROM is available on-chip to store application data. Additionally, selected configuration options such as boot speed and pin drive mode are stored in nonvolatile memory. This allows settings to activate immediately after POR.

The three types of PSoC I/O are extremely flexible. All I/Os have many drive modes that are set at POR. PSoC also provides up to four I/O voltage domains through the VDDIO pins. Every GPIO has analog I/O, LCD drive<sup>[3]</sup>, CapSense<sup>[4]</sup>, flexible interrupt generation, slew rate control, and digital I/O capability. The SIOs on PSoC allow V<sub>OH</sub> to be set independently of Vddio when used as outputs. When SIOs are in input mode they are high impedance. This is true even when the device is not powered or when the pin voltage goes above the supply voltage. This makes the SIO ideally suited for use on an I<sup>2</sup>C bus where the PSoC may not be powered when other devices on the bus are. The SIO pins also have high current sink capability for applications such as LED drives. The programmable input threshold feature of the SIO can be used to make the SIO function as a general purpose analog comparator. For devices with Full-Speed USB the USB physical interface is also provided (USBIO). When not using USB these pins may also be used for limited digital functionality and device programming. All of the features of the PSoC I/Os are covered in detail in the "I/O System and Routing" section on page 37 of this data sheet.

The PSoC device incorporates flexible internal clock generators, designed for high stability and factory trimmed for high accuracy. The internal main oscillator (IMO) is the clock base for the system, and has 1-percent accuracy at 3 MHz. The IMO can be configured to run from 3 MHz up to 62 MHz. Multiple clock derivatives can be generated from the main clock frequency to meet application needs. The device provides a PLL to generate clock frequencies up to 67 MHz from the IMO, external crystal, or external reference clock.

#### Notes

3. This feature on select devices only. See Ordering Information on page 123 for details.

<sup>4.</sup> GPIOs with opamp outputs are not recommended for use with CapSense.



# 4.4 DMA and PHUB

The PHUB and the DMA controller are responsible for data transfer between the CPU and peripherals, and also data transfers between peripherals. The PHUB and DMA also control device configuration during boot. The PHUB consists of:

- A central hub that includes the DMA controller, arbiter, and router
- Multiple spokes that radiate outward from the hub to most peripherals

There are two PHUB masters: the CPU and the DMA controller. Both masters may initiate transactions on the bus. The DMA channels can handle peripheral communication without CPU intervention. The arbiter in the central hub determines which DMA channel is the highest priority if there are multiple requests.

#### 4.4.1 PHUB Features

- CPU and DMA controller are both bus masters to the PHUB
- Eight multi-layer AHB bus parallel access paths (spokes) for peripheral access
- Simultaneous CPU and DMA access to peripherals located on different spokes
- Simultaneous DMA source and destination burst transactions on different spokes
- Supports 8-, 16-, 24-, and 32-bit addressing and data

#### Table 4-6. PHUB Spokes and Peripherals

| PHUB Spokes | Peripherals                                                                                         |
|-------------|-----------------------------------------------------------------------------------------------------|
| 0           | SRAM                                                                                                |
| 1           | IOs, PICU, EMIF                                                                                     |
| 2           | PHUB local configuration, Power manager,<br>Clocks, IC, SWV, EEPROM, Flash<br>programming interface |
| 3           | Analog interface and trim, Decimator                                                                |
| 4           | USB, CAN, I <sup>2</sup> C, Timers, Counters, and PWMs                                              |
| 5           | DFB                                                                                                 |
| 6           | UDBs group 1                                                                                        |
| 7           | UDBs group 2                                                                                        |

#### 4.4.2 DMA Features

- 24 DMA channels
- Each channel has one or more transaction descriptors (TD) to configure channel behavior. Up to 128 total TDs can be defined
- TDs can be dynamically updated
- Eight levels of priority per channel
- Any digitally routable signal, the CPU, or another DMA channel, can trigger a transaction
- Each channel can generate up to two interrupts per transfer

- Transactions can be stalled or canceled
- Supports transaction size of infinite or 1 to 64 KB
- TDs may be nested and/or chained for complex transactions

#### 4.4.3 Priority Levels

The CPU always has higher priority than the DMA controller when their accesses require the same bus resources. Due to the system architecture, the CPU can never starve the DMA. DMA channels of higher priority (lower priority number) may interrupt current DMA transfers. In the case of an interrupt, the current transfer is allowed to complete its current transaction. To ensure latency limits when multiple DMA accesses are requested simultaneously, a fairness algorithm guarantees an interleaved minimum percentage of bus bandwidth for priority levels 2 through 7. Priority levels 0 and 1 do not take part in the fairness algorithm and may use 100 percent of the bus bandwidth. If a tie occurs on two DMA requests of the same priority level, a simple round robin method is used to evenly share the allocated bandwidth. The round robin allocation can be disabled for each DMA channel, allowing it to always be at the head of the line. Priority levels 2 to 7 are guaranteed the minimum bus bandwidth shown in Table 4-7 after the CPU and DMA priority levels 0 and 1 have satisfied their requirements.

#### Table 4-7. Priority Levels

| Priority Level | % Bus Bandwidth |
|----------------|-----------------|
| 0              | 100.0           |
| 1              | 100.0           |
| 2              | 50.0            |
| 3              | 25.0            |
| 4              | 12.5            |
| 5              | 6.2             |
| 6              | 3.1             |
| 7              | 1.5             |

When the fairness algorithm is disabled, DMA access is granted based solely on the priority level; no bus bandwidth guarantees are made.

#### 4.4.4 Transaction Modes Supported

The flexible configuration of each DMA channel and the ability to chain multiple channels allow the creation of both simple and complex use cases. General use cases include, but are not limited to:

#### 4.4.4.1 Simple DMA

In a simple DMA case, a single TD transfers data between a source and sink (peripherals or memory location). The basic timing diagrams of DMA read and write cycles are shown in Figure 4-1. For more description on other transfer modes, refer to the Technical Reference Manual.



# 5.6 External Memory Interface

CY8C38 provides an EMIF for connecting to external memory devices. The connection allows read and write accesses to external memories. The EMIF operates in conjunction with UDBs, I/O ports, and other hardware to generate external memory address and control signals. At 33 MHz, each memory access cycle takes four bus clock cycles. Figure 5-1 is the EMIF block diagram. The EMIF supports synchronous and asynchronous memories. The CY8C38 supports only one type of external memory device at a time. External memory can be accessed through the 8051 xdata space; up to 24 address bits can be used. See "xdata Space" section on page 27. The memory can be 8 or 16 bits wide.



Figure 5-1. EMIF Block Diagram



# Figure 6-3. 32kHzECO Block Diagram



It is recommended that the external 32.768-kHz watch crystal have a load capacitance (CL) of 6 pF or 12.5 pF. Check the crystal manufacturer's datasheet. The two external capacitors, CL1 and CL2, are typically of the same value, and their total capacitance, CL1CL2 / (CL1 + CL2), including pin and trace capacitance, should equal the crystal CL value. For more information, refer to application note AN54439: PSoC 3 and PSoC 5 External Oscillators. See also pin capacitance specifications in the "GPIO" section on page 80.

#### 6.1.2.3 Digital System Interconnect

The DSI provides routing for clocks taken from external clock oscillators connected to I/O. The oscillators can also be generated within the device in the digital system and UDBs.

While the primary DSI clock input provides access to all clocking resources, up to eight other DSI clocks (internally or externally generated) may be routed directly to the eight digital clock dividers. This is only possible if there are multiple precision clock sources.

#### 6.1.3 Clock Distribution

All seven clock sources are inputs to the central clock distribution system. The distribution system is designed to create multiple high precision clocks. These clocks are customized for the design's requirements and eliminate the common problems found with limited resolution prescalers attached to peripherals. The clock distribution system generates several types of clock trees.

- The master clock is used to select and supply the fastest clock in the system for general clock requirements and clock synchronization of the PSoC device.
- Bus clock 16-bit divider uses the master clock to generate the bus clock used for data transfers. Bus clock is the source clock for the CPU clock divider.
- Eight fully programmable 16-bit clock dividers generate digital system clocks for general use in the digital system, as configured by the design's requirements. Digital system clocks can generate custom clocks derived from any of the seven clock sources for any purpose. Examples include baud rate generators, accurate PWM periods, and timer clocks, and many others. If more than eight digital clock dividers are required, the UDBs and fixed function timer/counter/PWMs can also generate clocks.
- Four 16-bit clock dividers generate clocks for the analog system components that require clocking, such as ADC and mixers. The analog clock dividers include skew control to ensure that critical analog events do not occur simultaneously with digital switching events. This is done to reduce analog system noise.

Each clock divider consists of an 8-input multiplexer, a 16-bit clock divider (divide by 2 and higher) that generates ~50 percent duty cycle clocks, master clock resynchronization logic, and deglitch logic. The outputs from each digital clock tree can be routed into the digital system interconnect and then brought back into the clock system as an input, allowing clock chaining of up to 32 bits.

#### 6.1.4 USB Clock Domain

The USB clock domain is unique in that it operates largely asynchronously from the main clock network. The USB logic contains a synchronous bus interface to the chip, while running on an asynchronous clock to process USB data. The USB logic requires a 48 MHz frequency. This frequency can be generated from different sources, including DSI clock at 48 MHz or doubled value of 24 MHz from internal oscillator, DSI signal, or crystal oscillator.



Figure 6-5. Power Mode Transitions



# 6.2.1.1 Active Mode

Active mode is the primary operating mode of the device. When in active mode, the active configuration template bits control which available resources are enabled or disabled. When a resource is disabled, the digital clocks are gated, analog bias currents are disabled, and leakage currents are reduced as appropriate. User firmware can dynamically control subsystem power by setting and clearing bits in the active configuration template. The CPU can disable itself, in which case the CPU is automatically reenabled at the next wakeup event.

When a wakeup event occurs, the global mode is always returned to active, and the CPU is automatically enabled, regardless of its template settings. Active mode is the default global power mode upon boot.

#### 6.2.1.2 Alternate Active Mode

Alternate Active mode is very similar to Active mode. In alternate active mode, fewer subsystems are enabled, to reduce power consumption. One possible configuration is to turn off the CPU and flash, and run peripherals at full speed.

# 6.2.1.3 Sleep Mode

Sleep mode reduces power consumption when a resume time of 15  $\mu$ s is acceptable. The wake time is used to ensure that the regulator outputs are stable enough to directly enter active mode.

# 6.2.1.4 Hibernate Mode

In hibernate mode nearly all of the internal functions are disabled. Internal voltages are reduced to the minimal level to keep vital systems alive. Configuration state is preserved in hibernate mode and SRAM memory is retained. GPIOs configured as digital outputs maintain their previous values and external GPIO pin interrupt settings are preserved. The device can only return from hibernate mode in response to an external I/O interrupt. The resume time from hibernate mode is less than 100 µs.

To achieve an extremely low current, the hibernate regulator has limited capacity. This limits the frequency of any signal present on the input pins - no GPIO should toggle at a rate greater than 10 kHz while in hibernate mode. If pins must be toggled at a high rate while in a low power mode, use sleep mode instead.

# 6.2.1.5 Wakeup Events

Wakeup events are configurable and can come from an interrupt or device reset. A wakeup event restores the system to active mode. Firmware enabled interrupt sources include internally generated interrupts, power supervisor, central timewheel, and I/O interrupts. Internal interrupt sources can come from a variety of peripherals, such as analog comparators and UDBs. The central timewheel provides periodic interrupts to allow the system to wake up, poll peripherals, or perform real-time functions. Reset event sources include the external reset I/O pin (XRES), WDT, and precision reset (PRES).

#### 6.2.2 Boost Converter

Applications that use a supply voltage of less than 1.71 V, such as solar panels or single cell battery supplies, may use the on-chip boost converter to generate a minimum of 1.8 V supply voltage. The boost converter may also be used in any system that requires a higher operating voltage than the supply provides such as driving 5.0 V LCD glass in a 3.3 V system. With the addition of an inductor, Schottky diode, and capacitors, it produces a selectable output voltage sourcing enough current to operate the PSoC and other on-board components.

The boost converter accepts an input voltage V<sub>BAT</sub> from 0.5 V to 3.6 V, and can start up with V<sub>BAT</sub> as low as 0.5 V. The converter provides a user configurable output voltage of 1.8 to 5.0 V (V<sub>OUT</sub>) in 100 mV increments. V<sub>BAT</sub> is typically less than V<sub>OUT</sub>; if V<sub>BAT</sub> is greater than or equal to V<sub>OUT</sub>, then V<sub>OUT</sub> will be slightly less than V<sub>BAT</sub> due to resistive losses in the boost converter. The block can deliver up to 50 mA (I<sub>BOOST</sub>) depending on configuration to both the PSoC device and external components. The sum of all current sinks in the design including the PSoC device, PSoC I/O pin loads, and external component loads must be less than the I<sub>BOOST</sub> specified maximum current.

Four pins are associated with the boost converter: VBAT, VSSB, VBOOST, and IND. The boosted output voltage is sensed at the VBOOST pin and must be connected directly to the chip's supply inputs; VDDA, VDDD, and VDDIO if used to power the PSoC device.

The boost converter requires four components in addition to those required in a non-boost design, as shown in Figure 6-6 on page 34. A 22  $\mu$ F capacitor (C<sub>BAT</sub>) is required close to the VBAT pin to provide local bulk storage of the battery voltage and provide regulator stability. A diode between the battery and VBAT pin should not be used for reverse polarity protection because the diodes forward voltage drop reduces the  $\ensuremath{\mathsf{V}_{\mathsf{BAT}}}$  voltage. Between the VBAT and IND pins, an inductor of 4.7 µH, 10 µH, or 22 µH is required. The inductor value can be optimized to increase the boost converter efficiency based on input voltage, output voltage, temperature, and current. Inductor size is determined by following the design guidance in this chapter and electrical specifications. The inductor must be placed within 1 cm of the VBAT and IND pins and have a minimum saturation current of 750 mA. Between the IND and VBOOST pins, place a Schottky diode within 1 cm of the pins. The Schottky diode shall have a forward current rating of at least 1.0 A and a reverse voltage of at least 20 V. Connect a 22-µF bulk capacitor (CBOOST) close to VBOOST to provide regulator output stability. It is important to sum the total capacitance connected to the VBOOST pin and ensure the maximum CBOOST specification is not exceeded. All capacitors must be rated for a minimum of 10 V to minimize capacitive losses due to voltage de-rating.





#### Figure 6-10. SIO Input/Output Block Diagram

Figure 6-11. USBIO Block Diagram





#### 6.4.5 Pin Interrupts

All GPIO and SIO pins are able to generate interrupts to the system. All eight pins in each port interface to their own Port Interrupt Control Unit (PICU) and associated interrupt vector. Each pin of the port is independently configurable to detect rising edge, falling edge, both edge interrupts, or to not generate an interrupt.

Depending on the configured mode for each pin, each time an interrupt event occurs on a pin, its corresponding status bit of the interrupt status register is set to '1' and an interrupt request is sent to the interrupt controller. Each PICU has its own interrupt vector in the interrupt controller and the pin status register providing easy determination of the interrupt source down to the pin level.

Port pin interrupts remain active in all sleep modes allowing the PSoC device to wake from an externally generated interrupt. While level sensitive interrupts are not directly supported; UDB provide this functionality to the system when needed.

#### 6.4.6 Input Buffer Mode

GPIO and SIO input buffers can be configured at the port level for the default CMOS input thresholds or the optional LVTTL input thresholds. All input buffers incorporate Schmitt triggers for input hysteresis. Additionally, individual pin input buffers can be disabled in any drive mode.

#### 6.4.7 I/O Power Supplies

Up to four I/O pin power supplies are provided depending on the device and package. Each I/O supply must be less than or equal to the voltage on the chip's analog (VDDA) pin. This feature allows users to provide different I/O voltage levels for different pins on the device. Refer to the specific device package pinout to determine VDDIO capability for a given port and pin. The SIO port pins support an additional regulated high output capability, as described in Adjustable Output Level.

#### 6.4.8 Analog Connections

These connections apply only to GPIO pins. All GPIO pins may be used as analog inputs or outputs. The analog voltage present on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs. Each GPIO may connect to one of the analog global busses or to one of the analog mux buses to connect any pin to any internal analog resource such as ADC or comparators. In addition, select pins provide direct connections to specific analog features such as the high current DACs or uncommitted opamps.

#### 6.4.9 CapSense

This section applies only to GPIO pins. All GPIO pins may be used to create CapSense buttons and sliders<sup>[15]</sup>. See the "CapSense" section on page 63 for more information.

#### 6.4.10 LCD Segment Drive

This section applies only to GPIO pins. All GPIO pins may be used to generate Segment and Common drive signals for direct glass drive of LCD glass. See the "LCD Direct Drive" section on page 62 for details.

#### 6.4.11 Adjustable Output Level

This section applies only to SIO pins. SIO port pins support the ability to provide a regulated high output level for interface to external signals that are lower in voltage than the SIO's respective VDDIO. SIO pins are individually configurable to output either the standard VDDIO level or the regulated output, which is based on an internally generated reference. Typically a voltage DAC (VDAC) is used to generate the reference (see Figure 6-13). The "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins. Resistive pullup and pull-down drive modes are not available with SIO in regulated output mode.

#### 6.4.12 Adjustable Input Level

This section applies only to SIO pins. SIO pins by default support the standard CMOS and LVTTL input levels but also support a differential mode with programmable levels. SIO pins are grouped into pairs. Each pair shares a reference generator block which, is used to set the digital input buffer reference level for interface to external signals that differ in voltage from VDDIO. The reference sets the pins voltage threshold for a high logic level (see Figure 6-13). Available input thresholds are:

- 0.5 × VDDIO
- 0.4 × VDDIO
- $\blacksquare 0.5 \times V_{REF}$
- V<sub>REF</sub>

Typically a voltage DAC (VDAC) generates the V<sub>REF</sub> reference. "DAC" section on page 64 has more details on VDAC use and reference routing to the SIO pins.

<sup>15.</sup> GPIOs with opamp outputs are not recommended for use with CapSense.



# 7.2 Universal Digital Block

The UDB represents an evolutionary step to the next generation of PSoC embedded digital peripheral functionality. The architecture in first generation PSoC digital blocks provides coarse programmability in which a few fixed functions with a small number of options are available. The new UDB architecture is the optimal balance between configuration granularity and efficient implementation. A cornerstone of this approach is to provide the ability to customize the devices digital operation to match application requirements.

To achieve this, UDBs consist of a combination of uncommitted logic (PLD), structured logic (Datapath), and a flexible routing scheme to provide interconnect between these elements, I/O connections, and other peripherals. UDB functionality ranges from simple self contained functions that are implemented in one UDB, or even a portion of a UDB (unused resources are available for other functions), to more complex functions that require multiple UDBs. Examples of basic functions are timers, counters, CRC generators, PWMs, dead band generators, and communications functions, such as UARTs, SPI, and I<sup>2</sup>C. Also, the PLD blocks and connectivity provide full featured general purpose programmable logic within the limits of the available resources.

#### Figure 7-2. UDB Block Diagram



Routing Channel

The main component blocks of the UDB are:

- PLD blocks There are two small PLDs per UDB. These blocks take inputs from the routing array and form registered or combinational sum-of-products logic. PLDs are used to implement state machines, state bits, and combinational logic equations. PLD configuration is automatically generated from graphical primitives.
- Datapath module This 8-bit wide datapath contains structured logic to implement a dynamically configurable ALU, a variety of compare configurations and condition generation. This block also contains input/output FIFOs, which are the primary parallel data interface between the CPU/DMA system and the UDB.

- Status and control module The primary role of this block is to provide a way for CPU firmware to interact and synchronize with UDB operation.
- Clock and reset module This block provides the UDB clocks and reset selection and control.

#### 7.2.1 PLD Module

The primary purpose of the PLD blocks is to implement logic expressions, state machines, sequencers, lookup tables, and decoders. In the simplest use model, consider the PLD blocks as a standalone resource onto which general purpose RTL is synthesized and mapped. The more common and efficient use model is to create digital functions from a combination of PLD and datapath blocks, where the PLD implements only the random logic and state portion of the function while the datapath (ALU) implements the more structured elements.

#### Figure 7-3. PLD 12C4 Structure



One 12C4 PLD block is shown in Figure 7-3. This PLD has 12 inputs, which feed across eight product terms. Each product term (AND function) can be from 1 to 12 inputs wide, and in a given product term, the true (T) or complement (C) of each input can be selected. The product terms are summed (OR function) to create the PLD outputs. A sum can be from 1 to 8 product terms wide. The 'C' in 12C4 indicates that the width of the OR gate (in this case 8) is constant across all outputs (rather than variable as in a 22V10 device). This PLA like structure gives maximum flexibility and insures that all inputs and outputs are permutable for ease of allocation by the software tools. There are two 12C4 PLDs in each UDB.



#### 7.2.2 Datapath Module

The datapath contains an 8-bit single cycle ALU, with associated compare and condition generation logic. This datapath block is optimized to implement embedded functions, such as timers, counters, integrators, PWMs, PRS, CRC, shifters and dead band generators and many others.



### 7.2.2.1 Working Registers

The datapath contains six primary working registers, which are accessed by CPU firmware or DMA during normal operation.

| Name      | Function       | Description                                                                                                                                                                                                                 |
|-----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0 and A1 | Accumulators   | These are sources and sinks for the ALU and also sources for the compares.                                                                                                                                                  |
| D0 and D1 | Data Registers | These are sources for the ALU and sources for the compares.                                                                                                                                                                 |
| F0 and F1 | FIFOs          | These are the primary interface<br>to the system bus. They can be a<br>data source for the data registers<br>and accumulators or they can<br>capture data from the<br>accumulators or ALU. Each FIFO<br>is four bytes deep. |

# 7.2.2.2 Dynamic Configuration RAM

Dynamic configuration is the ability to change the datapath function and internal configuration on a cycle-by-cycle basis, under sequencer control. This is implemented using the 8-word × 16-bit configuration RAM, which stores eight unique 16-bit wide configurations. The address input to this RAM controls the sequence, and can be routed from any block connected to the UDB routing matrix, most typically PLD logic, I/O pins, or from the outputs of this or other datapath blocks.

#### ALU

The ALU performs eight general purpose functions. They are: Increment

- Decrement
- Add
- Subtract
- Logical AND
- Logical OR
- Logical XOR
- Pass, used to pass a value through the ALU to the shift register, mask, or another UDB register.





Figure 8-2. CY8C38 Analog Interconnect

To preserve detail of this figure, this figure is best viewed with a PDF display program or printed on a 11" × 17" paper.



The opamp and resistor array is programmable to perform various analog functions including

- Naked operational amplifier Continuous mode
- Unity-gain buffer Continuous mode
- PGA Continuous mode
- Transimpedance amplifier (TIA) Continuous mode
- Up/down mixer Continuous mode
- Sample and hold mixer (NRZ S/H) Switched cap mode
- First order analog to digital modulator Switched cap mode

#### 8.5.1 Naked Opamp

The Naked Opamp presents both inputs and the output for connection to internal or external signals. The opamp has a unity gain bandwidth greater than 6.0 MHz and output drive current up to 650  $\mu$ A. This is sufficient for buffering internal signals (such as DAC outputs) and driving external loads greater than 7.5 kohms.

#### 8.5.2 Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly connected to the inverting input for a gain of 1.00. It has a -3 dB bandwidth greater than 6.0 MHz.

#### 8.5.3 PGA

The PGA amplifies an external or internal signal. The PGA can be configured to operate in inverting mode or noninverting mode. The PGA function may be configured for both positive and negative gains as high as 50 and 49 respectively. The gain is adjusted by changing the values of R1 and R2 as illustrated in Figure 8-8. The schematic in Figure 8-8 shows the configuration and possible resistor settings for the PGA. The gain is switched from inverting and non inverting by changing the shared select value of the both the input muxes. The bandwidth for each gain case is listed in Table 8-3.

#### Table 8-3. Bandwidth

| Gain | Bandwidth |
|------|-----------|
| 1    | 6.0 MHz   |
| 24   | 340 kHz   |
| 48   | 220 kHz   |
| 50   | 215 kHz   |

#### Figure 8-8. PGA Resistor Settings



The PGA is used in applications where the input signal may not be large enough to achieve the desired resolution in the ADC, or dynamic range of another SC/CT block such as a mixer. The gain is adjustable at runtime, including changing the gain of the PGA prior to each ADC sample.

### 8.5.4 TIA

The Transimpedance Amplifier (TIA) converts an internal or external current to an output voltage. The TIA uses an internal feedback resistor in a continuous time configuration to convert input current to output voltage. For an input current I<sub>in</sub>, the output voltage is V<sub>REF</sub> - I<sub>in</sub> x R<sub>fb</sub>, where V<sub>REF</sub> is the value placed on the non inverting input. The feedback resistor Rfb is programmable between 20 K $\Omega$  and 1 M $\Omega$  through a configuration register. Table 8-4 shows the possible values of Rfb and associated configuration settings.

#### Table 8-4. Feedback Resistor Settings

| Configuration Word | Nominal $R_{fb}(K\Omega)$ |
|--------------------|---------------------------|
| 000b               | 20                        |
| 001b               | 30                        |
| 010b               | 40                        |
| 011b               | 60                        |
| 100b               | 120                       |
| 101b               | 250                       |
| 110b               | 500                       |
| 111b               | 1000                      |

#### Figure 8-9. Continuous Time TIA Schematic



The TIA configuration is used for applications where an external sensor's output is current as a function of some type of stimulus such as temperature, light, magnetic flux etc. In a common application, the voltage DAC output can be connected to the V<sub>REF</sub> TIA input to allow calibration of the external sensor bias current by adjusting the voltage DAC output voltage.

# 8.6 LCD Direct Drive

The PSoC LCD driver system is a highly configurable peripheral designed to allow PSoC to directly drive a broad range of LCD glass. All voltages are generated on chip, eliminating the need for external components. With a high multiplex ratio of up to 1/16, the CY8C38 family LCD driver system can drive a maximum of 736 segments. The PSoC LCD driver module was also designed with the conservative power budget of portable devices in mind, enabling different LCD drive modes and power down modes to conserve power.



# 8.9 DAC

The CY8C38 parts contain up to four Digital to Analog Convertors (DACs). Each DAC is 8-bit and can be configured for either voltage or current output. The DACs support CapSense, power supply regulation, and waveform generation. Each DAC has the following features:

- Adjustable voltage or current output in 255 steps
- Programmable step size (range selection)
- Eight bits of calibration to correct ± 25 percent of gain error
- Source and sink option for current output

- High and low speed / power modes
- 8 Msps conversion rate for current output
- 1 Msps conversion rate for voltage output
- Monotonic in nature
- Data and strobe inputs can be provided by the CPU or DMA, or routed directly from the DSI
- Dedicated low-resistance output pin for high-current mode



# Figure 8-11. DAC Block Diagram

#### 8.9.1 Current DAC

The current DAC (IDAC) can be configured for the ranges 0 to 31.875  $\mu$ A, 0 to 255  $\mu$ A, and 0 to 2.04 mA. The IDAC can be configured to source or sink current.

#### 8.9.2 Voltage DAC

For the voltage DAC (VDAC), the current DAC output is routed through resistors. The two ranges available for the VDAC are 0 to 1.02 V and 0 to 4.08 V. In voltage mode any load connected to the output of a DAC should be purely capacitive (the output of the VDAC is not buffered).

#### 8.10 Up/Down Mixer

In continuous time mode, the SC/CT block components are used to build an up or down mixer. Any mixing application contains an input signal frequency and a local oscillator frequency. The polarity of the clock, Fclk, switches the amplifier between inverting or noninverting gain. The output is the product of the input and the switching function from the local oscillator, with frequency components at the local oscillator plus and minus the signal frequency (Fclk + Fin and Fclk – Fin) and reduced-level frequency components at odd integer multiples of the local oscillator frequency. The local oscillator frequency is provided by the selected clock source for the mixer.

Continuous time up and down mixing works for applications with input signals and local oscillator frequencies up to 1 MHz.

#### Figure 8-12. Mixer Configuration



# 8.11 Sample and Hold

The main application for a sample and hold, is to hold a value stable while an ADC is performing a conversion. Some applications require multiple signals to be sampled simultaneously, such as for power calculations (V and I).



# Figure 8-13. Sample and Hold Topology ( $\Phi$ 1 and $\Phi$ 2 are opposite phases of a clock)

![](_page_13_Figure_3.jpeg)

#### 8.11.1 Down Mixer

The SC/CT block can be used as a mixer to down convert an input signal. This circuit is a high bandwidth passive sample network that can sample input signals up to 14 MHz. This sampled value is then held using the opamp with a maximum clock rate of 4 MHz. The output frequency is at the difference between the input frequency and the highest integer multiple of the Local Oscillator that is less than the input.

#### 8.11.2 First Order Modulator - SC Mode

A first order modulator is constructed by placing the SC/CT block in an integrator mode and using a comparator to provide a 1-bit feedback to the input. Depending on this bit, a reference voltage is either subtracted or added to the input signal. The block output is the output of the comparator and not the integrator in the modulator case. The signal is downshifted and buffered and then processed by a decimator to make a delta-sigma converter or a counter to make an incremental converter. The accuracy of the sampled data from the first-order modulator is determined from several factors.

The main application for this modulator is for a low-frequency ADC with high accuracy. Applications include strain gauges, thermocouples, precision voltage, and current measurement.

# 9. Programming, Debug Interfaces, Resources

PSoC devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. Three interfaces are available: JTAG, SWD, and SWV. JTAG and SWD support all programming and debug features of the device. JTAG also supports standard JTAG scan chains for board level test and chaining multiple JTAG devices to a single JTAG connection.

For more information on PSoC 3 Programming, refer to the PSoC<sup>®</sup> 3 Device Programming Specifications.

Complete Debug on Chip (DoC) functionality enables full device debugging in the final system using the standard production

device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE software provides fully integrated programming and debug support for PSoC devices. The low cost MiniProg3 programmer and debugger is designed to provide full programming and debug support of PSoC devices in conjunction with the PSoC Creator IDE. PSoC JTAG, SWD, and SWV interfaces are fully compatible with industry standard third party tools.

All DOC circuits are disabled by default and can only be enabled in firmware. If not enabled, the only way to reenable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables DOC. Disabling DOC features, robust flash protection, and hiding custom analog and digital functionality inside the PSoC device provide a level of security not possible with multichip application solutions. Additionally, all device interfaces can be permanently disabled (Device Security) for applications concerned about phishing attacks due to a maliciously reprogrammed device. Permanently disabling interfaces is not recommended in most applications because you cannot access the device later. Because all programming, debug, and test interfaces are disabled when device security is enabled, PSoCs with Device Security enabled may not be returned for failure analysis.

#### Table 9-1. Debug Configurations

| Debug and Trace Configuration | GPIO Pins Used |
|-------------------------------|----------------|
| All debug and trace disabled  | 0              |
| JTAG                          | 4 or 5         |
| SWD                           | 2              |
| SWV                           | 1              |
| SWD + SWV                     | 3              |

# 9.1 JTAG Interface

The IEEE 1149.1 compliant JTAG interface exists on four or five pins (the nTRST pin is optional). The JTAG interface is used for programming the flash memory, debugging, I/O scan chains, and JTAG device chaining.

PSoC 3 has certain timing requirements to be met for entering programming mode through the JTAG interface. Due to these timing requirements, not all standard JTAG programmers, or standard JTAG file formats such as SVF or STAPL, can support PSoC 3 programming. The list of programmers that support PSoC 3 programming is available at http://www.cypress.com/go/programming.

The JTAG clock frequency can be up to 14 MHz, or 1/3 of the CPU clock frequency for 8 and 16-bit transfers, or 1/5 of the CPU clock frequency for 32-bit transfers. By default, the JTAG pins are enabled on new devices but the JTAG interface can be disabled, allowing these pins to be used as GPIO instead.

![](_page_14_Picture_0.jpeg)

Figure 11-1. Active Mode Current vs  $F_{CPU}$ ,  $V_{DD}$  = 3.3 V, Temperature = 25 °C

![](_page_14_Figure_3.jpeg)

Figure 11-3. Active Mode Current vs  $V_{\text{DD}}$  and Temperature,  $F_{\text{CPU}}$  = 24 MHz

![](_page_14_Figure_5.jpeg)

Figure 11-2. Active Mode Current vs Temperature and  $F_{CPU},\ V_{DD}$  = 3.3 V

![](_page_14_Figure_7.jpeg)

![](_page_15_Picture_0.jpeg)

# Table 11-3. AC Specifications<sup>[33]</sup>

| Parameter              | Description                                                                                                               | Conditions                                                                                                 | Min | Тур | Max   | Units |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----|-----|-------|-------|
| F <sub>CPU</sub>       | CPU frequency                                                                                                             | $1.71~V \le V_{DDD} \le 5.5~V$                                                                             | DC  | _   | 67.01 | MHz   |
| F <sub>BUSCLK</sub>    | Bus frequency                                                                                                             | $1.71~V \le V_{DDD} \le 5.5~V$                                                                             | DC  | _   | 67.01 | MHz   |
| Svdd                   | V <sub>DD</sub> ramp rate                                                                                                 |                                                                                                            | -   | -   | 0.066 | V/µs  |
| T <sub>IO_INIT</sub>   | Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge$ IPOR to I/O ports set to their reset states                               |                                                                                                            | _   | -   | 10    | μs    |
| T <sub>STARTUP</sub>   | Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge PRES$ to CPU executing code at reset vector                                | $V_{CCA}/V_{DDA}$ = regulated from<br>$V_{DDA}/V_{DDD}$ , no PLL used, fast IMO<br>boot mode (48 MHz typ.) | -   | -   | 40    | μs    |
|                        |                                                                                                                           | $V_{CCA}/V_{CCD}$ = regulated from<br>$V_{DDA}/V_{DDD}$ , no PLL used, slow<br>IMO boot mode (12 MHz typ.) | _   | -   | 74    | μs    |
| T <sub>SLEEP</sub>     | Wakeup from sleep mode –<br>Application of non-LVD interrupt to<br>beginning of execution of next CPU<br>instruction      |                                                                                                            | -   | -   | 15    | μs    |
| T <sub>HIBERNATE</sub> | Wakeup from hibernate mode –<br>Application of external interrupt to<br>beginning of execution of next CPU<br>instruction |                                                                                                            | _   | _   | 100   | μs    |

Figure 11-4. F<sub>CPU</sub> vs. V<sub>DD</sub>

![](_page_15_Figure_5.jpeg)

![](_page_16_Picture_0.jpeg)

 Table 11-20.
 Opamp AC Specifications

| Parameter      | Description            | Conditions                                               | Min | Тур | Max | Units     |
|----------------|------------------------|----------------------------------------------------------|-----|-----|-----|-----------|
| GBW            | Gain-bandwidth product | Power mode = minimum, 15 pF load                         | 1   | -   | -   | MHz       |
|                |                        | Power mode = low, 15 pF load                             | 2   | -   | -   | MHz       |
|                |                        | Power mode = medium, 200 pF load                         | 1   | -   | -   | MHz       |
|                |                        | Power mode = high, 200 pF load                           | 3   | -   | -   | MHz       |
| SR             | Slew rate, 20% - 80%   | Power mode = low, 15 pF load                             | 1.1 | -   | -   | V/µs      |
|                |                        | Power mode = medium, 200 pF load                         | 0.9 | -   | -   | V/µs      |
|                |                        | Power mode = high, 200 pF load                           | 3   | -   | -   | V/µs      |
| e <sub>n</sub> | Input noise density    | Power mode = high, V <sub>DDA</sub> = 5 V,<br>at 100 kHz | _   | 45  | _   | nV/sqrtHz |

# Figure 11-30. Opamp Noise vs Frequency, Power Mode = High, $V_{DDA} = 5V$

![](_page_16_Figure_5.jpeg)

Figure 11-32. Opamp Step Response, Falling

![](_page_16_Figure_7.jpeg)

# Figure 11-31. Opamp Step Response, Rising

![](_page_16_Figure_9.jpeg)

![](_page_17_Picture_0.jpeg)

# Table 11-21. 20-bit Delta-sigma ADC DC Specifications (continued)

| Parameter          | Description                                                                                             | Conditions           | Min | Тур | Max  | Units |
|--------------------|---------------------------------------------------------------------------------------------------------|----------------------|-----|-----|------|-------|
| Vextref            | ADC external reference input voltage, see<br>also internal reference in Voltage<br>Reference on page 95 | Pins P0[3], P3[2]    | 0.9 | -   | 1.3  | V     |
| Current Co         | Current Consumption                                                                                     |                      |     |     |      |       |
| I <sub>DD_20</sub> | I <sub>DDA</sub> + I <sub>DDD</sub> current consumption, 20 bit <sup>[50]</sup>                         | 187 sps, unbuffered  | -   | -   | 1.5  | mA    |
| I <sub>DD_16</sub> | I <sub>DDA</sub> + I <sub>DDD</sub> current consumption, 16 bit <sup>[50]</sup>                         | 48 ksps, unbuffered  | -   | -   | 1.5  | mA    |
| I <sub>DD_12</sub> | I <sub>DDA</sub> + I <sub>DDD</sub> current consumption, 12 bit <sup>[50]</sup>                         | 192 ksps, unbuffered | -   | _   | 1.95 | mA    |
| I <sub>BUFF</sub>  | Buffer current consumption <sup>[50]</sup>                                                              |                      | -   | -   | 2.5  | mA    |

# Table 11-22. Delta-sigma ADC AC Specifications

| Parameter    | Description                                                       | Conditions                                   | Min | Тур | Max    | Units   |
|--------------|-------------------------------------------------------------------|----------------------------------------------|-----|-----|--------|---------|
|              | Startup time                                                      |                                              | -   | -   | 4      | Samples |
| THD          | Total harmonic distortion <sup>[50]</sup>                         | Buffer gain = 1, 16 bit,<br>Range = ±1.024 V | _   | -   | 0.0032 | %       |
| 20-Bit Resol | ution Mode                                                        | · · · · · · · · · · · · · · · · · · ·        |     |     | •      | •       |
| SR20         | Sample rate <sup>[50]</sup>                                       | Range = ±1.024 V, unbuffered                 | 7.8 | -   | 187    | sps     |
| BW20         | Input bandwidth at max sample rate <sup>[50]</sup>                | Range = ±1.024 V, unbuffered                 | _   | 40  | -      | Hz      |
| 16-Bit Resol | ution Mode                                                        |                                              |     |     |        |         |
| SR16         | Sample rate <sup>[50]</sup>                                       | Range = ±1.024 V, unbuffered                 | 2   | -   | 48     | ksps    |
| BW16         | Input bandwidth at max sample rate <sup>[50]</sup>                | Range = ±1.024 V, unbuffered                 | -   | 11  | -      | kHz     |
| SINAD16int   | Signal to noise ratio, 16-bit, internal reference <sup>[50]</sup> | Range = ±1.024V, unbuffered                  | 81  | -   | -      | dB      |
| SINAD16ext   | Signal to noise ratio, 16-bit, external reference <sup>[50]</sup> | Range = ±1.024 V, unbuffered                 | 84  | -   | _      | dB      |
| 12-Bit Resol | ution Mode                                                        | · · · · · · · · · · · · · · · · · · ·        |     |     | •      | •       |
| SR12         | Sample rate, continuous, high power <sup>[50]</sup>               | Range = ±1.024 V, unbuffered                 | 4   | _   | 192    | ksps    |
| BW12         | Input bandwidth at max sample rate <sup>[50]</sup>                | Range = ±1.024 V, unbuffered                 | -   | 44  | -      | kHz     |
| SINAD12int   | Signal to noise ratio, 12-bit, internal reference <sup>[50]</sup> | Range = ±1.024 V, unbuffered                 | 66  | _   | _      | dB      |
| 8-Bit Resolu | tion Mode                                                         |                                              |     |     |        |         |
| SR8          | Sample rate, continuous, high power <sup>[50]</sup>               | Range = ±1.024 V, unbuffered                 | 8   | -   | 384    | ksps    |
| BW8          | Input bandwidth at max sample rate <sup>[50]</sup>                | Range = ±1.024 V, unbuffered                 | -   | 88  | -      | kHz     |
| SINAD8int    | Signal to noise ratio, 8-bit, internal reference <sup>[50]</sup>  | Range = ±1.024 V, unbuffered                 | 43  | -   | _      | dB      |

![](_page_18_Picture_0.jpeg)

Figure 11-66. VDAC Voltage Noise, 1 V Mode, High speed

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

# 11.5.8 Mixer

The mixer is created using a SC/CT analog block; see the Mixer component data sheet in PSoC Creator for full electrical specifications and APIs.

#### Table 11-36. Mixer DC Specifications

| Parameter       | Description          | Conditions | Min | Тур | Max | Units |
|-----------------|----------------------|------------|-----|-----|-----|-------|
| V <sub>OS</sub> | Input offset voltage |            | -   | -   | 15  | mV    |
|                 | Quiescent current    |            | -   | 0.9 | 2   | mA    |
| G               | Gain                 |            | -   | 0   | _   | dB    |

#### Table 11-37. Mixer AC Specifications

| Parameter       | Description                | Conditions      | Min | Тур | Max | Units |
|-----------------|----------------------------|-----------------|-----|-----|-----|-------|
| f <sub>LO</sub> | Local oscillator frequency | Down mixer mode | -   | -   | 4   | MHz   |
| f <sub>in</sub> | Input signal frequency     | Down mixer mode | -   | -   | 14  | MHz   |
| f <sub>LO</sub> | Local oscillator frequency | Up mixer mode   | -   | -   | 1   | MHz   |
| f <sub>in</sub> | Input signal frequency     | Up mixer mode   | -   | -   | 1   | MHz   |
| SR              | Slew rate                  |                 | 3   | -   | -   | V/µs  |

![](_page_19_Picture_0.jpeg)

### 11.6.2 Counter

The following specifications apply to the Timer/Counter/PWM peripheral, in counter mode. Counters can also be implemented in UDBs; for more information, see the Counter component data sheet in PSoC Creator.

#### Table 11-47. Counter DC Specifications

| Parameter | Description               | Conditions                                      | Min | Тур | Max | Units |
|-----------|---------------------------|-------------------------------------------------|-----|-----|-----|-------|
|           | Block current consumption | 16-bit counter, at listed input clock frequency | -   | -   | -   | μA    |
|           | 3 MHz                     |                                                 | -   | 15  | -   | μA    |
|           | 12 MHz                    |                                                 | -   | 60  | -   | μA    |
|           | 48 MHz                    |                                                 | -   | 260 | -   | μA    |
|           | 67 MHz                    |                                                 | _   | 350 | _   | μA    |

#### Table 11-48. Counter AC Specifications

| Parameter | Description                   | Conditions | Min | Тур | Max   | Units |
|-----------|-------------------------------|------------|-----|-----|-------|-------|
|           | Operating frequency           |            | DC  | -   | 67.01 | MHz   |
|           | Capture pulse                 |            | 15  | -   | -     | ns    |
|           | Resolution                    |            | 15  | -   | -     | ns    |
|           | Pulse width                   |            | 15  | -   | -     | ns    |
|           | Pulse width (external)        |            | 30  |     |       | ns    |
|           | Enable pulse width            |            | 15  | -   | -     | ns    |
|           | Enable pulse width (external) |            | 30  | -   | -     | ns    |
|           | Reset pulse width             |            | 15  | -   | -     | ns    |
|           | Reset pulse width (external)  |            | 30  | —   | _     | ns    |

#### 11.6.3 Pulse Width Modulation

The following specifications apply to the Timer/Counter/PWM peripheral, in PWM mode. PWM components can also be implemented in UDBs; for more information, see the PWM component data sheet in PSoC Creator.

#### Table 11-49. PWM DC Specifications

| Parameter | Description               | Conditions                                     | Min | Тур | Max | Units |
|-----------|---------------------------|------------------------------------------------|-----|-----|-----|-------|
|           | Block current consumption | 16-bit PWM, at listed input clock<br>frequency | -   | -   | _   | μA    |
|           | 3 MHz                     |                                                | _   | 15  | _   | μA    |
|           | 12 MHz                    |                                                | _   | 60  | _   | μA    |
|           | 48 MHz                    |                                                | -   | 260 | _   | μA    |
|           | 67 MHz                    |                                                | -   | 350 | _   | μA    |

# Table 11-50. Pulse Width Modulation (PWM) AC Specifications

| Parameter | Description                   | Conditions | Min | Тур | Max   | Units |
|-----------|-------------------------------|------------|-----|-----|-------|-------|
|           | Operating frequency           |            | DC  | _   | 67.01 | MHz   |
|           | Pulse width                   |            | 15  | _   | _     | ns    |
|           | Pulse width (external)        |            | 30  | _   | _     | ns    |
|           | Kill pulse width              |            | 15  | -   | _     | ns    |
|           | Kill pulse width (external)   |            | 30  | _   | _     | ns    |
|           | Enable pulse width            |            | 15  | _   | _     | ns    |
|           | Enable pulse width (external) |            | 30  | -   | _     | ns    |
|           | Reset pulse width             |            | 15  | _   | _     | ns    |
|           | Reset pulse width (external)  |            | 30  | -   | -     | ns    |

![](_page_20_Picture_0.jpeg)

#### 11.7.5 External Memory Interface

![](_page_20_Figure_3.jpeg)

Figure 11-71. Asynchronous Write and Read Cycle Timing, No Wait States

| Table 11-67. | Asynchronous | Write and Read | Timing | Specifications <sup>[62]</sup> |
|--------------|--------------|----------------|--------|--------------------------------|
|--------------|--------------|----------------|--------|--------------------------------|

| Parameter  | Description                                                    | Conditions | Min             | Тур | Max | Units |
|------------|----------------------------------------------------------------|------------|-----------------|-----|-----|-------|
| Fbus_clock | Bus clock frequency <sup>[63]</sup>                            |            | -               | -   | 33  | MHz   |
| Tbus_clock | Bus clock period <sup>[64]</sup>                               |            | 30.3            | -   | -   | ns    |
| Twr_Setup  | Time from EM_data valid to rising edge<br>of EM_WE and EM_CE   |            | Tbus_clock – 10 | -   | -   | ns    |
| Trd_setup  | Time that EM_data must be valid before<br>rising edge of EM_OE |            | 5               | _   | _   | ns    |
| Trd_hold   | Time that EM_data must be valid after<br>rising edge of EM_OE  |            | 5               | -   | -   | ns    |

Notes

- 62. Based on device characterization (Not production tested).

63. EMIF signal timings are limited by GPIO frequency limitations. See "GPIO" section on page 80.
64. EMIF output signals are generally synchronized to bus clock, so EMIF signal timings are dependent on bus clock frequency.