

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuns	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62a-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

		PIC16C61	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
	EPROM Program Memory (x14 words)	1K	2К	—	4K	_
Memory	ROM Program Memory (x14 words)		_	2К	—	4K
	Data Memory (bytes)	36	128	128	192	192
	Timer Module(s)	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	_	1	1	2	2
	Serial Port(s) (SPI/I ² C, USART)	_	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	_	_	—	_	_
	Interrupt Sources	3	7	7	10	10
	I/O Pins	13	22	22	22	22
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SO	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC

		PIC16C64A	PIC16CR64	PIC16C65A	PIC16CR65	PIC16C66	PIC16C67
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2К	_	4K	_	8K	8K
Memory	ROM Program Memory (x14 words)	—	2К	_	4K	_	_
	Data Memory (bytes)	128	128	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	1	1	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	_	Yes
	Interrupt Sources	8	8	11	11	10	11
	I/O Pins	33	33	33	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
Features	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages		40-pin DIP; 44-pin PLCC, MQFP, TQFP		40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

9.0 TIMER2 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer2 is an 8-bit timer with a prescaler and a postscaler. It is especially suitable as PWM time-base for PWM mode of CCP module(s). TMR2 is a readable and writable register, and is cleared on any device reset.

The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

The match output of the TMR2 register goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling, inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF (PIR1<1>)).

The Timer2 module can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 9-2 shows the Timer2 control register. T2CON is cleared upon reset which initializes Timer2 as shut off with the prescaler and postscaler at a 1:1 value.

9.1 Timer2 Prescaler and Postscaler

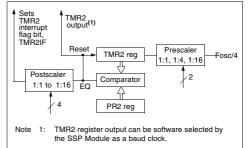
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- · a write to the T2CON register
- any device reset (POR, BOR, MCLR Reset, or WDT Reset).

TMR2 is not cleared when T2CON is written.


9.2 Output of TMR2

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 9-1: TIMER2 BLOCK DIAGRAM

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R = Readable bit
bit7 bit 7:	Unimplem	ented : Rea	ud as '0'				bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 6-3:		TOUTPS0: postscale postscale	Timer2 Ou	itput Postsc	ale Select bi	ts		
bit 2:	TMR2ON : 1 = Timer2 0 = Timer2	is on	bit					
bit 1-0:	T2CKPS1: 00 = 1:1 pr 01 = 1:4 pr 1x = 1:16 p	escale rescale	Timer2 Clo	ock Prescale	e Select bits			

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000
0Dh ⁽⁴⁾	PIR2	—	_	_	_	_	_	_	CCP2IF		 0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000
8Dh ⁽⁴⁾	PIE2	—	_	-	_	-	_	-	CCP2IE		 0
87h	TRISC	PORTC [Data Directio	on register						1111 1111	1111 1111
11h	TMR2	Timer2 module's register								0000	0000
92h	PR2	Timer2 m	iodule's Per	iod register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/0	Compare/P	VM1 (LSB)	1					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/0	Compare/P	VM1 (MSB)					xxxx xxxx	นนนน นนนน
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽⁴⁾	CCPR2L	Capture/0	Compare/P	VM2 (LSB)	1		1			xxxx xxxx	นนนน นนนน
1Ch ⁽⁴⁾	CCPR2H	Capture/0	Compare/P\	VM2 (MSB)					xxxx xxxx	นนนน นนนน
1Dh ⁽⁴⁾	CCP2CON	-	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

 Legend:
 x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

 Note
 1:
 These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.

11.3.1 SSP MODULE IN SPI MODE FOR PIC16C66/67

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

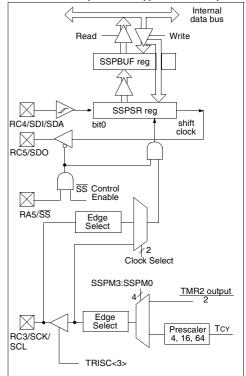
- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- · Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- · Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device. MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and interrupt flag bit SSPIF (PIR1<3>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully. When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit BF (SSPSTAT<0>) indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-2 shows the loading of the SSPBUF (SSPSR) for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-2: LOADING THE SSPBUF (SSPSR) REGISTER (PIC16C66/67)


LOOP	BCF BSF BTFSS	STATUS, STATUS, SSPSTAT,	RP0	;Specify Bank 1 ; ;Has data been ;received ;(transmit ;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents ; of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents ; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-9), shows that the SSPSR is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-9: SSP BLOCK DIAGRAM (SPI MODE)(PIC16C66/67)

12.3 USART Synchronous Master Mode

Applicable Devices

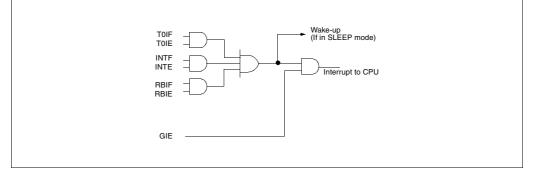
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Synchronous Master mode the data is transmitted in a half-duplex manner i.e., transmission and reception do not occur at the same time. When transmitting data the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6 and RC7 I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

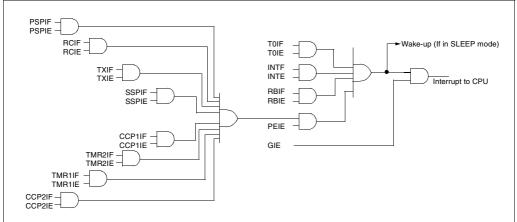
12.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 12-7. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR register is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG register is empty and interrupt flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the status of enable bit TXIE and cannot be cleared in software. It will clear only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR register is not mapped in data memory so it is not available to the user.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 12-12). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN (Figure 12-13). This is advantageous when slow baud rates are selected, since the BRG is kept in reset when bits TXEN. CREN, and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG register. Back-to-back transfers are possible.


Clearing enable bit TXEN, during a transmission, will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hi-impedance. If, during a transmission, either bit CREN or bit SREN is set the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic however, is not reset although it is disconnected from the pins. In order to reset the transmitter, the user has to clear enable bit TXEN. If enable bit SREN is set (to interrupt an on going transmission and receive a single word), then after the single word is received, enable bit SREN will be cleared, and the serial port will revert back to transmitting since enable bit TXEN is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, enable bit TXEN should be cleared.

In order to select 9-bit transmission, bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR register was empty and the TXREG register was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.


Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{TXIE}}$.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

FIGURE 13-17: INTERRUPT LOGIC FOR PIC16C61

The following table shows which devices have which interrupts.

Device	TOIF	INTF	RBIF	PSPIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	CCP2IF
PIC16C62	Yes	Yes	Yes	-	-	-	Yes	Yes	Yes	Yes	-
PIC16C62A	Yes	Yes	Yes	-	-	-	Yes	Yes	Yes	Yes	-
PIC16CR62	Yes	Yes	Yes	-	-	-	Yes	Yes	Yes	Yes	-
PIC16C63	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16CR63	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C64	Yes	Yes	Yes	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C64A	Yes	Yes	Yes	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C64	Yes	Yes	Yes	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C65A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16CR65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C66	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C67	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.0 ELECTRICAL CHARACTERISTICS FOR PIC16C61

Absolute Maximum Ratings †

this pin directly to Vss.

Ambient temperature under bias	-55°C to +125°C
•	
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +14V
Voltage on RA4 pin with respect to Vss	0V to +14V
Total power dissipation (Note 1)	800 mW
Maximum current out of Vss pin	150 mA
Maximum current into VDD pin	100 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, Iок (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA	80 mA
Maximum current sourced by PORTA	50 mA
Maximum current sunk by PORTB	150 mA
Maximum current sourced by PORTB	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-	VOH) x IOH} + Σ (VOI x IOL)

Note 2: Voltage spikes below Vss at the \overline{MCLR} pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the \overline{MCLR} pin rather than pulling

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 15-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C61-04	PIC16C61-20	PIC16LC61-04	JW Devices
RC	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 3.3 mA max. at 5.5V	IDD: 1.8 mA typ. at 5.5V	IDD: 1.4 mA typ. at 3.0V	IDD: 3.3 mA max. at 5.5V
	IPD: 14 μA max. at 4V	IPD: 1.0 μA typ. at 4V	IPD: 0.6 μA typ. at 3V	IPD: 14 μA max. at 4V
	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V	VDD: 4.5V to 5.5V	VDD: 3.0V to 6.0V	VDD: 4.0V to 6.0V
	IDD: 3.3 mA max. at 5.5V	IDD: 1.8 mA typ. at 5.5V	IDD: 1.4 mA typ. at 3.0V	IDD: 3.3 mA max. at 5.5V
	IPD: 14 μA max. at 4V	IPD: 1.0 μA typ. at 4V	IPD: 0.6 μA typ. at 3V	IPD: 14 μA max. at 4V
	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.	Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V		VDD: 4.5V to 5.5V
	IDD: 13.5 mA typ. at 5.5V	IDD: 30 mA max. at 5.5V	Not recommended for use in	IDD: 30 mA max. at 5.5V
	IPD: 1.0 μA typ. at 4.5V	IPD: 1.0 μA typ. at 4.5V	HS mode	IPD: 1.0 μA typ. at 4.5V
	Freq: 4 MHz max.	Freq: 20 MHz max.		Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V		VDD: 3.0V to 6.0V	VDD: 3.0V to 6.0V
	IDD: 15 μA typ. at 32 kHz,	Not recommended for	IDD: 32 μA max. at 32 kHz,	IDD: 32 μA max. at 32 kHz,
	4.0V	use in LP mode	3.0V	3.0V
	IPD: 0.6 μA typ. at 4.0V	use in LP mode	IPD: 9 μA max. at 3.0V	IPD: 9 μA max. at 3.0V
	Freq: 200 kHz max.		Freq: 200 kHz max.	Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.2 DC Characteristics: PIC16LC61-04 (Commercial, Industrial)

		Standa	rd Ope	rating (Condi	tions (u	Inless otherwise stated)
DC CHA	RACTERISTICS	Operatir	ng temp	perature	-40	°C ≤	$TA \le +85^{\circ}C$ for industrial and
					0°C	≥ ≤	$TA \le +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	XT, RC, and LP osc configuration
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2)	Idd	-	1.4	2.5	mA	Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	15	32	μA	Fosc = 32 kHz, VDD = 3.0V, WDT disabled, LP osc configuration
D020	Power-down Current	IPD	-	5	20	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3)		-	0.6	9	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.6	12	μA	VDD = 3.0V, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$

These parameters are characterized but not tested.

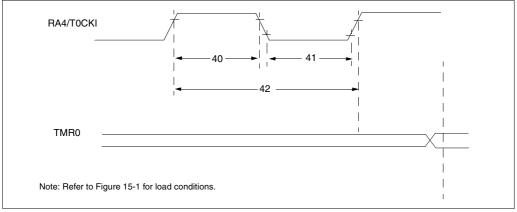
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,


 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic	acteristic		Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_	_		Must also meet
			With Prescaler	10	—	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	—	—		Must also meet
			With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	TCY + 40	_	_		N = prescale value
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N	_	_	ns	(2, 4,, 256)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 16-12: TYPICAL IDD VS. FREQUENCY (EXTERNAL CLOCK, 25°C)

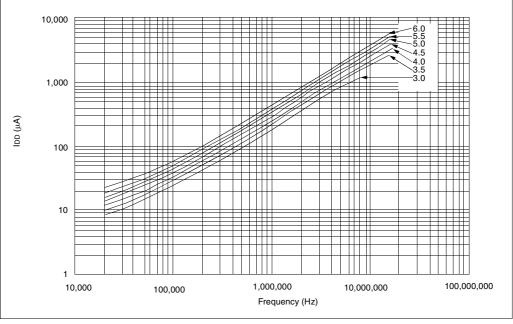
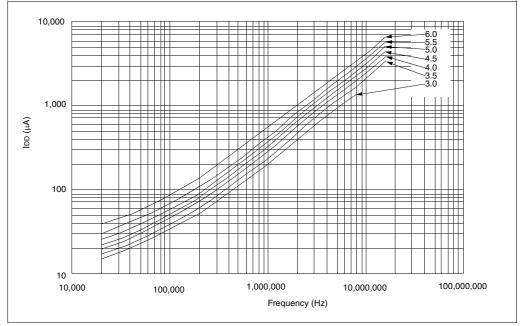
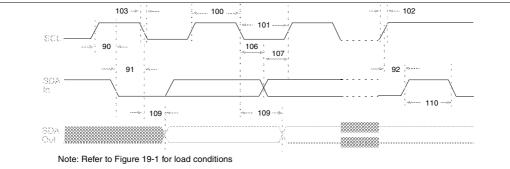




FIGURE 16-13: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK, -40° TO +85°C)

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

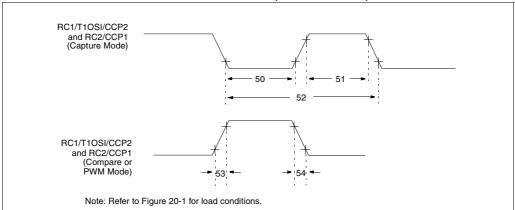
FIGURE 19-10: I²C BUS DATA TIMING

TABLE 19-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0		μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	-	μs	Devce must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
101	TLOW	Clock low time	100 kHz mode	4.7	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102	TR	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250		ns	Note 2
			400 kHz mode	100		ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	_	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I^2C -bus device can be used in a standard-mode (100 kHz) I^2C -bus system, but the requirement tsu;DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I^2C bus specification) before the SCL line is released.


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

20.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	opS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			· · · · ·
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st	(I ² C specifications only)		
CC	· · · ·		
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
	20-1: LOAD CONDITIONS FOR DEVIC		SPECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		
	Ŷ		
			Pin CL
	\leq $^{\text{\tiny ML}}$		FIII
			Vss
		$RL = 464\Omega$	
	Vss	C∟ = 50 pF	for all pins except OSC2/CLKOUT
Note 1.	PORTD and PORTE are not imple-	•	but including D and E outputs as ports
NOLE I.	mented on the PIC16C63.	15 pF	for OSC2 output
			•

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
	inpu	input low time	With Prescaler	PIC16 C 63/65A	10	—		ns	
				PIC16LC63/65A	20	—		ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5TCY + 20	-		ns	
	input high tim	input high time	With Prescaler	PIC16 C 63/65A	10	—		ns	
			PIC16 LC 63/65A	20	-		ns		
52*	TccP	CCP1 and CCP2 input period		<u>3Tcy + 40</u> N	-		ns	N = prescale value (1,4, or 16)	
53*	TccR	CCP1 and CCP2 output rise time		PIC16 C 63/65A	_	10	25	ns	
				PIC16 LC 63/65A	_	25	45	ns	
54*	TccF	TccF CCP1 and CCP2 output fall time		PIC16 C 63/65A	_	10	25	ns	
				PIC16 LC 63/65A	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

21.3 DC Characteristics: PIC16CR63/R65-04 (Commercial, Industrial) PIC16CR63/R65-10 (Commercial, Industrial) PIC16CR63/R65-20 (Commercial, Industrial) PIC16LCR63/R65-04 (Commercial, Industrial)

			rd Operat				ss otherwise stated) $A \le +85^{\circ}C$ for industrial and
DC CHA	RACTERISTICS	Operatir Section		Vdd	0°C range as o		$A \le +70^{\circ}C$ for commercial ed in DC spec Section 21.1 and
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15Vdd	v	For entire VDD range
D030A			Vss	-	0.8V	v	$4.5V \le VDD \le 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	v	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1
	Input High Voltage						
	I/O ports	Vін		-			
D040	with TTL buffer		2.0	-	Vdd	v	$4.5V \le V$ DD $\le 5.5V$
D040A			0.25VDD	-	Vdd	v	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and
							LP osc configuration
	Output Low Voltage						-
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	v	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	v	IOH = -1.3 mA, VDD = 4.5 V, -40°C to +85°C
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin

These parameters are characterized but not tested.

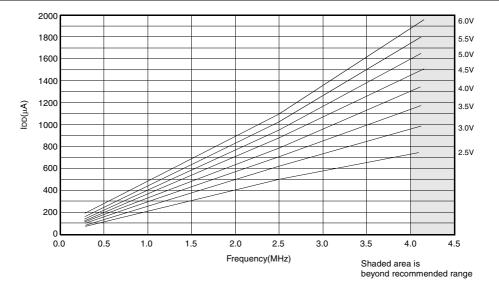
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

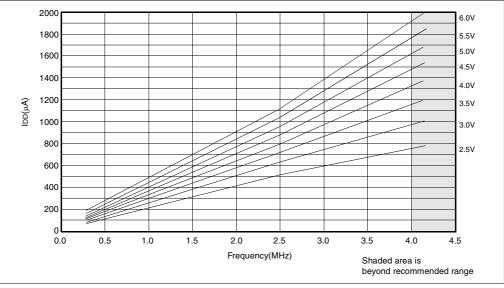
 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


21.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:


1. TppS2p	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:	ш	
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	ss	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:		
S	-		
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	v	Valid
L	Low	z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
	(I ² C specifications only)	2011	
CC			
HD	Hold	SU	Setup
ST	Tiold	30	Selup
DAT	DATA input hold	STO	STOP condition
STA	START condition	310	STOP condition
1			
FIGURE 2	21-1: LOAD CONDITIONS FOR DEVIC	E TIMING S	PECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		
	φ	Γ	\checkmark
	2		
	\geq RL	I	Pin — CL
			•
			Vss
		RL = 464Ω	
	•		for all pipe execut OSCO/OLKOUT
	¥85	•	for all pins except OSC2/CLKOUT but including D and E outputs as ports
Note 1:	PORTD and PORTE are not imple-		
	mented on the PIC16CR63.	15 pF	for OSC2 output

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 23-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

Package Marking Information (Cont'd)

28-Lead SOIC

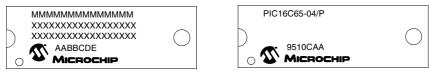
28-Lead Side Brazed Skinny Windowed

Example PIC16C66/JW \mathcal{D} 9517CAT

PIC16C62/JW

9517SBT

Example


Example

PIC16C62-20/S0111

5 9515SBA

40-Lead PDIP

Example

Legend:	MMM	Microchip part number information	
	XXX	Customer specific information*	
	AA	Year code (last 2 digits of calender year)	
	BB	Week code (week of January 1 is week '01')	
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.	
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.	
Note:	line, it will b	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of naracters for customer specific information.	

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSs and $\overline{\text{MCLR}}$ pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509, PIC12C671, PIC12C672	8-pin
PIC16C154, PIC16CR154, PIC16C156, PIC16CR156, PIC16C158, PIC16CR158, PIC16C52, PIC16C54, PIC16C54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C554, PIC16CR58A, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622 PIC16C641, PIC16C642, PIC16C661, PIC16C662 PIC16C710, PIC16C71, PIC16C711, PIC16C715 PIC16F83, PIC16CR83, PIC16F84A, PIC16CR84	18-pin, 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63, PIC16C66, PIC16C72, PIC16C73A, PIC16C76	28-pin
PIC16CR64, PIC16C64A, PIC16C65A, PIC16CR65, PIC16C67, PIC16C74A, PIC16C77	40-pin
PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin
PIC17C756, PIC17C752	64/68-pin

TABLE F-1: PIN COMPATIBLE DEVICES

Figure 11-2:	SSPCON: Sync Serial Port
	Control Register (Address 14h) 85
Figure 11-3:	SSP Block Diagram (SPI Mode) 86
Figure 11-4:	SPI Master/Slave Connection 87
Figure 11-5:	SPI Mode Timing, Master Mode or
	Slave Mode w/o SS Control 88
Figure 11-6:	SPI Mode Timing, Slave Mode with
	SS Control 88
Figure 11-7:	SSPSTAT: Sync Serial Port Status
	Register (Address 94h)(PIC16C66/67) 89
Figure 11-8:	SSPCON: Sync Serial Port Control
	Register (Address 14h)(PIC16C66/67)90
Figure 11-9:	SSP Block Diagram (SPI Mode)
	(PIC16C66/67)
Figure 11-10:	SPI Master/Slave Connection
	(PIC16C66/67)
Figure 11-11:	SPI Mode Timing, Master Mode
F ' 11 10	(PIC16C66/67)
Figure 11-12:	SPI Mode Timing (Slave Mode With
Figure 11 10.	CKE = 0) (PIC16C66/67)
Figure 11-13:	SPI Mode Timing (Slave Mode With
Figure 11 14:	CKE = 1) (PIC16C66/67)94 Start and Stop Conditions95
Figure 11-14: Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
	(Two Masters)
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram (I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
•	(7-bit Address)101
Figure 11-26:	I ² C Waveforms for Transmission
	(7-bit Address) 102
Figure 11-27:	Operation of the I ² C Module in
	IDLE MODE DOV MODE at
	IDLE_MODE, RCV_MODE or
	XMIT_MODE 104
Figure 12-1:	XMIT_MODE104 TXSTA: Transmit Status and
Figure 12-1:	XMIT_MODE104 TXSTA: Transmit Status and Control Register (Address 98h)105
Figure 12-1: Figure 12-2:	XMIT_MODE104 TXSTA: Transmit Status and Control Register (Address 98h)105 RCSTA: Receive Status and
Figure 12-2:	XMIT_MODE 104 TXSTA: Transmit Status and 0 Control Register (Address 98h) 105 RCSTA: Receive Status and 0 Control Register (Address 18h) 106
-	XMIT_MODE 104 TXSTA: Transmit Status and 0 Control Register (Address 98h) 105 RCSTA: Receive Status and 0 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 0
Figure 12-2: Figure 12-3:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110
Figure 12-2:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 10
Figure 12-2: Figure 12-3: Figure 12-4:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110
Figure 12-2: Figure 12-3:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) 110
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5:	XMIT_MODE 104 TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 PIC16C63/R63/65/65A/R65) 110
Figure 12-2: Figure 12-3: Figure 12-4:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 101 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 101 RX Pin Sampling Scheme (BRGH = 0 or = 1) 110
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6:	XMIT_MODE 104 TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67)
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/R63/65/65A/R65) (PIC16C66/R63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/R63/E65A/R65) 111 USART Transmit Block Diagram 112
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) PIC16C66/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 Asynchronous Master Transmission 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 102 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 (Back to Back) 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 113 USART Receive Block Diagram 114
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	XMIT_MODE104TXSTA: Transmit Status andControl Register (Address 98h)105RCSTA: Receive Status andControl Register (Address 18h)106RX Pin Sampling Scheme (BRGH = 0)PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 0 or = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 0 or = 1)(PIC16C66/67)111USART Transmit Block Diagram112Asynchronous Master Transmission113USART Receive Block Diagram114Asynchronous Transmission114
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 102 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception 117

Figure 13-2:	Configuration Word for
	PIC16C62/64/65 124
Figure 13-3:	Configuration Word for
	PIC16C62A/R62/63/R63/64A/R64/
	65A/R65/66/67 124
Figure 13-4:	Crystal/Ceramic Resonator Operation
	(HS, XT or LP OSC Configuration)
Figure 13-5:	External Clock Input Operation
rigule 15-5.	(HS, XT or LP OSC Configuration)
Einung 10.0	
Figure 13-6:	External Parallel Resonant
	Crystal Oscillator Circuit 127
Figure 13-7:	External Series Resonant
	Crystal Oscillator Circuit 127
Figure 13-8:	RC Oscillator Mode 127
Figure 13-9:	Simplified Block Diagram of
	On-chip Reset Circuit 128
Figure 13-10:	Brown-out Situations 129
Figure 13-11:	Time-out Sequence on Power-up
•	(MCLR not Tied to VDD): Case 1
Figure 13-12:	Time-out Sequence on Power-up
. iguio 10 12.	(MCLR Not Tied To VDD): Case 2
Figure 13-13:	Time-out Sequence on Power-up
rigule 15-15.	(MCLR Tied to VDD)
Einung 10 14.	
Figure 13-14:	External Power-on Reset Circuit
	(For Slow VDD Power-up) 135
Figure 13-15:	External Brown-out
	Protection Circuit 1 135
Figure 13-16:	External Brown-out
	Protection Circuit 2 135
Figure 13-17:	Interrupt Logic for PIC16C61 137
Figure 13-18:	Interrupt Logic for PIC16C6X 137
Figure 13-19:	INT Pin Interrupt Timing 138
Figure 13-20:	Watchdog Timer Block Diagram 140
Figure 13-21:	Summary of Watchdog
riguie to 21.	Timer Registers 140
Figure 12 00	
Figure 13-22:	Wake-up from Sleep Through Interrupt142
Einung 10.00	
Figure 13-23:	Typical In-circuit Serial
	Programming Connection 142
Figure 14-1:	General Format for Instructions 143
Figure 16-1:	Load Conditions for Device Timing
	Specifications 168
Figure 16-2:	External Clock Timing 169
Figure 16-3:	CLKOUT and I/O Timing 170
Figure 16-4:	Reset, Watchdog Timer, Oscillator
-	Start-up Timer and Power-up Timer
	Timing 171
Figure 16-5:	Timer0 External Clock Timings 172
Figure 17-1:	Typical RC Oscillator
rigato tr ti	Frequency vs. Temperature
Eiguro 17 0	Typical RC Oscillator
Figure 17-2:	
E' 47.0	Frequency vs. VDD
Figure 17-3:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-4:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-5:	Typical IPD vs. VDD Watchdog Timer
	Disabled 25°C 174
Figure 17-6:	Typical IPD vs. VDD Watchdog Timer
-	Enabled 25°C 175
Figure 17-7:	Maximum IPD vs. VDD Watchdog
	÷
Figure 17-8.	Disabled 175
Figure 17-8:	Disabled 175 Maximum IPD vs. VDD Watchdog
	Disabled
Figure 17-8: Figure 17-9:	Disabled
	Disabled