

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62a-10-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C6X

FIGURE 3-4: PIC16C66/67 BLOCK DIAGRAM

Pin Name	DIP Pin#	SOIC Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	16	16	I	ST/CMOS(1)	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	0		Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	4	4	I/P	ST	Master clear reset input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0	17	17	I/O	TTL	
RA1	18	18	I/O	TTL	
RA2	1	1	I/O	TTL	
RA3	2	2	I/O	TTL	
RA4/T0CKI	3	3	I/O	ST	RA4 can also be the clock input to the Timer0 timer/counter. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	6	I/O	TTL/ST ⁽²⁾	RB0 can also be the external interrupt pin.
RB1	7	7	I/O	TTL	
RB2	8	8	I/O	TTL	
RB3	9	9	I/O	TTL	
RB4	10	10	I/O	TTL	Interrupt on change pin.
RB5	11	11	I/O	TTL	Interrupt on change pin.
RB6	12	12	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming clock.
RB7	13	13	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming data.
Vss	5	5	Р	_	Ground reference for logic and I/O pins.
Vdd	14	14	Р	—	Positive supply for logic and I/O pins.
Legend: I = input	0 = ou — = N	itput ot used	ו/כ דד) = input/outpu L = TTL input	t P = power ST = Schmitt Trigger input

PIC16C61 PINOUT DESCRIPTION TABLE 3-1:

 Note
 1:
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
 2:
 This buffer is a Schmitt Trigger input when configured as the external interrupt.
 Configured as the external interrup

3: This buffer is a Schmitt Trigger input when used in serial programming mode.

									(,	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (ne	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	с	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	ər					xxxx xxxx	uuuu uuuu
85h	TRISA	-	_		11 1111	11 1111					
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I		1111 1111	1111 1111					
88h	_	Unimpleme	nted		_	_					
89h	-	Unimpleme	nted		—	—					
8Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	(6)	(6)	—	-	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	-	Unimpleme	nted							—	—
8Eh	PCON	_	_	_	-	-	_	POR	BOR ⁽⁴⁾	dd	uu
8Fh	_	Unimpleme	nted							_	_
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	—	—	D/A	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	_	Unimpleme	nted		·	•				—	_

TABLE 4-2:	SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62	(Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
PSPIF bit7	-	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R W U - n	= Readable bit = Writable bit = Unimplemented bit, read as '0' = Value at POR reset				
oit 7:	PSPIF: Part $1 = A \text{ read}$ 0 = No read	rallel Slave or a write o d or write o	Port Interru operation ha	upt Flag bit as taken pla is taken pla	ace (must be .ce	cleared in s	software)						
bit 6:	Reserved: Always maintain this bit clear.												
bit 5-4:	Unimplemented: Read as '0'												
bit 3:	SSPIF : Syr 1 = The tra 0 = Waiting	nchronous nsmission/ I to transmi	Serial Port reception is t/receive	Interrupt Fl complete	ag bit (must be clea	ared in softw	vare)						
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode												
bit 1:	TMR2IF : T 1 = TMR2 1 0 = No TM	MR2 to PR to PR2 mat R2 to PR2	2 Match Int ch occurred match occu	errupt Flag d (must be irred	bit cleared in so	ftware)							
bit 0:	TMR1IF : T 1 = TMR1 0 = No TMI	MR1 Overf register ove R1 register	low Interrup erflow occur occurred	ot Flag bit rred (must l	be cleared in	software)							
Interri globa enabli	upt flag bits (enable bit, ng an interri	get set whe GIE (INTC) upt.	n an interrเ ON<7>). ปร	upt conditio ser software	n occurs rega e should ensi	ardless of th ure the appr	e state of its ropriate inter	cori rupt	responding enable bit or the flag bits are clear prior to				

FIGURE 4-18: PIR1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 0Ch)

5.5 PORTE and TRISE Register

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTE has three pins, RE2/CS, RE1/WR, and RE0/RD which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which controls the parallel slave port operation and also controls the direction of the PORTE pins.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1							
IBF	OBF	IBOV	PSPMODE	_	bit2	bit1	bit0	R = Readable bit						
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset						
bit 7 :	IBF: Input 1 = A word 0 = No wor	Buffer Full has been d has beer	Status bit received and n received	is waiting t	o be read by	the CPU								
bit 6:	OBF : Outp 1 = The ou 0 = The ou	out Buffer F Itput buffer Itput buffer	ull Status bit still holds a p has been rea	reviously w d	ritten word									
bit 5:	 IBOV: Input Buffer Overflow Detect bit (in microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred 													
bit 4:	PSPMODE: Parallel Slave Port Mode Select bit 1 = Parallel slave port mode 0 = General purpose I/O mode													
bit 3:	Unimplem	ented: Re	ad as '0'											
	PORTE D	ata Direc	ction Bits											
bit 2:	Bit2 : Direct 1 = Input 0 = Output	tion Contro	ol bit for pin R	E2/CS										
bit 1:	Bit1: Direc 1 = Input 0 = Output	tion Contro	ol bit for pin R	E1/WR										
bit 0:	Bit0 : Direc 1 = Input 0 = Output	tion Contro	ol bit for pin R	E0/RD										

8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

CCP2 is implemented on the PIC16C63/R63/65/65A/ R65/66/67 only.

If CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCPxM3:CCPxM0 = 1011), this signal will reset Timer1.

Note: The "special event trigger" from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF(PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If the Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for the Timer1 module.

8.6 <u>Resetting of TMR1 Register Pair</u> (TMR1H:TMR1L)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 or CCP2 special event trigger.

The T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescaler. In all other resets, the register is unaffected.

8.7 <u>Timer1 Prescaler</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Valu all c res	e on other sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
0Eh	TMR1L	Holding r	egister	for the Lea	st Significa	nt Byte of th	e 16-bit TN	/R1 registe	ər	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding r	egister	for the Mos	r	xxxx	xxxx	uuuu	uuuu				
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: The USART is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000
0Dh ⁽⁴⁾	PIR2	—	—	—	-	—	—	—	CCP2IF		
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000
8Dh ⁽⁴⁾	PIE2	—	_	_	_	_	_	_	CCP2IE		
87h	TRISC	PORTC I	Data Direction		1111 1111	1111 1111					
11h	TMR2	Timer2 m	iodule's reg		0000	0000					
92h	PR2	Timer2 m	iodule's Per	iod register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/0	Compare/P	WM1 (LSB)				L		xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/0	Compare/P	WM1 (MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽⁴⁾	CCPR2L	Capture/0	Compare/P	WM2 (LSB)		·		·	·	xxxx xxxx	uuuu uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/0	Compare/P	WM2 (MSB)					xxxx xxxx	սսսս սսսս
1Dh ⁽⁴⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

 Legend:
 x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

 Note
 1:
 These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.

11.2.1 OPERATION OF SSP MODULE IN SPI MODE

Applicable Devices 61 62 624 R62 63 R63 64 644 R64 65 654 R65 66 67

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>). These control bits allow the following to be specified:

- · Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Output/Input data on the Rising/ Falling edge of SCK)
- · Clock Rate (Master mode only)
- Slave Select Mode (Slave mode only)

The SSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the Buffer Full bit, BF (SSPSTAT<0>) and flag bit SSPIF are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit, WCOL (SSPCON<7>) will be set. User software must clear bit WCOL so that it can be determined if the following write(s) to the SSPBUF completed successfully. When the application software is expecting to receive valid data, the SSPBUF register should be read before the next byte of data to transfer is written to the SSPBUF register. The Buffer Full bit BF (SSPSTAT<0>) indicates when the SSPBUF register has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF register must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-1 shows the loading of the SSPBUF (SSPSR) register for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BSF BTFSS	STATUS, SSPSTAT,	RPO , BF	;Specify Bank 1 ;Has data been ;received ;(transmit :complete)2
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents ;of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents ; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-3), shows that the SSPSR register is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-3: SSP BLOCK DIAGRAM (SPI MODE)

12.1 USART Baud Rate Generator (BRG)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 12-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

9600 = 16000000 / (64 (X + 1))

 $X = \lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = <u>(Calculated Baud Rate Desired Baud Rate)</u> Desired Baud Rate
 - = (9615 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Note:	For the PIC16C63/R63/65/65A/R65 the										
	asynchronous high speed mode										
	(BRGH = 1) may experience a high rate of										
	receive errors. It is recommended that										
	BRGH = 0. If you desire a higher baud rate										
	than BRGH = 0 can support, refer to the										
	device errata for additional information or										
	use the PIC16C66/67.										

Writing a new value to the SPBRG register, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = FOSC/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		Value on all other Resets	
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000	-010	0000	-010
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 ·	-00x	0000	-00x
99h	SPBRG	Baud Rat	te Genera		0000	0000	0000	0000					

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcod	e	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS	1					1	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AI	ND CO	NTROL OPERATIONS						1	
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
NO.				1					
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	—	_	ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	FOCKI Low Pulse Width		0.5TCY + 20	—	-	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	-	-	ns	
				With Prescaler	Greater of:	—	—	ns	N = prescale value
					20 or <u>ICY + 40</u>				(2, 4,, 256)
45*	THE	TAOKI Link Time	O make a second		N 0.5Taxi - 00				Must slas was st
45"	ITTH	I ICKI High Time	Synchronous, P	rescaler = 1	0.51CY + 20		_	ns	Must also meet
			Synchronous,	PIC16C6X	15	_	_	ns	parameter 47
			2,4,8	PIC16 LC 6X	25	_	_	ns	
			Asynchronous	PIC16 C 6X	30	—	_	ns	
				PIC16 LC 6X	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler = 1	0.5TCY + 20	—		ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	_	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	—	—	ns	
			Asynchronous	PIC16 C 6X	30	—	-	ns	
				PIC16 LC 6X	50	—	_	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	Greater of:	—	_	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16 LC 6X	Greater of:				N = prescale value
					50 OR <u>ICY + 40</u>				(1, 2, 4, 8)
				DIG 40 COV	N				
			Asynchronous	PIC16 C 6X	60	_	_	ns	
		-	L	PIC16 LC 6X	100	-	—	ns	
	⊢t1	Timer1 oscillator inp	out frequency rar	ige	DC	_	200	kHz	
40		(oscillator enabled b	by setting bit 11C	ISCEN)	07		77		
48	ICKEZtmr1	Delay from external	CIOCK edge to tin	ner increment	21050		/ 10SC	-	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-9: I²C BUS START/STOP BITS TIMING

TABLE 17-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter	Sym	Characteristic	Characteristic		Тур	Max	Units	Conditions	
No.									
90	TSU:STA	START condition	100 kHz mode	4700			ne	Only relevant for repeated START	
		Setup time	400 kHz mode	600	_	_	115	condition	
91	THD:STA	START condition	100 kHz mode	4000	_	_	ne	After this period the first clock	
		Hold time	400 kHz mode	600	_	_	115	pulse is generated	
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	—	20		
		Setup time	400 kHz mode	600	—	—	115		
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	ne		
		Hold time	400 kHz mode	600	_	_	115		

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-8: PARALLEL SLAVE PORT TIMING (PIC16C64A/R64)

TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64A/R64)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)		20		—	ns	
				25	_	_	ns	Extended Range Only
63*	TwrH2dtl	wrH2dtl \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data-in invalid (hold time)	PIC16 C 64A/R64	20	I	—	ns	
			PIC16 LC 64A.R64	35	_	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		_	I	80	ns	
				_	_	90	ns	Extended Range Only
65*	TrdH2dtl	$\overline{RD}\uparrow$ or $\overline{CS}\uparrow$ to data–out invalid				30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

DC CHA	RACTERISTICS	Standar Operatir Operatir Section	rd Operating temperating temperating voltage 19.2	i ng C ature VDD r	onditions -40°C 0°C range as c	s (unles C ≤ T/ ≤ T/ describe	ss otherwise stated) $A \le +85^{\circ}$ C for industrial and $A \le +70^{\circ}$ C for commercial ed in DC spec Section 19.1 and
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				1			
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	CIO	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

21.5 <u>Timing Diagrams and Specifications</u>

FIGURE 21-2: EXTERNAL CLOCK TIMING

TABLE 21-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Faaa	External CLKIN Errorugnov	DC		4		VT and DC age made
	FUSC	(Note 1)	DC	_	4		
			DC	_	4	MHZ	HS osc mode (-04)
			DC	_	10	MHZ	HS osc mode (-10)
			DC	_	20	MHZ	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	_	250	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	—	ns	XT oscillator
	TosH	Low Time	2.5	_	_	μs	LP oscillator
			15	—	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			-	—	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

24.0 PACKAGING INFORMATION

24.1 <u>18-Lead Plastic Dual In-line (300 mil) (P)</u>

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Plastic Dual In-Line (PLA)										
		Millimeters		Inches						
Symbol	Min	Мах	Notes	Min	Мах	Notes				
α	0°	10°		0°	10°					
А	_	4.064		_	0.160					
A1	0.381	_		0.015	_					
A2	3.048	3.810		0.120	0.150					
В	0.355	0.559		0.014	0.022					
B1	1.524	1.524	Reference	0.060	0.060	Reference				
С	0.203	0.381	Typical	0.008	0.015	Typical				
D	22.479	23.495		0.885	0.925					
D1	20.320	20.320	Reference	0.800	0.800	Reference				
E	7.620	8.255		0.300	0.325					
E1	6.096	7.112		0.240	0.280					
e1	2.489	2.591	Typical	0.098	0.102	Typical				
eA	7.620	7.620	Reference	0.300	0.300	Reference				
eB	7.874	9.906		0.310	0.390					
L	3.048	3.556		0.120	0.140					
N	18	18		18	18					
S	0.889	-		0.035	-					
S1	0.127	_		0.005	_					

24.2 28-Lead Plastic Dual In-line (300 mil) (SP)

Package Group: Plastic Dual In-Line (PLA)										
		Millimeters		Inches						
Symbol	Min	Max	Notes	Min	Max	Notes				
α	0°	10°		0°	10°					
A	3.632	4.572		0.143	0.180					
A1	0.381	_		0.015	_					
A2	3.175	3.556		0.125	0.140					
В	0.406	0.559		0.016	0.022					
B1	1.016	1.651	Typical	0.040	0.065	Typical				
B2	0.762	1.016	4 places	0.030	0.040	4 places				
B3	0.203	0.508	4 places	0.008	0.020	4 places				
С	0.203	0.331	Typical	0.008	0.013	Typical				
D	34.163	35.179		1.385	1.395					
D1	33.020	33.020	Reference	1.300	1.300	Reference				
E	7.874	8.382		0.310	0.330					
E1	7.112	7.493		0.280	0.295					
e1	2.540	2.540	Typical	0.100	0.100	Typical				
eA	7.874	7.874	Reference	0.310	0.310	Reference				
eB	8.128	9.652		0.320	0.380					
L	3.175	3.683		0.125	0.145					
N	28	28		28	28					
S	0.584	1.220		0.023	0.048					

F.7 PIC16C7XX Family of Devces

		PIC16C710	PIC16C71	PIC16C711	PIC16C715	PIC16C72	PIC16CR72 ⁽¹⁾
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
Memory	EPROM Program Memory (x14 words)	512	1K	1K	2К	2К	—
	ROM Program Memory (14K words)	_	_	_	_	_	2К
	Data Memory (bytes)	36	36	68	128	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	_	—	_	_	1	1
	Serial Port(s) (SPI/I ² C, USART)	_	_	_	_	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	_	_	_	_	_	—
	A/D Converter (8-bit) Channels	4	4	4	4	5	5
	Interrupt Sources	4	4	4	4	8	8
	I/O Pins	13	13	13	13	22	22
	Voltage Range (Volts)	3.0-6.0	3.0-6.0	3.0-6.0	3.0-5.5	2.5-6.0	3.0-5.5
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	—	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP

		PIC16C73A	PIC16C74A	PIC16C76	PIC16C77
Clock	Maximum Frequency of Oper- ation (MHz)	20	20	20	20
Memory	EPROM Program Memory (x14 words)	4K	4K	8K	8K
	Data Memory (bytes)	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	—	Yes	—	Yes
	A/D Converter (8-bit) Channels	5	8	5	8
	Interrupt Sources	11	12	11	12
	I/O Pins	22	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Brown-out Reset	Yes	Yes	Yes	Yes
	Packages	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.

Note 1: Please contact your local Microchip sales office for availability of these devices.

-