

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62a-20i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

		PIC16C61	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
	EPROM Program Memory (x14 words)	1K	2К	—	4K	_
Memory	ROM Program Memory (x14 words)		_	2К	—	4K
	Data Memory (bytes)	36	128	128	192	192
	Timer Module(s)	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	_	1	1	2	2
	Serial Port(s) (SPI/I ² C, USART)	_	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	_	_	—	_	_
	Interrupt Sources	3	7	7	10	10
	I/O Pins	13	22	22	22	22
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SO	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC

		PIC16C64A	PIC16CR64	PIC16C65A	PIC16CR65	PIC16C66	PIC16C67
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2К	_	4K	_	8K	8K
Memory	ROM Program Memory (x14 words)	—	2К	_	4K	_	_
	Data Memory (bytes)	128	128	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	1	1	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	_	Yes
	Interrupt Sources	8	8	11	11	10	11
	I/O Pins	33	33	33	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
Features	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages		40-pin DIP; 44-pin PLCC, MQFP, TQFP		40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

2.0 PIC16C6X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C6X family of devices, there are four device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**64. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**64. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C6X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

ROM devices do not allow serialization information in the program memory space. The user may have this information programmed in the data memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

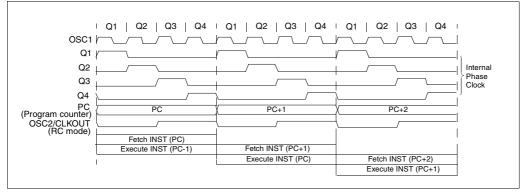
Pin Name	DIP Pin#	SOIC Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	16	16	I	ST/CMOS(1)	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	15	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	4	4	I/P	ST	Master clear reset input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0	17	17	I/O	TTL	
RA1	18	18	I/O	TTL	
RA2	1	1	I/O	TTL	
RA3	2	2	I/O	TTL	
RA4/T0CKI	3	3	I/O	ST	RA4 can also be the clock input to the Timer0 timer/counter. Output is open drain type.
					PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	6	6	I/O	TTL/ST ⁽²⁾	RB0 can also be the external interrupt pin.
RB1	7	7	I/O	TTL	
RB2	8	8	I/O	TTL	
RB3	9	9	I/O	TTL	
RB4	10	10	I/O	TTL	Interrupt on change pin.
RB5	11	11	I/O	TTL	Interrupt on change pin.
RB6	12	12	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming clock.
RB7	13	13	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming data.
Vss	5	5	Р	-	Ground reference for logic and I/O pins.
Vdd	14	14	Р	_	Positive supply for logic and I/O pins.
Legend: I = input	0 = ou — = N	utput lot used) = input/outpu L = TTL input	

PIC16C61 PINOUT DESCRIPTION TABLE 3-1:

 Note
 1:
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
 2:
 This buffer is a Schmitt Trigger input when configured as the external interrupt.
 Configured as the external interrup

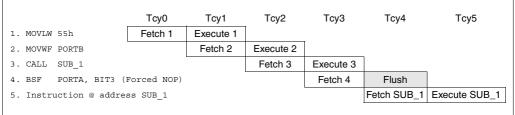
3: This buffer is a Schmitt Trigger input when used in serial programming mode.

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-5.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-5: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

5.7 Parallel Slave Port

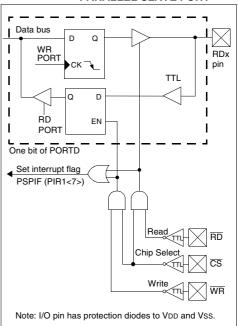
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTD operates as an 8-bit wide parallel slave port (microprocessor port) when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through $\overline{\text{RD}}$ control input (RE0/ $\overline{\text{RD}}$) and $\overline{\text{WR}}$ control input pin (RE1/ $\overline{\text{WR}}$).

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored since the microprocessor is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

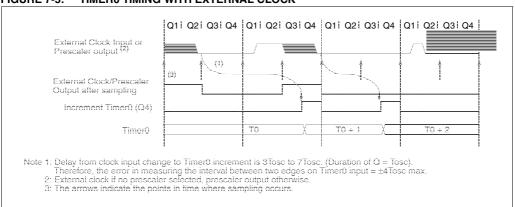
An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE AS A PARALLEL SLAVE PORT

7.2 Using Timer0 with External Clock

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

NOTES:

-

8.0 TIMER1 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

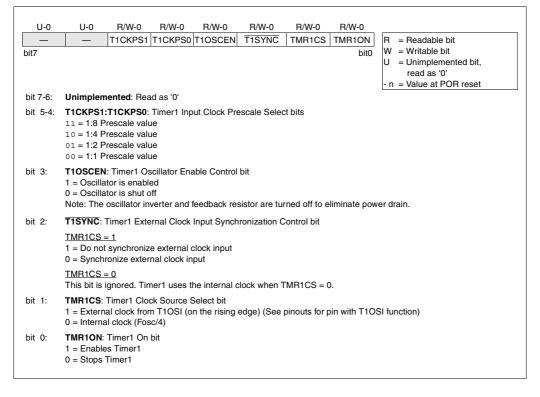
Timer1 can operate in one of two modes:

- · As a timer
- · As a counter

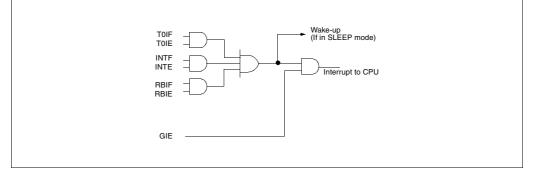
The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).


Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/R63/64A/R64/65A/R65/ R66/67, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.


For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.

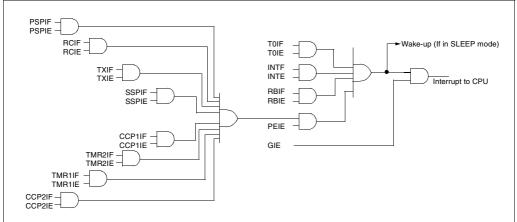
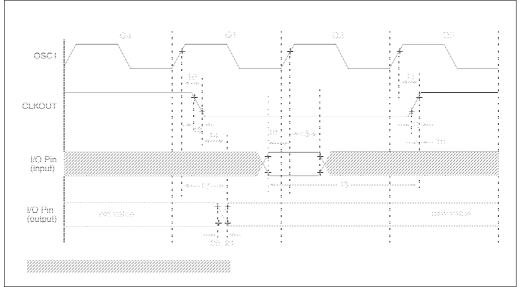

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

FIGURE 13-17: INTERRUPT LOGIC FOR PIC16C61


The following table shows which devices have which interrupts.

Device	TOIF	INTF	RBIF	PSPIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	CCP2IF
PIC16C62	Yes	Yes	Yes	-	-	-	Yes	Yes	Yes	Yes	-
PIC16C62A	Yes	Yes	Yes	-	-	-	Yes	Yes	Yes	Yes	-
PIC16CR62	Yes	Yes	Yes	-	-	-	Yes	Yes	Yes	Yes	-
PIC16C63	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16CR63	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C64	Yes	Yes	Yes	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C64A	Yes	Yes	Yes	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C64	Yes	Yes	Yes	Yes	-	-	Yes	Yes	Yes	Yes	-
PIC16C65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C65A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16CR65	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C66	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes
PIC16C67	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

RLF	Rotate Left f through Carry	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RLF f,d	Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below	Operation:	See description below
Status Affected:	С	Status Affected:	С
Encoding:	00 1101 dfff ffff	Encoding:	00 1100 dfff ffff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.
Words:	1	Words:	1
Cycles:	1	Cycles:	1
Q Cycle Activity:	Q1 Q2 Q3 Q4	Q Cycle Activity:	Q1 Q2 Q3 Q4
	Decode Read register 'f' Vite to destination		Decode Read register data Write to destination
Example	RLF REG1,0	Example	RRF REG1,0
	Before Instruction REG1 = 1110 0110 C = 0 - - After Instruction - <td></td> <td>Before Instruction REG1 = 1110 0110 C = 0 -<</td>		Before Instruction REG1 = 1110 0110 C = 0 -<

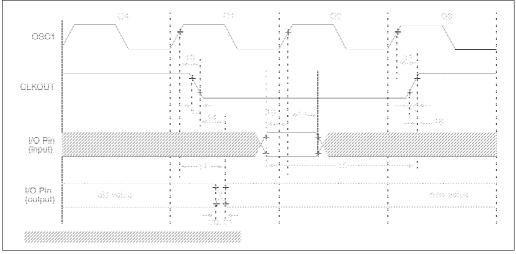
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 15-3: CLKOUT AND I/O TIMING

CLKOUT AND I/O TIMING REQUIREMENTS TABLE 15-3:

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out va	alid	_		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKC) TUC	0.25Tcy + 25		_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT 1		0		_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid		_		80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Por (I/O in hold time)	rt input invalid	TBD	I	_	ns	
19*	TioV2osH	Port input valid to OSC1 time)	↑ (I/O in setup	TBD		—	ns	
20*	TioR	Port output rise time	PIC16 C 61	_	10	25	ns	
			PIC16LC61	_		60	ns	
21*	TioF	Port output fall time	PIC16 C 61	_	10	25	ns	
		PIC16 LC 61		_		60	ns	
22††*	Tinp	RB0/INT pin high or low time		20	_	—	ns	
23††*	Trbp	RB7:RB4 change int high	20		_	ns		

These parameters are characterized but not tested.


t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

These parameters are asynchronous events not related to any internal clock edges. ††

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		-	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		—	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	↑	Tosc + 200		_	ns	Note 1
16*	TckH2ioI	Port in hold after CLKOUT 1	0		_	ns	Note 1	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out	—	50	150	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC16 C 62/64	100		_	ns	
		input invalid (I/O in hold time)	PIC16LC62/64	200		_	ns	
19*	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)		0		—	ns	
20*	TioR	Port output rise time	PIC16 C 62/64	—	10	40	ns	
			PIC16LC62/64	—		80	ns	
21*	TioF	Port output fall time	PIC16 C 62/64	—	10	40	ns	
		PIC16 LC 62/64		—		80	ns	
22††*	Tinp	INT pin high or low time	•	Тсү	_	—	ns	
23††*	Trbp	RB7:RB4 change INT high or	low time	Тсү	_	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

18.2 DC Characteristics: PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)

		Standa	rd Ope	rating	Condi	tions (u	Inless otherwise stated)
DC CHA	RACTERISTICS	Operatir	ng temp	perature			$TA \leq +85^{\circ}C$ for industrial and
	1				0°C		$TA \le +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3, 5)		-	0.9	5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.9	5	μA	$V_{DD} = 3.0V$, WDT disabled, -40°C to +85°C
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

- $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.3 DC Characteristics: PIC16C62A/R62/64A/R64-04 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-10 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-20 (Commercial, Industrial, Extended) PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)

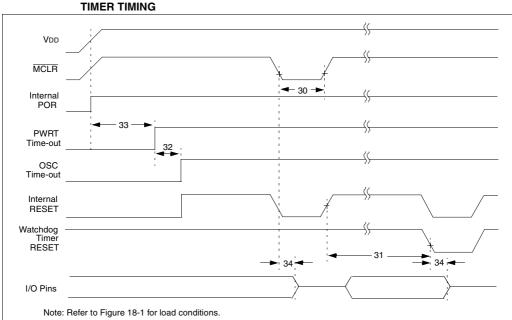
DC CH	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature -40° C \leq TA \leq +125°C for extended, -40° C \leq TA \leq +85°C for industrial and 0° C \leq TA \leq +70°C for commercialOperating voltage VDD range as described in DC spec Section 18.1 andSection 18.2							
Param No.	Characteristic	Sym	Min	тур †	Мах	Units	Conditions		
110.	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer	VIL	Vss	-	0.15VDD	v	For entire VDD range		
D030A			VSS	_	0.13VDD	v	$4.5V \le VDD \le 5.5V$		
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v			
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	v			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1		
	Input High Voltage					-			
	I/O ports	Viн		-					
D040	with TTL buffer		2.0	-	VDD	v	$4.5V \leq VDD \leq 5.5V$		
D040A			0.25VDD	-	Vdd	V	For entire VDD range		
			+ 0.8V				, , , , , , , , , , , , , , , , , , ,		
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range		
D042	MCLR		0.8VDD	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	I PURB	50	250	400	μA	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \leq VPIN \leq VDD, Pin at hi-impedance$		
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP		
							osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D080A			-	-	0.6	v	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	v	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
D083A			-	-	0.6	v	IOL = 1.2 mA, VDD = 4.5 V, -40°C to +125°C		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2	opS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
1	ase letters and their meanings:		
S			
F	Fall	P	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st	(I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE	18-1: LOAD CONDITIONS FOR DEVI	CE TIMING S	SPECIFICATIONS
	Load condition 1		Load condition 2
	N/ /0		
	VDD/2		
	J		
	\leq RL		
	\leq		· ····
	• • • • • • • • • • • • • • • • • • •		Vss
	Pin CL		
	+		
	Vss	RL = 464Ω	
			for all pipe execut OSC2/CL/CUT
		CL = 50 pF	for all pins except OSC2/CLKOUT but including D and E outputs as ports
Note 1:	PORTD and PORTE are not	15-5	- · ·
	implemented on the	15 pF	for OSC2 output
	PIC16C62A/R62.		

FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

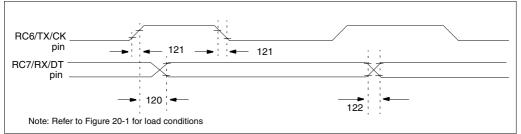
FIGURE 18-5: BROWN-OUT RESET TIMING

TABLE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	I	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024Tosc	Ι	-	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or WDT Reset		—	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—		μs	V DD \leq BVDD (param. D005)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

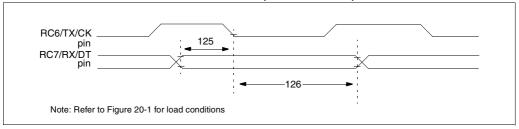

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S		;	3. Tcc:s	 (I²C specifications only)
2. TppS			4	4. Ts	(I ² C specifications only)
Т					
F	Frequency			т	Time
Lowercas	e letters (pp) and their me	anings:			
рр					
сс	CCP1			OSC	OSC1
ck	CLKOUT			rd	RD
CS	CS			rw	RD or WR
di	SDI			SC	SCK
do	SDO			SS	SS
dt	Data in			tO	TOCKI
io	I/O port			t1	T1CKI
mc	MCLR			wr	WR
Uppercas	e letters and their meanin	gs:			
S					
F	Fall			Р	Period
н	High			R	Rise
I	Invalid (Hi-impedance)			V	Valid
L	Low			Z	Hi-impedance
I ² C only					
AA	output access			High	High
BUF	Bus free			Low	Low
TCC:ST (l	² C specifications only)				
CC					
HD	Hold			SU	Setup
ST					
DAT	DATA input hold			STO	STOP condition
STA	START condition				
FIGURE 19	-1: LOAD CONDITIO	NS FOR DEV		IMING	SPECIFICATIONS
	Load conditio	<u>n 1</u>			Load condition 2
		Vdd/2			
		vuu/∠ ♀			
		J			
		\geq RL			Pin CL
		\geq			
		-• -			Vss
	Pin	CL			
			RL = 4	464Ω	
		Vss	CL = 5	50 pF	for all pins except OSC2/CLKOUT
				-	but including D and E outputs as ports
				15 pF	for OSC2 output

FIGURE 20-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING


TABLE 20-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120*	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16 C 63/65A	_	—	80	ns	
Clock high to data out valid		PIC16LC63/65A	_	—	100	ns		
121*			PIC16 C 63/65A	_	—	45	ns	
		(Master Mode)	PIC16LC63/65A	_	—	50	ns	
122*	Tdtrf	Data out rise time and fall time	PIC16 C 63/65A	_	—	45	ns	
			PIC16LC63/65A	_	—	50	ns	

These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 20-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125*	TdtV2ckL	$\frac{\text{SYNC RCV (MASTER \& SLAVE)}}{\text{Data setup before CK} \downarrow (\text{DT setup time})}$	15	_	_	ns	
126*	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15		_	ns	

These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

22.1 DC Characteristics: PIC16C66/67-04 (Commercial, Industrial, Extended) PIC16C66/67-10 (Commercial, Industrial, Extended) PIC16C66/67-20 (Commercial, Industrial, Extended)

DC CH/		Standar Operatir			e -40	≥ 0°C ≥ 0°C	unless otherwise stated) $\leq TA \leq +125$ °C for extended, $\leq TA \leq +85$ °C for industrial and $\leq TA \leq +70$ °C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC, osc config Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc config Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	10.5	42	μA	VDD = 4.0V, WDT enabled,-40°C to +85°C
D021	(Note 3, 5)		-	1.5	16	μA	$V_{DD} = 4.0V, WDT disabled, -0^{\circ}C to +70^{\circ}C$
D021A D021B			-	1.5 2.5	19 19	μΑ μΑ	VDD = 4.0V, WDT disabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -40°C to +125°C
50210				2.5	15	μΛ	
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Figure 11-2:	SSPCON: Sync Serial Port
	Control Register (Address 14h) 85
Figure 11-3:	SSP Block Diagram (SPI Mode) 86
Figure 11-4:	SPI Master/Slave Connection 87
Figure 11-5:	SPI Mode Timing, Master Mode or
	Slave Mode w/o SS Control 88
Figure 11-6:	SPI Mode Timing, Slave Mode with
	SS Control 88
Figure 11-7:	SSPSTAT: Sync Serial Port Status
	Register (Address 94h)(PIC16C66/67) 89
Figure 11-8:	SSPCON: Sync Serial Port Control
	Register (Address 14h)(PIC16C66/67)90
Figure 11-9:	SSP Block Diagram (SPI Mode)
	(PIC16C66/67)
Figure 11-10:	SPI Master/Slave Connection
	(PIC16C66/67)
Figure 11-11:	SPI Mode Timing, Master Mode
F ' 11 10	(PIC16C66/67)
Figure 11-12:	SPI Mode Timing (Slave Mode With
Figure 11 10.	CKE = 0) (PIC16C66/67)
Figure 11-13:	SPI Mode Timing (Slave Mode With
Figure 11 14:	CKE = 1) (PIC16C66/67)94 Start and Stop Conditions95
Figure 11-14: Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
ga.o 22.	(Two Masters)
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram (I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
0	(7-bit Address) 101
Figure 11-26:	I ² C Waveforms for Transmission
-	(7-bit Address)102
Figure 11-27:	Operation of the I ² C Module in
	IDLE_MODE, RCV_MODE or
	XMIT_MODE 104
Figure 12-1:	XMIT_MODE
Figure 12-1:	
Figure 12-1: Figure 12-2:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and
Figure 12-2:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and Control Register (Address 18h) 106
-	TXSTA: Transmit Status and Control Register (Address 98h)
Figure 12-2: Figure 12-3:	TXSTA: Transmit Status and Control Register (Address 98h)
Figure 12-2:	TXSTA: Transmit Status and Control Register (Address 98h)
Figure 12-2: Figure 12-3: Figure 12-4:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110
Figure 12-2: Figure 12-3:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) 110
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) Control Register (Address 18h) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110
Figure 12-2: Figure 12-3: Figure 12-4:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) RX Pin Sampling Scheme (BRGH = 0 or = 1) 110
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67)
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/R63/65/65A/R65) 111 USART Transmit Block Diagram 112
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7:	TXSTA: Transmit Status and Control Register (Address 98h) RCSTA: Receive Status and Control Register (Address 18h) ID5 RCSTA: Receive Status and Control Register (Address 18h) ID6 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) ID6 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) ID6 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) ID6 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) USART Transmit Block Diagram Asynchronous Master Transmission
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/R63/65/65A/R65) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 113 USART Receive Block Diagram 114 Asynchronous Reception 114
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 USART Receive Block Diagram 114 Synchronous Transmission 114
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Transmission 114 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Transmission 114 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception 117

Figure 13-2:	Configuration Word for
	PIC16C62/64/65 124
Figure 13-3:	Configuration Word for
	PIC16C62A/R62/63/R63/64A/R64/
	65A/R65/66/67 124
Figure 13-4:	Crystal/Ceramic Resonator Operation
	(HS, XT or LP OSC Configuration)
Figure 13-5:	External Clock Input Operation
rigule 15-5.	(HS, XT or LP OSC Configuration)
Einung 10.0	
Figure 13-6:	External Parallel Resonant
	Crystal Oscillator Circuit 127
Figure 13-7:	External Series Resonant
	Crystal Oscillator Circuit 127
Figure 13-8:	RC Oscillator Mode 127
Figure 13-9:	Simplified Block Diagram of
	On-chip Reset Circuit 128
Figure 13-10:	Brown-out Situations 129
Figure 13-11:	Time-out Sequence on Power-up
•	(MCLR not Tied to VDD): Case 1
Figure 13-12:	Time-out Sequence on Power-up
. iguio 10 12.	(MCLR Not Tied To VDD): Case 2
Figure 13-13:	Time-out Sequence on Power-up
rigule 15-15.	(MCLR Tied to VDD)
Einung 10 14.	
Figure 13-14:	External Power-on Reset Circuit
	(For Slow VDD Power-up) 135
Figure 13-15:	External Brown-out
	Protection Circuit 1 135
Figure 13-16:	External Brown-out
	Protection Circuit 2 135
Figure 13-17:	Interrupt Logic for PIC16C61 137
Figure 13-18:	Interrupt Logic for PIC16C6X 137
Figure 13-19:	INT Pin Interrupt Timing 138
Figure 13-20:	Watchdog Timer Block Diagram 140
Figure 13-21:	Summary of Watchdog
riguie to 21.	Timer Registers 140
Figure 12 00	
Figure 13-22:	Wake-up from Sleep Through Interrupt142
Einung 10.00	
Figure 13-23:	Typical In-circuit Serial
	Programming Connection 142
Figure 14-1:	General Format for Instructions 143
Figure 16-1:	Load Conditions for Device Timing
	Specifications 168
Figure 16-2:	External Clock Timing 169
Figure 16-3:	CLKOUT and I/O Timing 170
Figure 16-4:	Reset, Watchdog Timer, Oscillator
-	Start-up Timer and Power-up Timer
	Timing 171
Figure 16-5:	Timer0 External Clock Timings 172
Figure 17-1:	Typical RC Oscillator
i iguio i i ii	Frequency vs. Temperature
Eiguro 17 0	Typical RC Oscillator
Figure 17-2:	
E' 47.0	Frequency vs. VDD
Figure 17-3:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-4:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-5:	Typical IPD vs. VDD Watchdog Timer
	Disabled 25°C 174
Figure 17-6:	
i iguio i i oi	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Ū.	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Ū.	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7: Figure 17-8:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7: Figure 17-8:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C