Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | | A set to the | | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 4MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 22 | | Program Memory Size | 7KB (4K x 14) | | Program Memory Type | ОТР | | EEPROM Size | - | | RAM Size | 192 x 8 | | Voltage - Supply (Vcc/Vdd) | 4V ~ 6V | | Data Converters | - | | Oscillator Type | External | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Through Hole | | Package / Case | 28-DIP (0.300", 7.62mm) | | Supplier Device Package | 28-SPDIP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16c63-04-sp | # FIGURE 4-17: PIR1 REGISTER FOR PIC16C63/R63/66 (ADDRESS 0Ch) | U = Unimplemented bit, read as '0' - n = Value at POR reset 1.7-6: Reserved: Always maintain these bits clear. RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (cleared by reading RCREG) 0 = The USART receive buffer is empty 1.4: TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full 1.3: SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive 1.2: CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode 1. TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred | R/W-0 | R/W-0 | R-0 | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | |--|----------|---|--|---------------------------------------|---------------------------------------|---------------|---------------|----------|------------------------------------| | U = Unimplemented bit, read as '0' - n = Value at POR reset RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (cleared by reading RCREG) 0 = The USART receive buffer is empty TXIF: USART transmit Interrupt Flag bit 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode 1 : TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR1 to PR2 match occurred (must be cleared in software) 1 : TMR1F: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) | _ | _ | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | | | t 5: RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (cleared by reading RCREG) 0 = The USART receive buffer is empty 44: TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive 1 = CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode 1 = TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2IF: TMR2 to PR2 match occurred 0 = No TMR1 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred 1 O: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) | oit7 | | | | | | | bit0 | U = Unimplemented bit, read as '0' | | 1 = The USART receive buffer is full (cleared by reading RCREG) 0 = The USART receive buffer is empty 14: TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive 2: CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode 1: TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR1 to PR2 match occurred 1: 1: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow loccurred (must be cleared in software) | bit 7-6: | Reserved: | Always ma | intain thes | e bits clear. | | | | | | 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full 3: SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive 4: 2: CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode 4: 1: TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR1 to PR2 match occurred 1: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) | bit 5: | 1 = The US | ART receiv | e buffer is | full (cleared | d by reading | RCREG) | | | | 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive 2 : CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode 1 = TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR1 to PR2 match occurred 1 to: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) | bit 4: | 1 = The US | ART transi | nit buffer is | empty (cle | ared by writi | ng to TXRE | G) | | | Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode 1 : TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred 1 : O: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) | bit 3: | 1 = The tra | nsmission/i | reception is | | | ared in softv | vare) | | | 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred t 0: TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) | bit 2: | Capture Mo 1 = A TMR 0 = No TMI Compare M 1 = A TMR 0 = No TMI PWM Mode | ode
1 register c
R1 register
<u>lode</u>
1 register c
R1 register | apture occ
capture oc
ompare ma | urred (must
curred
atch occurre | ed (must be o | , | oftware) | | | 1 = TMR1 register overflow occurred (must be cleared in software) | bit 1: | 1 = TMR2 t | o PR2 mat | ch occurre | d (must be | | oftware) | | | | | bit 0: | 1 = TMR1 ı | egister ove | rflow occu | rred (must l | oe cleared in | software) | | | Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. ## 5.3 PORTC and TRISC Register # Applicable Devices 61|62|62A|R62|63|R63|64|64A|R64|65|65A|R65|66|67 PORTC is an 8-bit wide bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers. When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings. #### **EXAMPLE 5-3: INITIALIZING PORTC** ``` BCF STATUS, RPO ; BCF STATUS, RP1 ; PIC16C66/67 only ; Initialize PORTC by CLRE PORTC ; clearing output ; data latches BSF STATUS, RPO ; Select Bank 1 ; Value used to MOVILW 0xCF ; initialize data : direction MOVWF TRISC ; Set RC<3:0> as inputs ; RC<5:4> as outputs ; RC<7:6> as inputs ``` #### FIGURE 5-6: PORTC BLOCK DIAGRAM - Note 1: I/O pins have diode protection to VDD and Vss. - Port/Peripheral select signal selects between port data and peripheral output. - Peripheral OE (output enable) is only activated if peripheral select is active. TABLE 5-5: PORTC FUNCTIONS FOR PIC16C62/64 | Name | Bit# | Buffer Type | Function | |-----------------|------|-------------|---| | RC0/T1OSI/T1CKI | bit0 | ST | Input/output port pin or Timer1 oscillator input or Timer1 clock input | | RC1/T1OSO | bit1 | ST | Input/output port pin or Timer1 oscillator output | | RC2/CCP1 | bit2 | ST | Input/output port pin or Capture1 input/Compare1 output/PWM1 output | | RC3/SCK/SCL | bit3 | ST | RC3 can also be the synchronous serial clock for both SPI and I ² C modes. | | RC4/SDI/SDA | bit4 | ST | RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). | | RC5/SDO | bit5 | ST | Input/output port pin or synchronous serial port data output | | RC6 | bit6 | ST | Input/output port pin | | RC7 | bit7 | ST | Input/output port pin | Legend: ST = Schmitt Trigger input # PIC16C6X # 11.3.1 SSP MODULE IN SPI MODE FOR PIC16C66/67 The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used: - Serial Data Out (SDO) RC5/SDO - · Serial Data In (SDI) RC4/SDI/SDA - Serial Clock (SCK) RC3/SCK/SCL Additionally a fourth pin may be used when in a slave mode of operation: Slave Select (SS) RA5/SS When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified: - · Master Mode (SCK is the clock output) - · Slave Mode (SCK is the clock input) - Clock Polarity (Idle state of SCK) - Clock edge (output data on rising/falling edge of SCK) - · Clock Rate (Master mode only) - · Slave Select Mode (Slave mode only) The SSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device. MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and interrupt flag bit SSPIF (PIR1<3>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully. When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit BF (SSPSTAT<0>) indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-2 shows the loading of the SSPBUF (SSPSR) for data transmission. The shaded instruction is only required if the received data is meaningful. ## EXAMPLE 11-2: LOADING THE SSPBUF (SSPSR) REGISTER (PIC16C66/67) ``` BCF STATUS, RP1 ;Specify Bank 1 BSF STATUS, RPO LOOP BTESS SSPSTAT, BE ·Has data been :received :(transmit ;complete)? GOTO LOOP :No BCF STATUS RPO ;Specify Bank 0 ;W reg = contents MOVE SSPBUF, W : of SSPBUF MOVWE RYDATA ;Save in user RAM MOVE TYDATA. W ;W reg = contents ; of TXDATA MOVWF SSPBUF ; New data to xmit ``` The block diagram of the SSP module, when in SPI mode (Figure 11-9), shows that the SSPSR is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions. # FIGURE 11-9: SSP BLOCK DIAGRAM (SPI MODE)(PIC16C66/67) # 11.5 SSP I²C Operation The SSP module in $\rm I^2C$ mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>). FIGURE 11-24: SSP BLOCK DIAGRAM (I²C MODE) The SSP module has five registers for I²C operation. These are the: - SSP Control Register (SSPCON) - · SSP Status Register (SSPSTAT) - Serial Receive/Transmit Buffer (SSPBUF) - SSP Shift Register (SSPSR) Not directly accessible - · SSP Address Register (SSPADD) The SSPCON register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected: - I²C Slave mode (7-bit address) - I²C Slave mode (10-bit address) - I²C Slave mode (7-bit address), with start and stop bit interrupts enabled - I²C Slave mode (10-bit address), with start and stop bit interrupts enabled - I²C Firmware controlled Master Mode, slave is idle Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only. The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost. The SSPADD register holds the slave address. In 10-bit mode, the user first needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0). # FIGURE 11-27: OPERATION OF THE I2C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE ``` IDLE_MODE (7-bit): if (Addr_match) Set interrupt; if (R/\overline{W} = 1) Send \overline{ACK} = 0: set XMIT_MODE; else if (R/\overline{W} = 0) set RCV MODE; RCV MODE: if ((SSPBUF=Full) OR (SSPOV = 1)) Set SSPOV: Do not acknowledge; transfer SSPSR → SSPBUF: else send \overline{ACK} = 0; Receive 8-bits in SSPSR; Set interrupt; XMIT MODE: While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low; Send byte; Set interrupt; if (ACK Received = 1) End of transmission; Go back to IDLE_MODE; else if (ACK Received = 0) Go back to XMIT_MODE; IDLE_MODE (10-Bit): If (High_byte_addr_match AND (R/\overline{W} = 0)) PRIOR_ADDR_MATCH = FALSE; Set interrupt; if ((SSPBUF = Full) OR ((SSPOV = 1)) { Set SSPOV; Do not acknowledge; Set UA = 1; else Send \overline{ACK} = 0; While (SSPADD not updated) Hold SCL low; Clear UA = 0; Receive Low_addr_byte; Set interrupt; Set UA = 1: If (Low_byte_addr_match) PRIOR_ADDR_MATCH = TRUE; Send \overline{ACK} = 0; while (SSPADD not updated) Hold SCL low; Clear UA = 0; Set RCV_MODE; } } else if (High_byte_addr_match AND (R/\overline{W} = 1) if (PRIOR_ADDR_MATCH) send \overline{ACK} = 0; set XMIT MODE: else PRIOR_ADDR_MATCH = FALSE; } ``` Steps to follow when setting up an Asynchronous Reception: - Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 12.1). - 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN. - If interrupts are desired, then set enable bit RCIE. - 4. If 9-bit reception is desired, then set bit RX9. - Enable the reception by setting enable bit CREN. - Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set. - Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception. - Read the 8-bit received data by reading the RCREG register. - If any error occurred, clear the error by clearing enable bit CREN. #### TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value
PO
BC | R, | Valu
all o
Res | | |---------|------------------------------------|----------------------|-----------|---------|-------|-------|--------|--------|--------|-------------------|------|----------------------|------| | 0Ch | PIR1 | PSPIF ⁽¹⁾ | (2) | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 | 0000 | 0000 | 0000 | | 18h | RCSTA | SPEN | RX9 | SREN | CREN | _ | FERR | OERR | RX9D | 0000 | -00x | 0000 | -00x | | 1Ah | RCREG | USART R | eceive Re | egister | | | | | | 0000 | 0000 | 0000 | 0000 | | 8Ch | PIE1 | PSPIE ⁽¹⁾ | (2) | RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 | 0000 | 0000 | 0000 | | 98h | TXSTA | CSRC | TX9 | TXEN | SYNC | _ | BRGH | TRMT | TX9D | 0000 | -010 | 0000 | -010 | | 99h | SPBRG Baud Rate Generator Register | | | | | | | | | 0000 | 0000 | 0000 | 0000 | Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception. Note 1: PSPIE and PSPIF are reserved on the PIC16C63/R63/66, always maintain these bits clear. 2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear. # 13.2 Oscillator Configurations Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 #### 13.2.1 OSCILLATOR TYPES The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes: - LP Low Power CrystalXT Crystal/Resonator - HS High Speed Crystal/Resonator - RC Resistor/Capacitor # 13.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS In LP, XT, or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 13-4). The PIC16CXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in LP, XT, or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 13-5). # FIGURE 13-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION) See Table 13-1, Table 13-3, Table 13-2 and Table 13-4 for recommended values of C1 and C2. - Note 1: A series resistor may be required for AT strip cut crystals. - For the PIC16C61 the buffer is on the OSC2 pin, all other devices have the buffer on the OSC1 pin. # FIGURE 13-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION) #### 13.5.1 INT INTERRUPT External interrupt on RB0/INT pin is edge triggered: either rising if edge select bit INTEDG (OPTION<6>) is set, or falling, if bit INTEDG is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP, if enable bit INTE was set prior to going into SLEEP. The status of global enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 13.8 for details on SLEEP mode. #### 13.5.2 TMR0 INTERRUPT Note: An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 7.0). #### 13.5.3 PORTB INTERRUPT ON CHANGE An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 5.2). For the PIC16C61/62/64/65, if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then flag bit RBIF may not get set. #### FIGURE 13-19: INT PIN INTERRUPT TIMING Note 1: INTF flag is sampled here (every Q1). - 2: Interrupt latency = 3TCY for synchronous interrupt and 3-4TCY for asynchronous interrupt. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction. - 3: CLKOUT is available only in RC oscillator mode. - 4: For minimum width spec of INT pulse, refer to AC specs. - 5: INTF can to be set anytime during the Q4-Q1 cycles. ## FIGURE 17-3: CLKOUT AND I/O TIMING TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS | Parameters | Sym | Characteristic | Min | Typ† | Max | Units | Conditions | | |------------|----------|---|-----------------------|------------|-----|-------------|------------|--------| | 10* | TosH2ckL | OSC1↑ to CLKOUT↓ | | _ | 75 | 200 | ns | Note 1 | | 11* | TosH2ckH | OSC1↑ to CLKOUT↑ | _ | 75 | 200 | ns | Note 1 | | | 12* | TckR | CLKOUT rise time | | _ | 35 | 100 | ns | Note 1 | | 13* | TckF | CLKOUT fall time | | _ | 35 | 100 | ns | Note 1 | | 14* | TckL2ioV | CLKOUT ↓ to Port out valid | | _ | _ | 0.5Tcy + 20 | ns | Note 1 | | 15* | TioV2ckH | Port in valid before CLKOUT | ↑ | Tosc + 200 | _ | _ | ns | Note 1 | | 16* | TckH2ioI | Port in hold after CLKOUT ↑ | | 0 | _ | _ | ns | Note 1 | | 17* | TosH2ioV | OSC1↑ (Q1 cycle) to Port out | _ | 50 | 150 | ns | | | | 18* | TosH2ioI | OSC1↑ (Q2 cycle) to Port | PIC16 C 62/64 | 100 | _ | _ | ns | | | | | input invalid (I/O in hold time) | PIC16 LC 62/64 | 200 | _ | _ | ns | | | 19* | TioV2osH | Port input valid to OSC1↑ (I/O in setup time) | | 0 | _ | _ | ns | | | 20* | TioR | Port output rise time | PIC16 C 62/64 | _ | 10 | 40 | ns | | | | | | PIC16 LC 62/64 | _ | _ | 80 | ns | | | 21* | TioF | Port output fall time | PIC16 C 62/64 | _ | 10 | 40 | ns | | | | | | _ | _ | 80 | ns | | | | 22††* | Tinp | INT pin high or low time | | Tcy | _ | _ | ns | | | 23††* | Trbp | RB7:RB4 change INT high or | low time | Tcy | _ | _ | ns | | ^{*} These parameters are characterized but not tested. [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. ^{††} These parameters are asynchronous events not related to any internal clock edge. Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc. # FIGURE 17-8: SPI MODE TIMING **TABLE 17-8: SPI MODE REQUIREMENTS** | Parameter
No. | Sym | Characteristic | Min | Typ† | Max | Units | Conditions | |------------------|-----------------------|--|----------|------|-----|-------|------------| | 70 | TssL2scH,
TssL2scL | SS↓ to SCK↓ or SCK↑ input | Tcy | _ | _ | ns | | | 71 | TscH | SCK input high time (slave mode) | Tcy + 20 | _ | _ | ns | | | 72 | TscL | SCK input low time (slave mode) | Tcy + 20 | _ | _ | ns | | | 73 | TdiV2scH,
TdiV2scL | Setup time of SDI data input to SCK edge | 50 | _ | _ | ns | | | 74 | TscH2diL,
TscL2diL | Hold time of SDI data input to SCK edge | 50 | _ | _ | ns | | | 75 | TdoR | SDO data output rise time | _ | 10 | 25 | ns | | | 76 | TdoF | SDO data output fall time | _ | 10 | 25 | ns | | | 77 | TssH2doZ | SS↑ to SDO output hi-impedance | 10 | _ | 50 | ns | | | 78 | TscR | SCK output rise time (master mode) | _ | 10 | 25 | ns | | | 79 | TscF | SCK output fall time (master mode) | _ | 10 | 25 | ns | | | 80 | TscH2doV,
TscL2doV | SDO data output valid after SCK edge | _ | _ | 50 | ns | | [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 18-6: TIMERO AND TIMER1 EXTERNAL CLOCK TIMINGS TABLE 18-5: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS | Param
No. | Sym | Characteristic | | | Min | Typ† | Max | Units | Conditions | |--------------|----------|-----------------------|-------------------|---------------------------------------|---|------|-------|-------|------------------------------------| | 40* | Tt0H | T0CKI High Pulse V | Vidth | No Prescaler | 0.5Tcy + 20 | _ | _ | ns | Must also meet | | | | | | With Prescaler | 10 | _ | _ | ns | parameter 42 | | 41* | Tt0L | T0CKI Low Pulse W | /idth | No Prescaler | 0.5Tcy + 20 | _ | _ | ns | Must also meet | | | | | | With Prescaler | 10 | _ | _ | ns | parameter 42 | | 42* | Tt0P | T0CKI Period | | No Prescaler | Tcy + 40 | _ | _ | ns | | | | | | | With Prescaler | Greater of:
20 or <u>Tcy + 40</u>
N | _ | _ | ns | N = prescale value
(2, 4,, 256) | | 45* | Tt1H | T1CKI High Time | Synchronous, F | | 0.5Tcy + 20 | _ | _ | ns | Must also meet | | | | | Synchronous, | PIC16 C 6X | 15 | _ | _ | ns | parameter 47 | | | | | Prescaler = 2,4,8 | PIC16 LC 6X | 25 | _ | _ | ns | | | | | | Asynchronous | PIC16 C 6X | 30 | _ | _ | ns | | | | | | | PIC16 LC 6X | 50 | _ | _ | ns | | | 46* | Tt1L | T1CKI Low Time | Synchronous, F | | 0.5Tcy + 20 | _ | _ | ns | Must also meet | | | | | Synchronous, | PIC16 C 6X | 15 | _ | _ | ns | parameter 47 | | | | | Prescaler = 2,4,8 | PIC16 LC 6X | 25 | - | _ | ns | | | | | | Asynchronous | PIC16 C 6X | 30 | _ | _ | ns | | | | | | | PIC16 LC 6X | 50 | _ | _ | ns | | | 47* | Tt1P | T1CKI input period | Synchronous | PIC16 C 6X | Greater of:
30 OR TCY + 40
N | _ | _ | ns | N = prescale value
(1, 2, 4, 8) | | | | | | PIC16 LC 6X | Greater of:
50 OR TCY + 40
N | | | | N = prescale value
(1, 2, 4, 8) | | | | | Asynchronous | PIC16 C 6X | 60 | _ | _ | ns | | | | | | | PIC16 LC 6X | 100 | _ | _ | ns | | | | Ft1 | Timer1 oscillator inp | | | DC | _ | 200 | kHz | | | | | (oscillator enabled b | | · · · · · · · · · · · · · · · · · · · | | | | | | | 48 | TCKEZtmr | Delay from external | clock edge to tir | ner increment | 2Tosc | - | 7Tosc | _ | | ^{*} These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 18-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1) TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1) | Parameter No. | Sym | Characteristic | | | | Тур† | Max | Units | Conditions | |---------------|------|---------------------|----------------|-------------------------------------|----------------|------|-----|-------|-----------------------------------| | 50* | TccL | CCP1 | No Prescaler | No Prescaler | | | | ns | | | | | input low time | With Prescaler | PIC16 C 62A/R62/
64A/R64 | 10 | _ | 1 | ns | | | | | | | PIC16 LC 62A/R62/
64A/R64 | 20 | _ | 1 | ns | | | 51* | ТссН | CCP1 | No Prescaler | | 0.5Tcy + 20 | _ | - | ns | | | | | input high time | With Prescaler | PIC16 C 62A/R62/
64A/R64 | 10 | _ | 1 | ns | | | | | | | PIC16 LC 62A/R62/
64A/R64 | 20 | _ | - | ns | | | 52* | TccP | CCP1 input period | t | | 3Tcy + 40
N | _ | 1 | ns | N = prescale value
(1,4 or 16) | | 53* | TccR | CCP1 output rise | time | PIC16 C 62A/R62/
64A/R64 | _ | 10 | 25 | ns | | | | | | | PIC16 LC 62A/R62/
64A/R64 | _ | 25 | 45 | ns | | | 54* | TccF | CCP1 output fall to | ime | PIC16 C 62A/R62/
64A/R64 | - | 10 | 25 | ns | | | | | | | PIC16 LC 62A/R62/
64A/R64 | _ | 25 | 45 | ns | | These parameters are characterized but not tested. [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. # FIGURE 18-11: I²C BUS DATA TIMING # TABLE 18-10: I²C BUS DATA REQUIREMENTS | Parameter No. | Sym | Characteristic | | Min | Max | Units | Conditions | |---------------|---------|------------------------|--------------|------------|------|-------|---| | 100* | THIGH | Clock high time | 100 kHz mode | 4.0 | _ | μS | Device must operate at a minimum of 1.5 MHz | | | | | 400 kHz mode | 0.6 | _ | μS | Device must operate at a minimum of 10 MHz | | | | | SSP Module | 1.5Tcy | _ | | | | 101* | TLOW | Clock low time | 100 kHz mode | 4.7 | _ | μS | Device must operate at a minimum of 1.5 MHz | | | | | 400 kHz mode | 1.3 | _ | μS | Device must operate at a mini-
mum of 10 MHz | | | | | SSP Module | 1.5Tcy | _ | | | | 102* | TR | SDA and SCL rise | 100 kHz mode | _ | 1000 | ns | | | | | time | 400 kHz mode | 20 + 0.1Cb | 300 | ns | Cb is specified to be from 10-400 pF | | 103* | TF | SDA and SCL fall time | 100 kHz mode | _ | 300 | ns | | | | | | 400 kHz mode | 20 + 0.1Cb | 300 | ns | Cb is specified to be from 10-400 pF | | 90* | Tsu:sta | START condition | 100 kHz mode | 4.7 | _ | μS | Only relevant for repeated | | | | setup time | 400 kHz mode | 0.6 | _ | μS | START condition | | 91* | THD:STA | START condition hold | 100 kHz mode | 4.0 | | μS | After this period the first clock | | | | time | 400 kHz mode | 0.6 | _ | μS | pulse is generated | | 106* | THD:DAT | Data input hold time | 100 kHz mode | 0 | | ns | | | | | | 400 kHz mode | 0 | 0.9 | μS | | | 107* | TSU:DAT | Data input setup time | 100 kHz mode | 250 | _ | ns | Note 2 | | | | | 400 kHz mode | 100 | _ | ns | | | 92* | Tsu:sto | STOP condition setup | 100 kHz mode | 4.7 | _ | μS | | | | | time | 400 kHz mode | 0.6 | _ | μS | | | 109* | TAA | Output valid from | 100 kHz mode | _ | 3500 | ns | Note 1 | | | | clock | 400 kHz mode | _ | _ | ns | | | 110* | TBUF | Bus free time | 100 kHz mode | 4.7 | _ | μS | Time the bus must be free | | | | | 400 kHz mode | 1.3 | _ | μS | before a new transmission can start | | | Cb | Bus capacitive loading | | _ | 400 | pF | | ^{*} These parameters are characterized but not tested. Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions. ^{2:} A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released. **DC CHARACTERISTICS** Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 19.3 DC Characteristics: PIC16C65-04 (Commercial, Industrial) PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial) PIC16LC65-04 (Commercial, Industrial) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial Operating voltage VDD range as described in DC spec Section 19.1 and | | | Section | | V DD | range as c | lescribe | ed in DC spec Section 19.1 and | |--------------|-----------------------------|---------|------------------|-------------|------------|----------|--| | Param
No. | Characteristic | Sym | Min | Typ
† | Max | Units | Conditions | | NO. | Input Low Voltage | | | | | | | | | I/O ports | VIL | | | | | | | D030 | with TTL buffer | V | Vss | _ | 0.15Vpp | V | For entire VDD range | | D030A | | | Vss | _ | 0.8V | ٧ | 4.5V ≤ VDD ≤ 5.5V | | D031 | with Schmitt Trigger buffer | | Vss | - | 0.2VDD | ٧ | | | D032 | MCLR, OSC1(in RC mode) | | Vss | - | 0.2VDD | V | | | D033 | OSC1 (in XT, HS and LP) | | Vss | - | 0.3VDD | ٧ | Note1 | | | Input High Voltage | | | | | | | | | I/O ports | VIH | | - | | | | | D040 | with TTL buffer | | 2.0 | - | VDD | V | $4.5V \leq V_{DD} \leq 5.5V$ | | D040A | | | 0.25VDD+
0.8V | - | VDD | V | For entire VDD range | | D041 | with Schmitt Trigger buffer | | 0.8Vpp | _ | Vpp | | For entire VDD range | | D042 | MCLR | | 0.8VDD | _ | VDD | V | To online VEE range | | D042A | OSC1 (XT, HS and LP) | | 0.7 VDD | _ | VDD | ٧ | Note1 | | D043 | OSC1 (in RC mode) | | 0.9VDD | _ | VDD | V | | | D070 | PORTB weak pull-up current | IPURB | 50 | 250 | 400 | μА | VDD = 5V, VPIN = VSS | | | Input Leakage Current | | | | | | | | | (Notes 2, 3) | | | | | | | | D060 | I/O ports | Iı∟ | - | - | ±1 | μΑ | $Vss \leq VPIN \leq VDD, \ Pin \ at \ hiimpedance$ | | D061 | MCLR, RA4/T0CKI | | - | - | ±5 | μΑ | $Vss \leq VPIN \leq VDD$ | | D063 | OSC1 | | - | - | ±5 | μА | $Vss \leq VPIN \leq VDD, \ XT, \ HS, \ and \ LP \ osc \ configuration$ | | | Output Low Voltage | | | | | | | | D080 | I/O ports | VOL | - | - | 0.6 | V | IOL = 8.5 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$ | | D083 | OSC2/CLKOUT (RC osc config) | | - | - | 0.6 | V | IOL = 1.6 mA, VDD = 4.5V,
-40°C to +85°C | | | Output High Voltage | | | | | | | | D090 | I/O ports (Note 3) | Vон | VDD-0.7 | - | - | V | IOH = -3.0 mA, VDD = 4.5 V, -40 °C to $+85$ °C | | D092 | OSC2/CLKOUT (RC osc config) | | VDD-0.7 | - | - | V | IOH = -1.3 mA, VDD = $4.5V$, -40° C to $+85^{\circ}$ C | | D150* | Open-Drain High Voltage | VOD | - | - | 14 | V | RA4 pin | ^{*} These parameters are characterized but not tested. [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode. The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. ^{3:} Negative current is defined as current sourced by the pin. DC CHARACTERISTICS Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 20.1 DC Characteristics: PIC16C63/65A-04 (Commercial, Industrial, Extended) PIC16C63/65A-10 (Commercial, Industrial, Extended) PIC16C63/65A-20 (Commercial, Industrial, Extended) Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C $\leq TA \leq +125^{\circ}$ C for extended, -40°C ≤ TA ≤ +85°C for industrial and | | | | | | 0°0 | 2 ≤ | ≤ Ta ≤ +70°C for commercial | |----------------|--|-------|------------|------------|------------|--------------------------|---| | Param
No. | Characteristic | Sym | Min | Typ† | Max | Units | Conditions | | D001
D001A | Supply Voltage | VDD | 4.0
4.5 | - | 6.0
5.5 | V
V | XT, RC and LP osc configuration
HS osc configuration | | D002* | RAM Data Retention
Voltage (Note 1) | VDR | - | 1.5 | | V | | | D003 | VDD start voltage to
ensure internal Power-on
Reset signal | VPOR | - | Vss | ı | V | See section on Power-on Reset for details | | D004* | VDD rise rate to ensure internal Power-on Reset signal | SVDD | 0.05 | - | | V/ms | See section on Power-on Reset for details | | D005 | Brown-out Reset Voltage | BVDD | 3.7 | 4.0 | 4.3 | V | BODEN configuration bit is enabled | | | | | 3.7 | 4.0 | 4.4 | V | Extended Range Only | | D010 | Supply Current (Note 2, 5) | IDD | - | 2.7 | 5 | mA | XT, RC, osc config Fosc = 4 MHz,
VDD = 5.5V (Note 4) | | D013 | | | - | 10 | 20 | mA | HS osc config Fosc = 20 MHz, VDD = 5.5V | | D015* | Brown-out Reset Current (Note 6) | ΔIBOR | - | 350 | 425 | μА | BOR enabled, VDD = 5.0V | | D020 | Power-down Current | IPD | - | 10.5 | 42 | μА | VDD = 4.0V, WDT enabled,-40°C to +85°C | | D021 | (Note 3, 5) | | - | 1.5 | 16 | μA | VDD = 4.0V, WDT disabled, -0°C to +70°C | | D021A
D021B | | | - | 1.5
2.5 | 19
19 | μ Α
μ Α | VDD = 4.0V, WDT disabled,-40°C to +85°C
VDD = 4.0V, WDT disabled,-40°C to +125°C | | D023* | Brown-out Reset Current (Note 6) | ΔİBOR | - | 350 | 425 | μ A | BOR enabled, VDD = 5.0V | - These parameters are characterized but not tested. - Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. - Note 1: This is the limit to which VDD can be lowered without losing RAM data. - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD. MCLR = VDD; WDT enabled/disabled as specified. - 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss. - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm. - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested. - 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. # FIGURE 20-11: I²C BUS DATA TIMING ## TABLE 20-10: I²C BUS DATA REQUIREMENTS | Parameter | Sym | Characteristic | | Min | Max | Units | Conditions | |-----------|---------|------------------------|--------------|------------|------|-------|--| | No. | | | | | | | | | 100* | THIGH | Clock high time | 100 kHz mode | 4.0 | _ | μS | Device must operate at a mini-
mum of 1.5 MHz | | | | | 400 kHz mode | 0.6 | _ | μS | Device must operate at a mini-
mum of 10 MHz | | | | | SSP Module | 1.5Tcy | _ | | | | 101* | TLOW | Clock low time | 100 kHz mode | 4.7 | _ | μS | Device must operate at a minimum of 1.5 MHz | | | | | 400 kHz mode | 1.3 | _ | μs | Device must operate at a mini-
mum of 10 MHz | | | | | SSP Module | 1.5Tcy | _ | | | | 102* | TR | SDA and SCL rise | 100 kHz mode | _ | 1000 | ns | | | | | time | 400 kHz mode | 20 + 0.1Cb | 300 | ns | Cb is specified to be from 10-400 pF | | 103* | TF | SDA and SCL fall time | 100 kHz mode | _ | 300 | ns | | | | | | 400 kHz mode | 20 + 0.1Cb | 300 | ns | Cb is specified to be from 10-400 pF | | 90* | Tsu:sta | START condition | 100 kHz mode | 4.7 | _ | μS | Only relevant for repeated | | | | setup time | 400 kHz mode | 0.6 | _ | μS | START condition | | 91* | THD:STA | START condition hold | 100 kHz mode | 4.0 | _ | μS | After this period the first clock | | | | time | 400 kHz mode | 0.6 | _ | μS | pulse is generated | | 106* | THD:DAT | Data input hold time | 100 kHz mode | 0 | _ | ns | | | | | | 400 kHz mode | 0 | 0.9 | μS | | | 107* | TSU:DAT | Data input setup time | 100 kHz mode | 250 | _ | ns | Note 2 | | | | | 400 kHz mode | 100 | _ | ns | | | 92* | Tsu:sto | STOP condition setup | 100 kHz mode | 4.7 | _ | μS | | | | | time | 400 kHz mode | 0.6 | _ | μS | | | 109* | TAA | Output valid from | 100 kHz mode | _ | 3500 | ns | Note 1 | | | | clock | 400 kHz mode | | | ns | | | 110* | TBUF | Bus free time | 100 kHz mode | 4.7 | _ | μS | Time the bus must be free | | | | | 400 kHz mode | 1.3 | | μS | before a new transmission can start | | | Cb | Bus capacitive loading | | _ | 400 | pF | | These parameters are characterized but not tested. Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions. ^{2:} A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released. FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING FIGURE 22-5: BROWN-OUT RESET TIMING TABLE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS | Parameter
No. | Sym | Characteristic | Min | Typ† | Max | Units | Conditions | |------------------|-------|---|-----|-----------|-----|-------|---------------------------| | | | | | | | | | | 30 | TmcL | MCLR Pulse Width (low) | 2 | _ | _ | μs | VDD = 5V, -40°C to +125°C | | 31* | Twdt | Watchdog Timer Time-out Period (No Prescaler) | 7 | 18 | 33 | ms | VDD = 5V, -40°C to +125°C | | 32 | Tost | Oscillation Start-up Timer Period | | 1024 Tosc | _ | _ | TOSC = OSC1 period | | 33* | Tpwrt | Power-up Timer Period | 28 | 72 | 132 | ms | VDD = 5V, -40°C to +125°C | | 34 | Tıoz | I/O Hi-impedance from MCLR Low or WDT reset | - | _ | 2.1 | μs | | | 35 | TBOR | Brown-out Reset Pulse Width | 100 | - | _ | μs | VDD ≤ BVDD (D005) | ^{*} These parameters are characterized but not tested. [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. FIGURE 23-25: TYPICAL IDD vs. FREQUENCY (LP MODE, 25°C) FIGURE 23-26: MAXIMUM IDD vs. FREQUENCY (LP MODE, 85°C TO -40°C) FIGURE 23-27: TYPICAL IDD vs. FREQUENCY (XT MODE, 25°C) FIGURE 23-28: MAXIMUM IDD vs. FREQUENCY (XT MODE, -40°C TO 85°C) # 24.8 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil) (JW) Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | Package Group: Ceramic CERDIP Dual In-Line (CDP) | | | | | | | | | | | |--|--------|-------------|-----------|--------|-------|-----------|--|--|--|--| | | | Millimeters | | Inches | | | | | | | | Symbol | Min | Max | Notes | Min | Max | Notes | | | | | | α | 0° | 10° | | 0° | 10° | | | | | | | Α | 4.318 | 5.715 | | 0.170 | 0.225 | | | | | | | A1 | 0.381 | 1.778 | | 0.015 | 0.070 | | | | | | | A2 | 3.810 | 4.699 | | 0.150 | 0.185 | | | | | | | А3 | 3.810 | 4.445 | | 0.150 | 0.175 | | | | | | | В | 0.355 | 0.585 | | 0.014 | 0.023 | | | | | | | B1 | 1.270 | 1.651 | Typical | 0.050 | 0.065 | Typical | | | | | | С | 0.203 | 0.381 | Typical | 0.008 | 0.015 | Typical | | | | | | D | 51.435 | 52.705 | | 2.025 | 2.075 | | | | | | | D1 | 48.260 | 48.260 | Reference | 1.900 | 1.900 | Reference | | | | | | E | 15.240 | 15.875 | | 0.600 | 0.625 | | | | | | | E1 | 12.954 | 15.240 | | 0.510 | 0.600 | | | | | | | e1 | 2.540 | 2.540 | Reference | 0.100 | 0.100 | Reference | | | | | | eA | 14.986 | 16.002 | Typical | 0.590 | 0.630 | Typical | | | | | | eB | 15.240 | 18.034 | | 0.600 | 0.710 | | | | | | | L | 3.175 | 3.810 | | 0.125 | 0.150 | | | | | | | N | 40 | 40 | | 40 | 40 | | | | | | | S | 1.016 | 2.286 | | 0.040 | 0.090 | | | | | | | S1 | 0.381 | 1.778 | | 0.015 | 0.070 | | | | | |