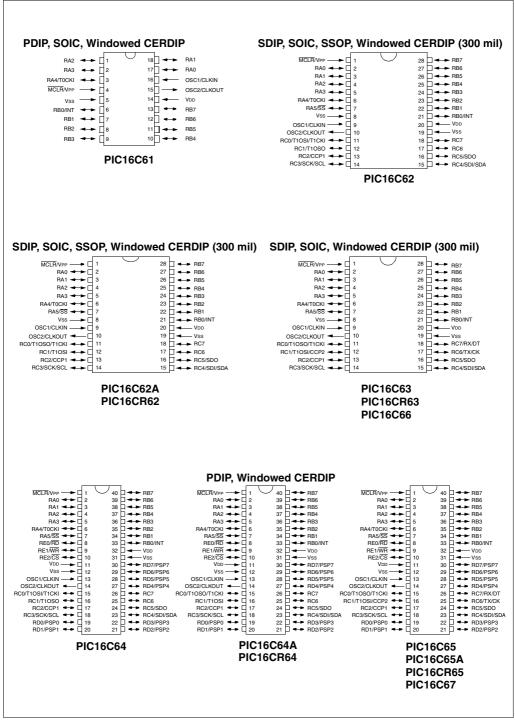


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

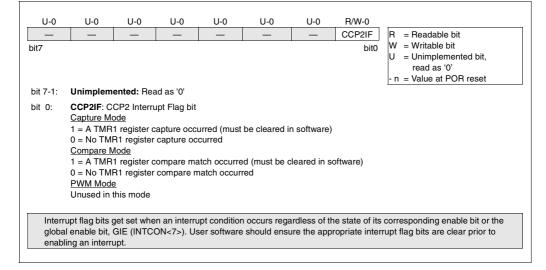

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c63-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams


4.2.2.7 PIR2 REGISTER

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

This register contains the CCP2 interrupt flag bit.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-21: PIR2 REGISTER (ADDRESS 0Dh)

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS (1)	bit5	TTL	Input/output or slave select input for synchronous serial port.

Legend: TTL = TTL input, ST = Schmitt Trigger input

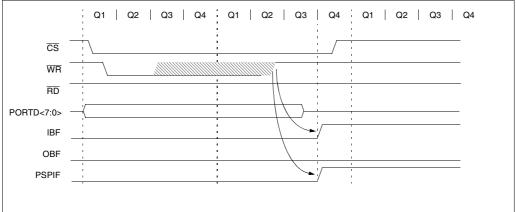
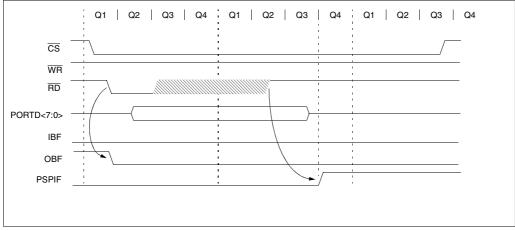

Note 1: The PIC16C61 does not have PORTA<5> or TRISA<5>, read as '0'.

TABLE 5-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	—	—	PORTA Data	Direction Re	egister ⁽¹⁾				11 1111	11 1111


Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C61, read as '0'.

FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

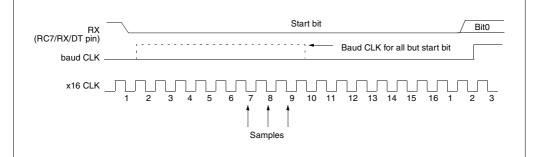
TABLE 5-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1 Bit 0		Value on: POR, BOR	Value on all other resets	
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	_			_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Directior	n Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	(1)	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TRM1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	(1)	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000

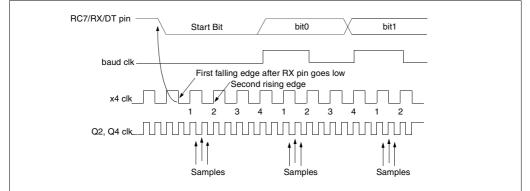
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved, always maintain these bits clear.

2: These bits are implemented on the PIC16C65/65A/R65/67 only.


FIGURE 11-27: OPERATION OF THE I²C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE

DLE_MODE (7-bit):					
if (Addr_match)	{ 5	Set interrupt;			
		f (R/W = 1)	Send $\overline{ACK} = 0;$		
		(1011 – 1)	set XMIT_MODE		
				,	
	e	else if $(R/W = 0)$	set RCV_MODE;		
	}				
RCV_MODE:					
if ((SSPBUF=Full) OR (SSF	POV = 1))				
{ Set SSF	POV;				
Do not a	acknowledge;				
}	-				
else { transfer	$r SSPSR \rightarrow SSPI$	BUF:			
send AC		- ,			
}					
Receive 8-bits in SSPSR;					
Set interrupt;					
XMIT_MODE:					
While ((SSPBUF = Empty)	AND (CKP=0)) H	old SCL LOW;			
Send byte;					
Set interrupt;					
if (ACK Received = 1)		End of transmiss	,		
	(Go back to IDLE	_MODE;		
	}				
else if (ACK Received = 0)	Go back to XM	T_MODE;			
IDLE_MODE (10-Bit):					
If (High_byte_addr_match /	AND (R/W = 0))				
	_ADDR_MATCH	= FALSE:			
Set inter		- ,			
	BUF = Full) OR (
1 ((001					
	{ Set SSF				
		cknowledge;			
	Do not a	cknowledge;			
	Do not a } { Set UA =	cknowledge;			
	Do not a } { Set UA = Send AC	cknowledge; 1; $\overline{K} = 0;$			
	Do not a } { Set UA = Send AC While (S	cknowledge; 1; K = 0; SPADD not upda	ted) Hold SCL low;		
	Do not a } { Set UA = Send AC	cknowledge; 1; K = 0; SPADD not upda	ted) Hold SCL low;		
	Do not at } { Set UA = Send AC While (S Clear UA	cknowledge; 1; K = 0; SPADD not upda	ted) Hold SCL low;		
	Do not at } { Set UA = Send AC While (S Clear UA	t;	ted) Hold SCL low;		
	Do not ar } { Set UA = Send AC While (S Clear UA Receive	cknowledge; 1; $\overline{K} = 0;$ SPADD not upda x = 0; Low_addr_byte; rupt;	ted) Hold SCL low;		
	Do not ar } { Set UA = Send ĀC While (S Clear UA Receive Set intern Set UA =	cknowledge; 1; $\overline{K} = 0;$ SPADD not upda x = 0; Low_addr_byte; rupt; 1;			
	Do not ar } { Set UA = Send ĀC While (S Clear UA Receive Set intern Set UA = If (Low_t	<pre>cknowledge; 1; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; yyte_addr_matcl</pre>)		
	Do not ar } { Set UA = Send ĀC While (S Clear UA Receive Set intern Set UA =	<pre>cknowledge; 1; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; yte_addr_matcl PRIOR_</pre>) ADDR_MATCH = TRUE;		
	Do not ar } { Set UA = Send ĀC While (S Clear UA Receive Set intern Set UA = If (Low_t	cknowledge; 1; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; ytle_addr_matcl PRIOR_ Send AC) ADDR_MATCH = TRUE; $\vec{K} = 0;$		
	Do not ar } { Set UA = Send ĀC While (S Clear UA Receive Set intern Set UA = If (Low_t	cknowledge; T; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; byte_addr_matcl PRIOR_ Send AC while (Si) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol		
	Do not ar } { Set UA = Send ĀC While (S Clear UA Receive Set intern Set UA = If (Low_t	cknowledge; T; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; byte_addr_matcl PRIOR_ Send AC while (S Clear UA) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
	Do not ar } { Set UA = Send ĀC While (S Clear UA Receive Set intern Set UA = If (Low_t	cknowledge; T; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; byte_addr_matcl PRIOR_ Send AC while (S Clear UA) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol		
	Do not ar } { Set UA = Send ĀC While (S Clear UA Receive Set intern Set UA = If (Low_t	cknowledge; 1; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; byte_addr_matcl PRIOR_ Send AC while (Si Clear UA Set RCV) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else	<pre>Do not ar } { Set UA = Send AC While (S Clear UA Receive Set inter Set UA = If (Low_t { } } }</pre>	cknowledge; 1; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; byte_addr_matcl PRIOR_ Send AC while (Si Clear UA Set RCV) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else	} Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t	cknowledge; 1; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; byte_addr_matcl PRIOR_ Send AC while (Si Clear UA Set RCV) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else	<pre>Do not a } { Set UA = Send AC While (S Clear UA Receive Set inter Set UA = If (Low_t } } }</pre>	cknowledge; T; K = 0; SPADD not upda = 0; Low_addr_byte; upt; 1; byte_addr_matcl PRIOR_ Send AC while (S Clear UA Set RCV) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else } else if (High_byte_addr_ma	Do not ar } { Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t } } atch AND (R/W =	cknowledge; 1; K = 0; SPADD not upda; = 0; Low_addr_byte; upt; 1; yte_addr_matcl PRIOR_ Send AC while (S: Clear U/ Set RCV 1)) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else } else if (High_byte_addr_ma	Do not ar } { Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t } } atch AND (R/W =	cknowledge; 1; K = 0; SPADD not upda; = 0; Low_addr_byte; upt; 1; yte_addr_matcl PRIOR_ Send AC while (S: Clear U/ Set RCV 1)) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else } else if (High_byte_addr_ma { if (PRIO	Do not ar } { Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t { } } atch AND (R/W =	cknowledge; T; K = 0; SPADD not upda; = 0; Low_addr_byte; upt; 1; vyte_addr_matcl PRIOR_ Send AC while (S: Clear UA Set RCV 1) 1)) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else } else if (High_byte_addr_ma { if (PRIO	Do not ar } { Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t { atch AND (R/W = R_ADDR_MATCH { send AC	cknowledge; T; K = 0; SPADD not upda; = 0; Low_addr_byte; upt; 1; vyte_addr_matcl PRIOR_ Send AC while (S; Clear UA Set RCV 1) T) H)) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else } else if (High_byte_addr_ma { if (PRIO	Do not ar } { Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t { } } atch AND (R/W =	cknowledge; T; K = 0; SPADD not upda; = 0; Low_addr_byte; upt; 1; vyte_addr_matcl PRIOR_ Send AC while (S; Clear UA Set RCV 1) T) H)) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else } else if (High_byte_addr_ma { if (PRIO	Do not ar } { Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t { atch AND (R/W = R_ADDR_MATCH { send AC	cknowledge; T; K = 0; SPADD not upda; = 0; Low_addr_byte; upt; 1; vyte_addr_matcl PRIOR_ Send AC while (S; Clear UA Set RCV 1) T) H)) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else } else if (High_byte_addr_ma { if (PRIO	Do not ar } { Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t 	cknowledge; T; K = 0; SPADD not upda; = 0; Low_addr_byte; upt; 1; pyte_addr_matcl PRIOR_ Send AC while (S; Clear UA Set RCV 1) T) H) K = 0; _MODE;) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		
else } else if (High_byte_addr_ma { if (PRIO	Do not ar } { Set UA = Send AC While (S Clear UA Receive Set intern Set UA = If (Low_t { atch AND (R/W = R_ADDR_MATC: { send AC set XMIT	cknowledge; T; K = 0; SPADD not upda; = 0; Low_addr_byte; upt; 1; pyte_addr_matcl PRIOR_ Send AC while (S; Clear UA Set RCV 1) T) H) K = 0; _MODE;) ADDR_MATCH = TRUE; K = 0; \$PADD not updated) Hol = 0;		


12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

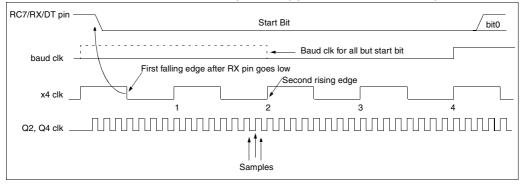

FIGURE 12-3: RX PIN SAMPLING SCHEME (BRGH = 0) PIC16C63/R63/65/65A/R65)

FIGURE 12-4: RX PIN SAMPLING SCHEME (BRGH = 1) (PIC16C63/R63/65/65A/R65)

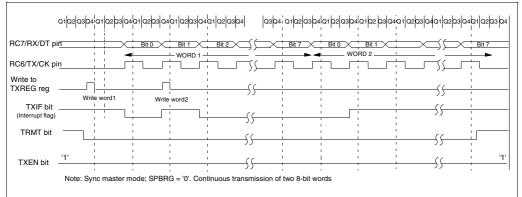
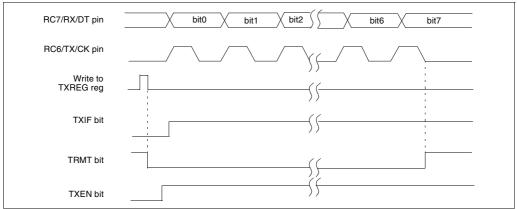


TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	x00- 0000
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	99h SPBRG Baud Rate Generator Register										0000 0000

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

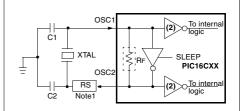
FIGURE 12-12: SYNCHRONOUS TRANSMISSION

FIGURE 12-13: SYNCHRONOUS TRANSMISSION THROUGH TXEN

13.2 Oscillator Configurations

Applicable Devices

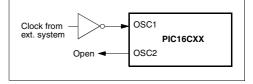
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


13.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor
- 13.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In LP, XT, or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 13-4). The PIC16CXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in LP, XT, or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 13-5).


FIGURE 13-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 13-1, Table 13-3, Table 13-2 and Table 13-4 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: For the PIC16C61 the buffer is on the OSC2 pin, all other devices have the buffer on the OSC1 pin.

FIGURE 13-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

Register						Appli	cab	le De	vices	3					Power-on Reset Brown-out Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset	Wake-up via interrupt or WDT Wake-up
W	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	N/A	N/A	N/A
TMR0	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000h	0000h	PC + 1(2)
STATUS	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0001 1xxx	000q quuu (3)	uuuq quuu(3)
FSR	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	x xxxx	u uuuu	u uuuu
PORTA	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xx xxxx	uu uuuu	uu uuuu
PORTB	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxx	uuu	uuu
PCLATH	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0 0000	0 0000	u uuuu
INTCON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	000 0000	00 0000	uu uuuu (1)
	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu (1)
PIR2	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0	0	u(2)
TMR1L	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	00 0000	uu uuuu	uu uuuu
TMR2	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
T2CON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	-000 0000	-000 0000	-uuu uuuu
SSPBUF	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
CCPR1L	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	00 0000	00 0000	uu uuuu
RCSTA	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 -00x	0000 -00x	uuuu -uuu
TXREG	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
RCREG	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
CCPR2L	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
OPTION	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	1111 1111	1111 1111	uuuu uuuu
TDICA	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	1 1111	1 1111	u uuuu
TRISA	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	11 1111	11 1111	uu uuuu
TRISB	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	1111 1111	1111 1111	uuuu uuuu
TRISC	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	1111 1111	1111 1111	uuuu uuuu

TABLE 13-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

3: See Table 13-10 and Table 13-11 for reset value for specific conditions.

13.6 Context Saving During Interrupts

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt i.e., W register and STATUS register. This will have to be implemented in software.

Example 13-1 stores and restores the STATUS and W registers. Example 13-2 stores and restores the STATUS, W, and PCLATH registers (Devices with paged program memory). For all PIC16C6X devices with greater than 1K of program memory (all devices except PIC16C61), the register, W_TEMP, must be

defined in banks and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1, 0x120 in bank 2, and 0x1A0 in bank 3).

The examples:

- a) Stores the W register
- b) Stores the STATUS register in bank 0
- c) Stores PCLATH
- d) Executes ISR code
- e) Restores PCLATH
- f) Restores STATUS register (and bank select bit)
- g) Restores W register

EXAMPLE 13-1: SAVING STATUS AND W REGISTERS IN RAM (PIC16C61)

MOVWF SWAPF MOVWF : :(ISR) :	W_TEMP STATUS,W STATUS_TEMP	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;Save status to bank zero STATUS_TEMP register
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

EXAMPLE 13-2: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM (ALL OTHER PIC16C6X DEVICES)

SWAPF CLRF	W_TEMP STATUS,W STATUS	;Copy W to TEMP register, could be bank one or zero ;Swap status to be saved into W ;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
BCF	STATUS, IRP	;Return to Bank 0
MOVF	FSR, W	;Copy FSR to W
:(ISR)	FSR_TEMP	;Copy FSR from W to FSR_TEMP
: MOVF	PCLATH TEMP, W	·Pestore DCLATH
	PCLATH	;Move W into PCLATH
SWAPF		,
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W TEMP,F	;Swap W TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

13.8 Power-down Mode (SLEEP)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, status bit \overline{PD} (STATUS<3>) is cleared, status bit \overline{TO} (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, and disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC).

13.8.1 WAKE-UP FROM SLEEP

The device can wake from SLEEP through one of the following events:

- 1. External reset input on MCLR/VPP pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or some peripheral interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/I²C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. USART TX or RX (synchronous slave mode).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the subset of the new provide the instruction after the subset (on address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

13.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	e	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
	ĸ		· ·	11	TOTO	ĸĸĸĸ	кккк	~	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Instruction Descriptions 14.1

Add Lite	ral and	w	
[<i>label</i>] A	DDLW	k	
$0 \le k \le 25$	55		
(W) + k –	→ (W)		
C, DC, Z			
11	111x	kkkk	kkkk
added to t	he eight b	it literal 'k'	and the
1			
1			
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process data	Write to W
After Inst	W = ruction	0x10 0x25	
	[<i>label</i>] All $0 \le k \le 2\xi$ (W) + k - C, DC, Z 11 The conte added to the result is pl 1 1 Q1 Decode ADDLW Before Inn After Inst	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	$0 \le k \le 255$ (W) + k → (W) C, DC, Z $11 111x kkkk$ The contents of the W register added to the eight bit literal 'k' result is placed in the W regist 1 1 2 2 2 2 2 3 2 2 2 3 2 2 3 2 3 2 3 3 2 3

ANDLW	AND Literal w	th W						
Syntax:	[label] ANDLW							
Operands:	0 ≤ k ≤ 255							
Operation:	(W) .AND. (k) \rightarrow (W)							
Status Affected:	Z							
Encoding:	11 1003	. kkkk	kkkk					
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1 Q2	Q3	Q4					
	Decode Read literal		Write to W					
Example	ANDLW 0x5	?						
	Before Instruct	on						
	W = After Instruction	0xA3 า						
	W =	0x03						

ADDWF	Add W and f									
Syntax:	[label] A	DDWF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$.7								
Operation:	(W) + (f)	\rightarrow (dest	ination)							
Status Affected:	C, DC, Z									
Encoding:	00	0111	dfff	ffff						
Description:	register 'f'.	If 'd' is 0 egister. If	the W reg the result i 'd' is 1 the ter 'f'.	is stored						
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Evennle	ADDUE	BOD	<u>.</u>	. <u></u>						
Example	ADDWF		0							
	Before Instruction W = 0x17									
		FSR =	0xC2							
	After Inst									
		W = FSR =	0xD9 0xC2							

ANDWF	AND W v	vith f									
Syntax:	[<i>label</i>] Al	NDWF	f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7									
Operation:	(W) .AND. (f) \rightarrow (destination)										
Status Affected:	Z										
Encoding:	00	0101	dfff	ffff							
Description:	AND the W is 0 the res ter. If 'd' is register 'f'.	sult is stor 1 the res	red in the V	W regis-							
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read register 'f'	Process data	Write to destination							
Example	ANDWF	FSR,	1								
	Before In	struction									
		0x17 0xC2									
	After Inst	FSR = ruction	0.02								
		W =	0x17								
		FSR =	0x02								

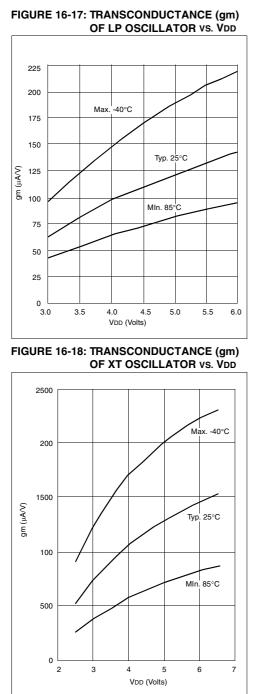
PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.3 DC Characteristics: PIC16C61-04 (Commercial, Industrial, Extended) PIC16C61-20 (Commercial, Industrial, Extended) PIC16LC61-04 (Commercial, Industrial)

DC CH4	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	1	Section Sym	15.2. Min	Тур†	Max	Units	Conditions		
	Input Low Voltage								
	I/O ports	VIL							
D030 D030A	with TTL buffer		Vss Vss	-	0.15VDD 0.8V	V V	For entire VDD range 4.5V ≤ VDD ≤ 5.5V		
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v			
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	v			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1		
	Input High Voltage								
	I/O ports	VIH		-					
D040	with TTL buffer		2.0	-	Vdd	v	$4.5V \le VDD \le 5.5V$		
D040A			0.25Vdd + 0.8V	-	Vdd	V	For entire VDD range		
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd	v	For entire VDD range		
D042	MCLR		0.85VDD	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	IPURB	50	250	† 400	μA	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq V PIN \leq V DD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
1	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		

The parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

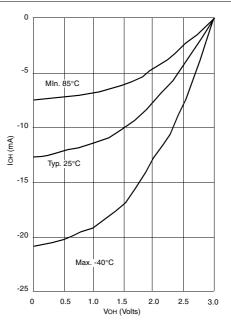
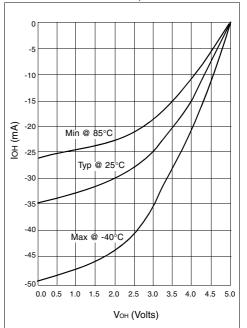



FIGURE 16-20: IOH VS. VOH, VDD = 5V

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices	61	62	62A	B62	63	B63	64	64A	R64	65	65A	B65	66	67

		Standa	rd Operat	ing C	ondition	s (unle	ss otherwise stated)		
		Operating temperature -40°C ≤ T					$A \leq +125^{\circ}C$ for extended,		
DC CHARACTERISTICS					-40°	C ≤T	$A \le +85^{\circ}C$ for industrial and		
	RACIERISTICS				0°C	≤ 1	$A \le +70^{\circ}C$ for commercial		
		Operating voltage VDD range as described in DC spec Section 20.1 and Section 20.2							
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				†					
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С		
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С		
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С		
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin		
	Capacitive Loading Specs on Out- put Pins								
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.		
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF			
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

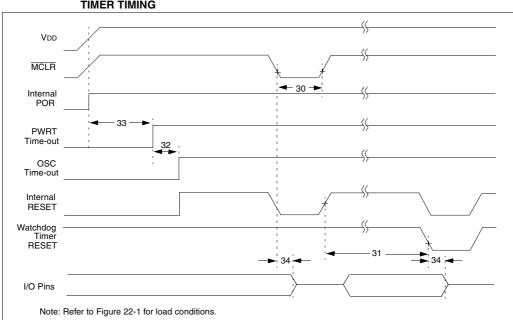
3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

21.3 DC Characteristics: PIC16CR63/R65-04 (Commercial, Industrial) PIC16CR63/R65-10 (Commercial, Industrial) PIC16CR63/R65-20 (Commercial, Industrial) PIC16LCR63/R65-04 (Commercial, Industrial)

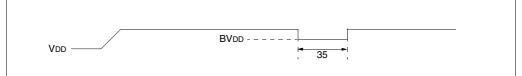
			rd Operat				ss otherwise stated) $A \le +85^{\circ}C$ for industrial and
DC CHA	RACTERISTICS	Operatir Section		Vdd	0°C range as o		$A \le +70^{\circ}C$ for commercial ed in DC spec Section 21.1 and
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15Vdd	v	For entire VDD range
D030A			Vss	-	0.8V	v	$4.5V \le VDD \le 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	v	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	v	$4.5V \le V$ DD $\le 5.5V$
D040A			0.25VDD	-	Vdd	v	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and
							LP osc configuration
	Output Low Voltage						-
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	v	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	v	IOH = -1.3 mA, VDD = 4.5 V, -40°C to +85°C
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

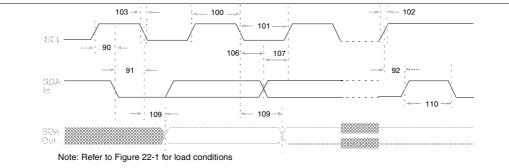
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 22-5: BROWN-OUT RESET TIMING

TABLE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	-	1024 Tosc		_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or WDT reset		_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—	l	μs	V DD \leq BVDD (D005)


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-14: I²C BUS DATA TIMING

TABLE 22-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109*	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.