

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c63-20-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data may be fetched from the same memory using the same bus. Separating program and data busses further allows instructions to be sized differently than 8-bit wide data words. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The PIC16C61 addresses 1K x 14 of program memory. The PIC16C62/62A/R62/64/64A/R64 address 2K x 14 of program memory, and the PIC16C63/R63/65/65A/R65 devices address 4K x 14 of program memory. The PIC16C66/67 address 8K x 14 program memory. All program memory is internal.

The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of "special optimal situations" makes programming with the PIC16CXX simple yet efficient, thus significantly reducing the learning curve. The PIC16CXX device contains an 8-bit ALU and working register (W). The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

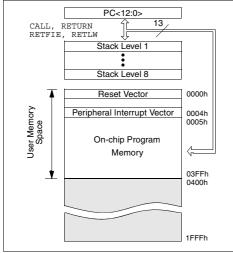
Depending upon the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. Bits C and DC operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

4.0 MEMORY ORGANIZATION

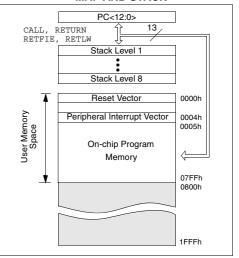
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

4.1 Program Memory Organization


The PIC16C6X family has a 13-bit program counter capable of addressing an $8K \times 14$ program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range
PIC16C61	1K x 14	0000h-03FFh
PIC16C62	2K x 14	0000h-07FFh
PIC16C62A	2K x 14	0000h-07FFh
PIC16CR62	2K x 14	0000h-07FFh
PIC16C63	4K x 14	0000h-0FFFh
PIC16CR63	4K x 14	0000h-0FFFh
PIC16C64	2K x 14	0000h-07FFh
PIC16C64A	2K x 14	0000h-07FFh
PIC16CR64	2K x 14	0000h-07FFh
PIC16C65	4K x 14	0000h-0FFFh
PIC16C65A	4K x 14	0000h-0FFFh
PIC16CR65	4K x 14	0000h-0FFFh
PIC16C66	8K x 14	0000h-1FFFh
PIC16C67	8K x 14	0000h-1FFFh


For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

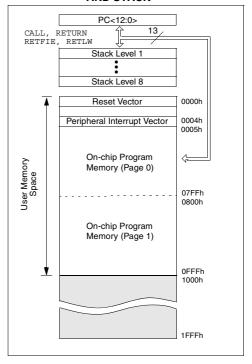

FIGURE 4-1: PIC16C61 PROGRAM MEMORY MAP AND STACK

FIGURE 4-2: PIC16C62/62A/R62/64/64A/ R64 PROGRAM MEMORY MAP AND STACK

FIGURE 4-3: PIC16C63/R63/65/65A/R65 PROGRAM MEMORY MAP AND STACK

FIGURE 4-6: PIC16C62/62A/R62/64/64A/ R64 REGISTER FILE MAP

1			
File Addre			File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h
09h	PORTE ⁽²⁾	TRISE ⁽²⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh			8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h			98h
			0.51
1Fh			9Fh
20h		General	A0h
		Purpose	
	General	Register	BFh
	Purpose Register		C0h
	-		
7Fh			FFh
	Bank 0	Bank 1	=
	nplemented data me		ead as '0'.
Note		il register. PORTE are not a	vailable on
	the PIC16C62	2/62A/R62.	

FIGURE 4-7: PIC16C63/R63/65/65A/R65 REGISTER FILE MAP

	REGIST	TER FILE MA	AP
File Addre	ess		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	PORTD ⁽²⁾ PORTE ⁽²⁾	TRISD ⁽²⁾ TRISE ⁽²⁾	88h
09h	PCLATH	PCLATH	89h 8Ah
0Ah	INTCON	INTCON	8Bh
0Bh 0Ch	PIR1	PIE1	8Ch
	PIR2	PIE2	8Dh
0Dh			
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	T1CON		90h
11h	TMR2		91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L		95h
16h	CCPR1H		96h
17h	CCP1CON		97h
18h	RCSTA	TXSTA	98h
19h	TXREG	SPBRG	99h
1Ah	RCREG		9Ah
1Bh	CCPR2L		9Bh
1Ch	CCPR2H		9Ch
1Dh	CCP2CON		9Dh
1Eh			9Eh
1Fh			9Fh
20h	General	General	A0h
7Fh	Purpose Register	Purpose Register	FFh
	Bank 0	Bank 1	1
Unin Note		I register PORTE are not a	
L			

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											<u> </u>
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	Idress pointe	ər					xxxx xxxx	uuuu uuuu
05h	PORTA		_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	PORTD	PORTD Dat	ta Latch whe	n written: PC	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h	PORTE		_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	-	—	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2		_	_		_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the L	east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the M	Aost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON		_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit	Register		•		xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	-	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Trai	nsmit Data R	egister						0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted							—	_

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A/R65

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

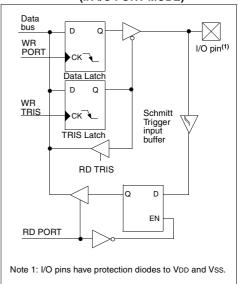
6: PIE1<6> and PIR1<6> are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

Г

FIGURE 4-17: PIR1 REGISTER FOR PIC16C63/R63/66 (ADDRESS 0Ch)

_	_	RCIF	TXIF	SSPIF	CCP1IF	TMB2IF	TMR1IF	B = Beadable	hit
bit7		1101					bit0	W = Writable U = Unimpler read as ' - n = Value at	bit nented bit, 0'
bit 7-6:	Reserved:	Always ma	intain thes	e bits clear.					
bit 5:	RCIF: USA 1 = The US 0 = The US	ART receiv	e buffer is	full (cleared	l by reading	RCREG)			
bit 4:	TXIF: USA 1 = The US 0 = The US	ART transr	nit buffer is	empty (cle	ared by writi	ng to TXRE	G)		
bit 3:	SSPIF : Syr 1 = The tra 0 = Waiting	nsmission/ı	eception is		ag bit must be clea	ared in softw	vare)		
bit 2:	0 = No TMI Compare M	ode 1 register c R1 register <u>Mode</u> 1 register c R1 register 2	apture occi capture oc ompare ma	curred	be cleared i ed (must be c red	,	ftware)		
bit 1:	TMR2IF : T 1 = TMR2 t 0 = No TM	o PR2 mat	ch occurred	d (must be o	bit cleared in so	ftware)			
bit 0:	TMR1IF : T 1 = TMR1 1 0 = No TMI	register ove	rflow occur	red (must b	e cleared in	software)			
globa	0 = No TMI	R1 register	overflow or	curred	n occurs rega	ardless of th		corresponding e rupt flag bits are	

5.4 PORTD and TRISD Register


Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 5-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

TABLE 5-9: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port mode.

TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

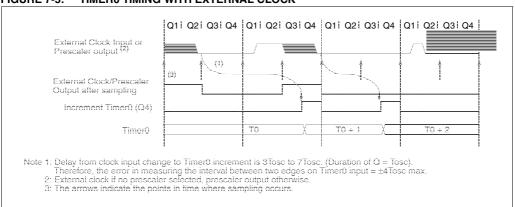
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	PORTD I	Data Direc	tion Regis	ter					1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Directio	n Bits	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

7.2 Using Timer0 with External Clock

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

10.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

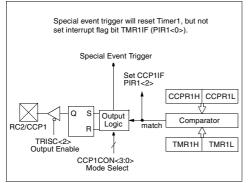
Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 10-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	mode value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
; this	value		

10.2 Compare Mode

Applicable Devices


61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time interrupt flag bit CCP1IF is set.

FIGURE 10-3: COMPARE MODE OPERATION BLOCK DIAGRAM

10.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

10.2.1 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

10.2.2 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

10.2.3 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 and CCP2 resets the TMR1 register pair. This allows the CCPR1H:CCPR1L and CCPR2H:CCPR2L registers to effectively be 16-bit programmable period register(s) for Timer1.

For compatibility issues, the special event trigger output of CCP1 (<u>PIC16C72</u>) and CCP2 (all other <u>PIC16C7X</u> devices) also starts an A/D conversion.

Note: The "special event trigger" from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>). Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{RCIE}}$.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Registe	ər					0000 0000	0000 0000

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: PSPIE and PSPIF are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

BCF	Bit Clear	f		
Syntax:	[<i>label</i>] BC	CF f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	7		
Operation:	$0 \rightarrow (f < b;$	>)		
Status Affected:	None			
Encoding:	01	00bb	bfff	ffff
Description:	Bit 'b' in re	gister 'f' is	s cleared.	
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write register 'f'
Example	BCF	FLAG_	REG, 7	
	After Inst	FLAG_RE	EG = 0xC7 EG = 0x47	

BTFSC	Bit Test,	Skip if Cl	ear						
Syntax:	[<i>label</i>] B1	FSC f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	skip if (f) = 0								
Status Affected:	None	None							
Encoding:	01 10bb bfff ffff								
Description:	If bit 'b' in register 'f' is '1' then the next instruction is executed. If bit 'b', in register 'f', is '0' then the next instruction is discarded, and a NOP is executed instead, making this a 2Tcy instruction.								
Words:	1								
Cycles:	1(2)								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	No- Operation					
If Skip:	(2nd Cyc	le)							
	Q1	Q2	Q3	Q4					
	No- Operation	No- Operation	No- Operation	No- Operation					
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • •								
	After Inst	PC = a		ERE					

BSF	Bit Set f							
Syntax:	[<i>label</i>] BS	SF f,b						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	$1 \rightarrow (f < b >)$							
Status Affected:	None							
Encoding:	01	01bb	bfff	ffff				
Description:	Bit 'b' in re	gister 'f' is	s set.					
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write register 'f'				
Example	BSF	FLAG_F	REG, 7					
	Before Instruction FLAG REG = 0x0A							
	After Inst	ruction						
		FLAG_RE	EG = 0x8A	4				

PC = address TRUE if FLAG<1>=1, PC = address FALSE

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.5 <u>Timing Diagrams and Specifications</u>

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode (-04)
			1	_	20	MHz	HS osc mode (-20)
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			50	_	_	ns	HS osc mode (-20)
		5	_	—	μs	LP osc mode	
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (-04)
			50	_	1,000	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	_	ns	XT oscillator
	TosH	Low Time	2.5	_	—	μs	LP oscillator
				_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	_	_	ns	XT oscillator
	TosF	Fall Time	50	_	—	ns	LP oscillator
			15	_	_	ns	HS oscillator

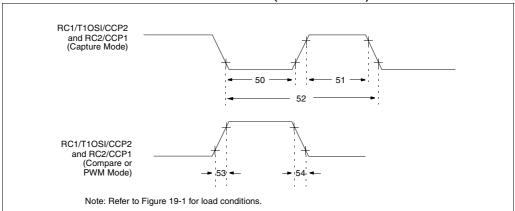
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

	Applicable Devices	61	62	62A	B62	63	B63	64	64A	R64	65	65A	B65	66	67
--	--------------------	----	----	-----	------------	----	-----	----	-----	------------	----	-----	------------	----	----

		Standa	rd Operat	ina (Conditior	ns (unle	ess otherwise stated)			
			ng temper	•		•	TA \leq +125°C for extended,			
	ARACTERISTICS				-40°	C ≤	TA \leq +85°C for industrial and			
	ANACIENISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial								
				VDD	range as	descri	bed in DC spec Section 18.1 and			
		Section	18.2							
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions			
No.				†						
	Output High Voltage									
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C			
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С			
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С			
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С			
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin			
	Capacitive Loading Specs on Out-									
	put Pins									
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.			
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF				
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF				

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

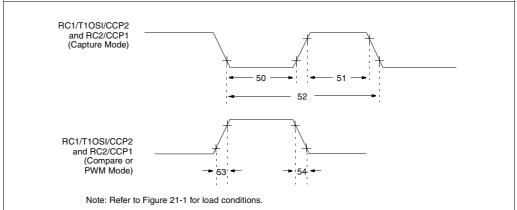
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)


TABLE 19-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2			0.5TCY + 20	—	_	ns	
		input low time			10	_		ns	
				PIC16 LC 65	20	—	-	ns	
51*	TccH	CH CCP1 and CCP2 No Prescaler			0.5Tcy + 20	_		ns	
		input high time	With Prescaler	PIC16 C 65	10	_		ns	
				PIC16 LC 65	20	—		ns	
52*	TccP	CCP1 and CCP2 in	CCP1 and CCP2 input period			_	I	ns	N = prescale value (1,4, or 16)
53	TccR	CCP1 and CCP2 c	utput rise time	PIC16 C 65	_	10	25	ns	
				PIC16 LC 65	—	25	45	ns	
54	TccF	CCP1 and CCP2 c	utput fall time	PIC16 C 65	—	10	25	ns	
					—	25	45	ns	

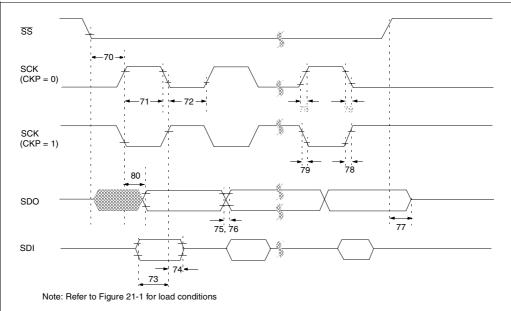
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

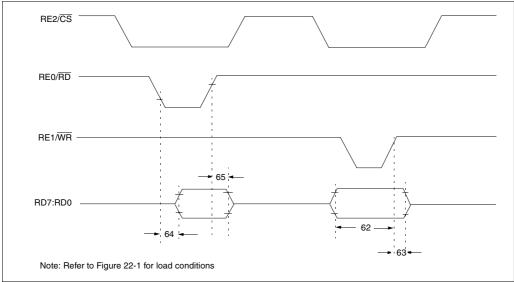

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns	
		input low time	With Prescaler	PIC16CR63/R65	10	—	—	ns	
				PIC16LCR63/R65	20	-	_	ns	
51*	51* TccH CCP1 and CCP2		No Prescaler		0.5TCY + 20	—	—	ns	
		input high time	With Prescaler	PIC16CR63/R65	10	_	_	ns	
				PIC16LCR63/R65	20	-	_	ns	
52*	TccP	CCP1 and CCP2 ir	CCP1 and CCP2 input period			-	—	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 o	utput rise time	PIC16CR63/R65	—	10	25	ns	
				PIC16LCR63/R65	_	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16 CR 63/R65	—	10	25	ns	
			PIC16LCR63/R65	—	25	45	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 21-8: SPI MODE REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	TCY + 20	_	—	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	—	—	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-8: PARALLEL SLAVE PORT TIMING (PIC16C67)

TABLE 22-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C67)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62*	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)		20	_	_	ns	
				25	—	—	ns	Extended Range Only
63*	TwrH2dtl	\overline{WR} or \overline{CS} to data–in invalid (hold	PIC16 C 67	20	_	—	ns	
		time)	PIC16 LC 67	35		_	ns	
64	TrdL2dtV	$\overline{\text{RD}}\downarrow$ and $\overline{\text{CS}}\downarrow$ to data–out valid	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid			80	ns	
					—	90	ns	Extended Range Only
65*	TrdH2dtl	$\overline{\text{RD}}$ for $\overline{\text{CS}}$ to data-out invalid			-	30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

NOTES:

Figure 11-2:	SSPCON: Sync Serial Port
	Control Register (Address 14h) 85
Figure 11-3:	SSP Block Diagram (SPI Mode) 86
Figure 11-4:	SPI Master/Slave Connection
Figure 11-5:	SPI Mode Timing, Master Mode or
	Slave Mode w/o SS Control 88
Figure 11-6:	SPI Mode Timing, Slave Mode with
	SS Control 88
Figure 11-7:	SSPSTAT: Sync Serial Port Status
	Register (Address 94h)(PIC16C66/67) 89
Figure 11-8:	SSPCON: Sync Serial Port Control
	Register (Address 14h)(PIC16C66/67)90
Figure 11-9:	SSP Block Diagram (SPI Mode)
	(PIC16C66/67)
Figure 11-10:	SPI Master/Slave Connection
-	(PIC16C66/67)
Figure 11-11:	SPI Mode Timing, Master Mode
F ' 11 10	(PIC16C66/67)
Figure 11-12:	SPI Mode Timing (Slave Mode With
Figure 11 10.	CKE = 0) (PIC16C66/67)
Figure 11-13:	SPI Mode Timing (Slave Mode With
Figure 11 14:	CKE = 1) (PIC16C66/67)94 Start and Stop Conditions95
Figure 11-14: Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
	(Two Masters)
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram (I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
•	(7-bit Address)101
Figure 11-26:	I ² C Waveforms for Transmission
	(7-bit Address) 102
Figure 11-27:	Operation of the I ² C Module in
	IDLE MODE DOV MODE at
	IDLE_MODE, RCV_MODE or
	XMIT_MODE 104
Figure 12-1:	XMIT_MODE104 TXSTA: Transmit Status and
Figure 12-1:	XMIT_MODE104 TXSTA: Transmit Status and Control Register (Address 98h)105
Figure 12-1: Figure 12-2:	XMIT_MODE104 TXSTA: Transmit Status and Control Register (Address 98h)105 RCSTA: Receive Status and
Figure 12-2:	XMIT_MODE 104 TXSTA: Transmit Status and 0 Control Register (Address 98h) 105 RCSTA: Receive Status and 0 Control Register (Address 18h) 106
-	XMIT_MODE 104 TXSTA: Transmit Status and 0 Control Register (Address 98h) 105 RCSTA: Receive Status and 0 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 0
Figure 12-2: Figure 12-3:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110
Figure 12-2:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 10
Figure 12-2: Figure 12-3: Figure 12-4:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110
Figure 12-2: Figure 12-3:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) 110
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5:	XMIT_MODE 104 TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 PIC16C63/R63/65/65A/R65) 110
Figure 12-2: Figure 12-3: Figure 12-4:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 101 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 101 RX Pin Sampling Scheme (BRGH = 0 or = 1) 110
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6:	XMIT_MODE 104 TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67)
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) 111 USART Transmit Block Diagram 112
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C66/R63/65/65A/R65) PIC16C66/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 Asynchronous Master Transmission 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 102 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 (Back to Back) 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 113 USART Receive Block Diagram 114
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	XMIT_MODE104TXSTA: Transmit Status andControl Register (Address 98h)105RCSTA: Receive Status andControl Register (Address 18h)106RX Pin Sampling Scheme (BRGH = 0)PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 0 or = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 0 or = 1)(PIC16C66/67)111USART Transmit Block Diagram112Asynchronous Master Transmission113USART Receive Block Diagram114Asynchronous Transmission114
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 102 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception 117

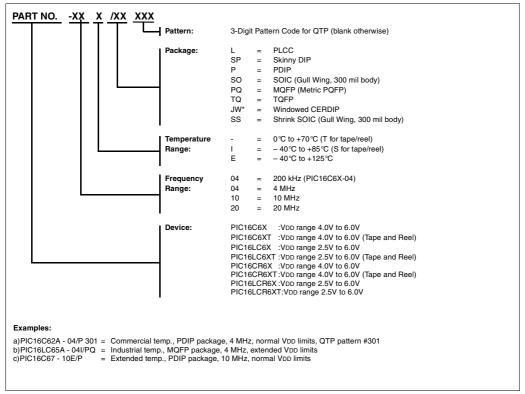

Figure 13-2:	Configuration Word for
	PIC16C62/64/65 124
Figure 13-3:	Configuration Word for
	PIC16C62A/R62/63/R63/64A/R64/
	65A/R65/66/67 124
Figure 13-4:	Crystal/Ceramic Resonator Operation
	(HS, XT or LP OSC Configuration)
Figure 13-5:	External Clock Input Operation
riguie to 5.	(HS, XT or LP OSC Configuration)
Einung 10.0	
Figure 13-6:	External Parallel Resonant
	Crystal Oscillator Circuit 127
Figure 13-7:	External Series Resonant
	Crystal Oscillator Circuit 127
Figure 13-8:	RC Oscillator Mode 127
Figure 13-9:	Simplified Block Diagram of
	On-chip Reset Circuit 128
Figure 13-10:	Brown-out Situations 129
Figure 13-11:	Time-out Sequence on Power-up
•	(MCLR not Tied to VDD): Case 1
Figure 13-12:	Time-out Sequence on Power-up
. iguio 10 12.	(MCLR Not Tied To VDD): Case 2
Figure 13-13:	Time-out Sequence on Power-up
rigule 15-15.	(MCLR Tied to VDD)
Einung 10 14.	
Figure 13-14:	External Power-on Reset Circuit
	(For Slow VDD Power-up) 135
Figure 13-15:	External Brown-out
	Protection Circuit 1 135
Figure 13-16:	External Brown-out
	Protection Circuit 2 135
Figure 13-17:	Interrupt Logic for PIC16C61 137
Figure 13-18:	Interrupt Logic for PIC16C6X 137
Figure 13-19:	INT Pin Interrupt Timing 138
Figure 13-20:	Watchdog Timer Block Diagram 140
Figure 13-21:	Summary of Watchdog
riguie to 21.	Timer Registers 140
Figure 12 00	
Figure 13-22:	Wake-up from Sleep Through Interrupt142
Einung 10.00	
Figure 13-23:	Typical In-circuit Serial
	Programming Connection 142
Figure 14-1:	General Format for Instructions 143
Figure 16-1:	Load Conditions for Device Timing
	Specifications 168
Figure 16-2:	External Clock Timing 169
Figure 16-3:	CLKOUT and I/O Timing 170
Figure 16-4:	Reset, Watchdog Timer, Oscillator
-	Start-up Timer and Power-up Timer
	Timing 171
Figure 16-5:	Timer0 External Clock Timings 172
Figure 17-1:	Typical RC Oscillator
rigato tr ti	Frequency vs. Temperature
Eiguro 17 0	Typical RC Oscillator
Figure 17-2:	
E' 47.0	Frequency vs. VDD
Figure 17-3:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-4:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-5:	Typical IPD vs. VDD Watchdog Timer
	Disabled 25°C 174
Figure 17-6:	Typical IPD vs. VDD Watchdog Timer
-	Enabled 25°C 175
Figure 17-7:	Maximum IPD vs. VDD Watchdog
	Disabled 175
Figure 17-8.	Disabled 175 Maximum IPD vs. VDD Watchdog
Figure 17-8:	Maximum IPD vs. VDD Watchdog
	Maximum IPD vs. VDD Watchdog Enabled* 176
Figure 17-8: Figure 17-9:	Maximum IPD vs. VDD Watchdog Enabled*
	Maximum IPD vs. VDD Watchdog Enabled* 176

Table 23-5:	Timer0 and Timer1 External
	Clock Requirements272
Table 23-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)273
Table 23-7:	Parallel Slave Port Requirements (PIC16C67) 274
Table 23-8:	SPI Mode Requirements277
Table 23-9:	I ² C Bus Start/Stop Bits
	Requirements278
Table 23-10:	I ² C Bus Data Requirements279
Table 23-11:	USART Synchronous Transmission
	Requirements
Table 23-12:	USART Synchronous Receive
	Requirements280
Table 24-1:	RC Oscillator Frequencies
Table 24-2:	Capacitor Selection for Crystal
	Oscillators
Table E-1:	Pin Compatible Devices

-

PIC16C6X Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. The Microchip Website at www.microchip.com
- 2. Your local Microchip sales office (see following page)