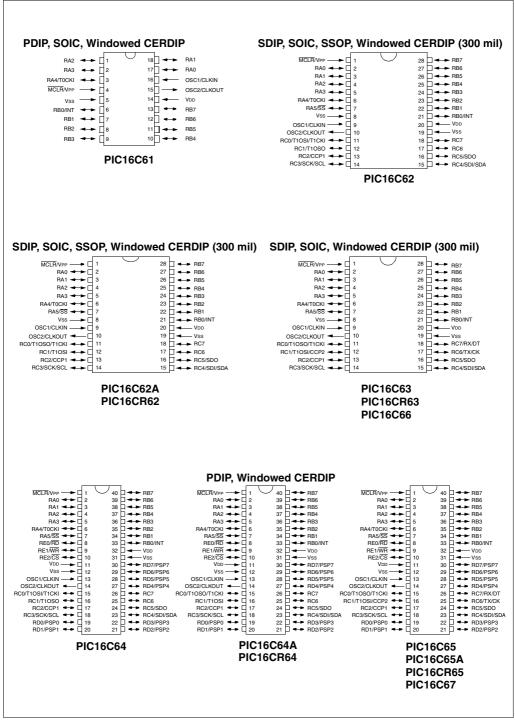


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

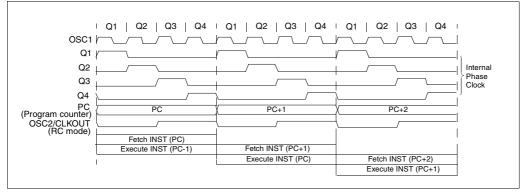
Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c64a-04-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

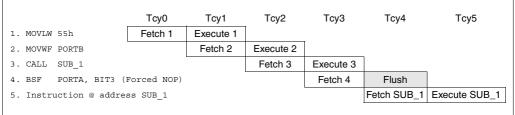
Pin Diagrams

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-5.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

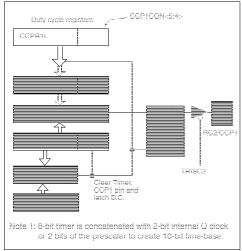
FIGURE 3-5: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

10.3 PWM Mode

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

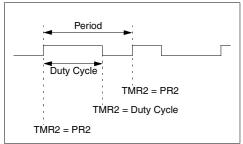

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWM duty cycle is latched from CCPR1L into CCPR1H
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)

Note:	The Timer2 postscaler (see Section 9.1) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

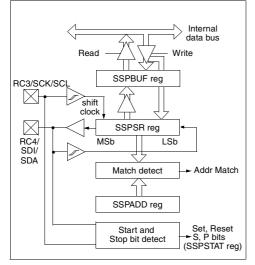
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:


$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be forced to the low level.

11.5 <u>SSP I²C Operation</u>

The SSP module in I^2C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>).

FIGURE 11-24: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I^2C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C Firmware controlled Master Mode, slave is idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user first needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS M
--

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz	16 MHz SPBRG 1				SPBRG	7.15909	MHz	SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

	Fosc = 5	5.0688 MI	Ηz	4 MHz			3.579545	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.615	+0.16	103	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.231	+0.16	51	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	76.923	+0.16	12	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	1000	+4.17	9	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	NA	-	-	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	100	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.906	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909 I	MHz	SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA		-	NA		-	NA	-	
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

	Fosc = 5	5.0688 MI	Ηz	4 MHz			3.57954	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	0.31	+3.13	255	0.3005	-0.17	207	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.202	+1.67	51	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.404	+1.67	25	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	NA	-	-	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	NA	-	-	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	62.500	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	3.906	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255

12.4 USART Synchronous Slave Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Synchronous Slave Mode differs from Master Mode in the fact that the shift clock is supplied externally at the CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit $\mathsf{TXIE}.$
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, enable bit SREN is a don't care in slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing enable bit CREN.

13.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 13-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 13-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

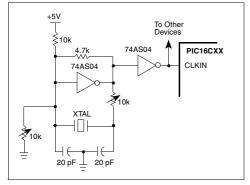
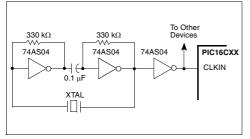
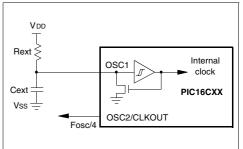



Figure 13-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 13-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

13.2.4 RC OSCILLATOR


For timing insensitive applications the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 13-8 shows how the RC combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-5 for waveform).

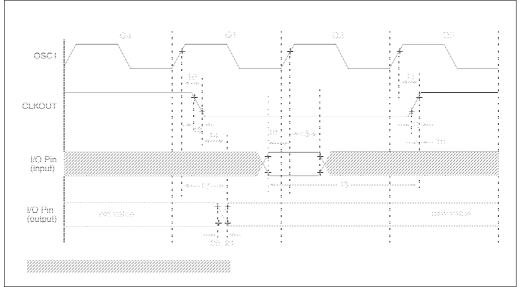


FIGURE 13-8: RC OSCILLATOR MODE

COMF	Complement f	DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] COMF f,d	Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\bar{f}) \rightarrow (destination)$	Operation:	(f) - 1 \rightarrow (destination);
Status Affected:	Z		skip if result = 0
Encoding:	00 1001 dfff ffff	Status Affected:	None
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in	Encoding:	00 1011 dfff ffff
Words: Cycles:	W. If 'd' is 1 the result is stored back in register 'f'. 1	Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction, is executed. If the result is 0, then a NOP is
Q Cycle Activity:	Q1 Q2 Q3 Q4		executed instead making it a 2TCY instruc- tion.
, ,	Decode Read Process Write to	Words:	1
	register data destination	Cycles:	1(2)
		Q Cycle Activity:	Q1 Q2 Q3 Q4
Example	COMF REG1, 0 Before Instruction	, ,	Decode Read Process Write to register 'f' data destination
	$\begin{array}{rcl} REG1 &=& 0x13\\ After Instruction & \\ REG1 &=& 0x13\\ W &=& 0xEC \end{array}$	lf Skip:	Q1 Q2 Q3 Q4 No- Operation Operation Operation Operation
DECF	Decrement f		
Syntax:	[<i>label</i>] DECF f,d	Example	HERE DECFSZ CNT, 1 GOTO LOOP
Operands:	$0 \le f \le 127$		CONTINUE •
	d ∈ [0,1]		•
Operation:	$d \in [0,1]$ (f) - 1 \rightarrow (destination)		• Before Instruction
Operation: Status Affected:			• Before Instruction PC = address HERE
•	(f) - 1 \rightarrow (destination)		PC = address HERE After Instruction
Status Affected:	(f) - 1 → (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE
Status Affected: Encoding:	(f) - 1 → (destination) Z 00 0011 dfff ffff		$\begin{array}{rcl} PC &=& address {}_{HERE}\\ \textbf{After Instruction}\\ & CNT &=& CNT-1\\ & & & & \\ & & & & \\ & & & & \\ & & & &$
Status Affected: Encoding: Description: Words:	(f) - 1 \rightarrow (destination) Z Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE
Status Affected: Encoding: Description: Words: Cycles:	(f) - 1 \rightarrow (destination) Z Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0,
Status Affected: Encoding: Description: Words:	(f) - 1 \rightarrow (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1		$\begin{array}{rcl} PC &=& address \mbox{ HERE} \\ \mbox{After Instruction} \\ CNT &=& CNT - 1 \\ \mbox{if CNT} &=& 0, \\ PC &=& address \mbox{ continue} \\ \mbox{if CNT} &\neq& 0, \\ \end{array}$
Status Affected: Encoding: Description: Words: Cycles:	(f) - 1 \rightarrow (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1 Q1 Q2 Q3 Q4 Decode Read Process Write to data destination		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0,
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$ \begin{array}{c c} (f) - 1 \rightarrow (destination) \\ \hline Z \\ \hline 00 & 0011 & dfff & ffff \\ \hline Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. \\ 1 & & \\ 1 & & \\ Q1 & Q2 & Q3 & Q4 \\ \hline \hline Decode & Read & Process & Write to destination \\ \hline & & \\ f'' & & \\ \end{array} $		$\begin{array}{rcl} PC &=& address {}_{HERE}\\ \textbf{After Instruction}\\ & CNT &=& CNT-1\\ & & & & \\ & & & & \\ & & & & \\ & & & &$
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(f) - 1 \rightarrow (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 2 Q1 Q2 Q3 Q4 Decode Read Process Write to data destination DECF CNT, 1 Before Instruction CNT = 0x01		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0,
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(f) - 1 → (destination) Z 00 0011 dfff fff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1 Q1 Q2 Q3 Q4 Decode Read Process Write to register data destination DECF CNT, 1 Before Instruction CNT = 0x01 Z = 0		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0,
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(f) - 1 \rightarrow (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 2 Q1 Q2 Q3 Q4 Decode Read Process Write to data destination DECF CNT, 1 Before Instruction CNT = 0x01		$\begin{array}{rcl} PC &=& address \mbox{ HERE} \\ \mbox{After Instruction} \\ CNT &=& CNT - 1 \\ \mbox{if CNT} &=& 0, \\ PC &=& address \mbox{ continue} \\ \mbox{if CNT} &\neq& 0, \\ \end{array}$

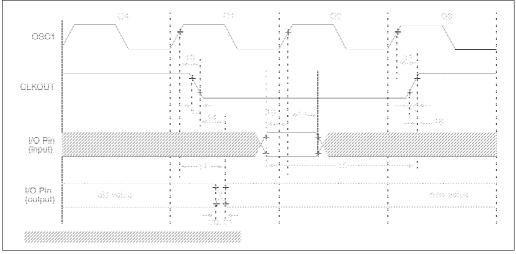
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 15-3: CLKOUT AND I/O TIMING

CLKOUT AND I/O TIMING REQUIREMENTS TABLE 15-3:

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
10*	TosH2ckL	OSC1↑ to CLKOUT↓	—	15	30	ns	Note 1	
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		_	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out va	alid	_		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKC) TUC	0.25Tcy + 25		_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOU	IT ↑	0		_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Po	OSC1↑ (Q1 cycle) to Port out valid			80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Por (I/O in hold time)	rt input invalid	TBD	I	_	ns	
19*	TioV2osH	Port input valid to OSC1 time)	↑ (I/O in setup	TBD		—	ns	
20*	TioR	Port output rise time	PIC16 C 61	_	10	25	ns	
			PIC16LC61	_		60	ns	
21*	TioF	Port output fall time	PIC16 C 61	_	10	25	ns	
		PIC16 LC 61		_		60	ns	
22††*	Tinp	RB0/INT pin high or low	20	_	—	ns		
23††*	Trbp	RB7:RB4 change int high	20		_	ns		

These parameters are characterized but not tested.


t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

These parameters are asynchronous events not related to any internal clock edges. ††

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

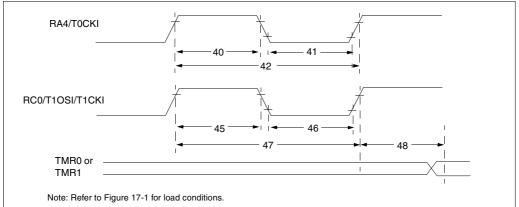
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓	-	75	200	ns	Note 1	
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]	_	75	200	ns	Note 1	
12*	TckR	CLKOUT rise time		—	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	↑	Tosc + 200		_	ns	Note 1
16*	TckH2ioI	Port in hold after CLKOUT 1		0		_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out	—	50	150	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC16 C 62/64	100		_	ns	
		input invalid (I/O in hold time)	PIC16LC62/64	200		_	ns	
19*	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)		0		—	ns	
20*	TioR	Port output rise time	PIC16 C 62/64	—	10	40	ns	
			PIC16LC62/64	—		80	ns	
21*	TioF	Port output fall time	PIC16 C 62/64	—	10	40	ns	
		PIC16 LC 62/64		—		80	ns	
22††*	Tinp	INT pin high or low time	•	Тсү	_	—	ns	
23††*	Trbp	RB7:RB4 change INT high or	low time	Тсү	_	—	ns	

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

40* Tt0H T0CKI High Pulse Width No Prescaler 0.5TCY + 20 - - ns Must also meet parameter 42 41* Tt0L T0CKI Low Pulse Width No Prescaler 10 - - ns parameter 42 41* Tt0L T0CKI Low Pulse Width No Prescaler 0.5TCY + 20 - - ns parameter 42 42* Tt0P T0CKI Period No Prescaler TCY + 40 - - ns parameter 42 45* Tt1H T1CKI High Time Synchronous, Prescaler = 10.5TCY + 20 - - ns Nust also meet 9/rescaler PIC16C6X 15 - - ns Must also meet 46* Tt1L T1CKI High Time Synchronous, Prescaler = PIC16C6X 30 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 0.5TCY + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, PIC16C6X 30 <t< th=""><th>Param No.</th><th>Sym</th><th>Characteristic</th><th></th><th></th><th>Min</th><th>Typ†</th><th>Max</th><th>Units</th><th>Conditions</th></t<>	Param No.	Sym	Characteristic			Min	Typ†	Max	Units	Conditions
41* TtoL ToCKI Low Pulse Width No Prescaler 0.5Tcy + 20 - - ns Must also meet parameter 42 42* TtoP ToCKI Period No Prescaler 10 - - ns Must also meet parameter 42 42* TtoP ToCKI Period No Prescaler Tcy + 40 - - ns Ne prescale value (2. q, 256) 45* Tt1H T1CKI High Time Synchronous, Prescaler = 1 0.5Tcy + 20 - - ns Ne prescale value (2. q, 256) 45* Tt1H T1CKI High Time Synchronous, Prescaler = 1 0.5Tcy + 20 - - ns Must also meet parameter 47 Prescaler = 2.4.8 Asynchronous, Prescaler = 1 0.5Tcy + 20 - - ns parameter 47 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5Tcy + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5Tcy + 20 - ns parameter 47 Prescaler = 2.4.8	40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	_	_	ns	Must also meet
With Prescaler 10 - - ns parameter 42 42* TtOP TOCKI Period No Prescaler Tcr + 40 - - ns N prescale value 42* TtOP TOCKI Period With Prescaler Greater of: 20 or Tcr + 40 - - ns N = prescale value 45* Tt1H T1CKI High Time Synchronous, Prescaler = 2,4,8 PIC16C6X 15 - - ns Must also meet 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5Tcr + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 2,4,8 30 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5Tcr + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5Tcr + 20 - - ns 47* Tt1P T1CKI Input period Synchronous PIC16C6X 30 - <t< td=""><td></td><td></td><td>-</td><td></td><td>With Prescaler</td><td>10</td><td>-</td><td>_</td><td>ns</td><td>parameter 42</td></t<>			-		With Prescaler	10	-	_	ns	parameter 42
42* TtoP ToCKI Period No Prescaler With Prescaler ToC + 40 - - ns N = prescale value (2, 4,, 256) 45* Tt1H T1CKI High Time Synchronous, Prescaler = 1 0.5TcY + 20 - - ns N = prescale value (2, 4,, 256) 45* Tt1H T1CKI High Time Synchronous, Prescaler = 1 0.5TcY + 20 - - ns Must also meet parameter 47 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TcY + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TcY + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TcY + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TcY + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous PIC16C6X 15 - - ns 47* T1P T1CKI input period	41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
$ \begin{array}{ c c c c c } \hline With Prescaler & Greater of: \\ 20 \text{ or } \underline{\GammaCY + 40} \\ N \\ \hline With Prescaler & Greater of: \\ 20 \text{ or } \underline{\GammaCY + 40} \\ N \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c c c c c c c c c c c c c c c c c$					With Prescaler	10	-	-	ns	parameter 42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	-	-	ns	
46* Tt1L T1CKI low Time Synchronous, Picscaler = 2,4,8 Pic16C6X 15 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TCY + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TCY + 20 - - ns 46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TCY + 20 - - ns 46* Tt1L T1CKI low Time Synchronous, Prescaler = 1 0.5TCY + 20 - - ns 47* Tt1P T1CKI input period Synchronous PIC16C6X 25 - - ns 47* Tt1P T1CKI input period Synchronous PIC16C6X Greater of: 30 OR TCY + 40 - ns PIC16LC6X Greater of: 50 OR TCY + 40 N - - ns PIC16LC6X Greater of: 50 OR TCY + 40 N - - ns PIC16LC6X Greater of: 50 OR TCY + 40 N - - ns PIC16LC6X Greater of: 50 OR TCY + 40 N - - ns PIC16LC6X 100 - - ns - - <t< td=""><td></td><td></td><td colspan="2"></td><td>With Prescaler</td><td>20 or <u>TCY + 40</u></td><td>-</td><td>—</td><td>ns</td><td></td></t<>					With Prescaler	20 or <u>TCY + 40</u>	-	—	ns	
$46^{*} Tt1L T1CKI Low Time \\ 46^{*} Tt1L \\ 71CKI Low Time \\ 46^{*} Tt1L \\ 71CKI Low Time \\ 5ynchronous, \\ 71C16LC6X $	45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	—	—	ns	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					PIC16 C 6X	15	—		ns	parameter 47
46* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TCY + 20 - - ns Must also meet 9/6* Tt1L T1CKI Low Time Synchronous, Prescaler = 1 0.5TCY + 20 - - ns Must also meet 9/1C16C6X 15 - - ns parameter 47 Prescaler = 2,4,8 PIC16C6X 30 - - ns 47* Tt1P T1CKI input period Synchronous PIC16C6X Greater of: - - ns 47* Tt1P T1CKI input period Synchronous PIC16C6X Greater of: - - ns 9IC16LC6X Greater of: - - - ns N = prescale value (1, 2, 4, 8) 47* Tt1P T1CKI input period Synchronous PIC16C6X Greater of: - - ns 9IC16LC6X Greater of: - - N - ns N = prescale value (1, 2, 4, 8) PIC16LC6X Greater of: - N - ns - - 47* Tt1P Asynchronous PIC16C6X Greater of: - <td></td> <td></td> <td></td> <td></td> <td>PIC16LC6X</td> <td>25</td> <td>-</td> <td>_</td> <td>ns</td> <td></td>					PIC16 LC 6X	25	-	_	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Asynchronous	PIC16 C 6X	30	—	—	ns	
$ \frac{1}{1} = \frac{1}{1} + 1$					PIC16 LC 6X	50	—	—	ns	
$ \frac{47^{*}}{10000000000000000000000000000000000$	46*	Tt1L	T1CKI Low Time	Synchronous, F	rescaler = 1	0.5TCY + 20	-	_	ns	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					PIC16 C 6X	15	-	—	ns	parameter 47
47* Tt1P T1CKI input period Synchronous PIC16LC6X 50 - - ns 47* Tt1P T1CKI input period Synchronous PIC16C6X Greater of: 30 OR TCY + 40 N - - ns N = prescale value (1, 2, 4, 8) PIC16LC6X Greater of: 50 OR TCY + 40 N N - - ns N = prescale value (1, 2, 4, 8) PIC16LC6X Greater of: 50 OR TCY + 40 N N - - ns Ft1 Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN) DC - 200 kHz					PIC16 LC 6X	25	-	—	ns	
47* Tt1P T1CKI input period Synchronous PIC16C6X Greater of: 30 OR TCY + 40 N - - ns N = prescale value (1, 2, 4, 8) 47* T1CKI input period Synchronous PIC16C6X Greater of: 50 OR TCY + 40 N - - ns N = prescale value (1, 2, 4, 8) Asynchronous PIC16C6X Greater of: 50 OR TCY + 40 N - - ns Asynchronous PIC16C6X 60 - - ns Ft1 Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN) DC - 200 kHz				Asynchronous	PIC16 C 6X	30	-	—	ns	
Image: second						50	—		ns	
Ft1 Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN) DC - ns	47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	30 OR TCY + 40	-	—	ns	
PIC16LC6X 100 - ns Ft1 Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN) DC - 200 kHz					PIC16 LC 6X	50 OR TCY + 40				
Ft1 Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN) DC — 200 kHz				Asynchronous	PIC16 C 6X	60	-	-	ns	
(oscillator enabled by setting bit T1OSCEN)						100	-	-	ns	
48 TCKEZtmr1 Delay from external clock edge to timer increment 2Tosc - 7Tosc -		Ft1				DC	-	200	kHz	
	48	TCKEZtmr	1 Delay from external	clock edge to tir	ner increment	2Tosc	- 1	7Tosc	-	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.3 DC Characteristics: PIC16C62A/R62/64A/R64-04 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-10 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-20 (Commercial, Industrial, Extended) PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)

DC CH	ARACTERISTICS	Operatir	ng temper	ature	e -40° -40° 0°C	C`≤` C ≤` ≤`	TA \leq +125°C for extended, TA \leq +85°C for industrial and TA \leq +80°C for industrial and TA \leq +70°C for commercial bed in DC spec Section 18.1 and
Param No.	Characteristic	Sym	Min	тур †	Мах	Units	Conditions
110.	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer	VIL	Vss	-	0.15VDD	v	For entire VDD range
D030A			VSS	_	0.13VDD	v	$4.5V \le VDD \le 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	v	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1
	Input High Voltage					-	
	I/O ports	Viн		-			
D040	with TTL buffer		2.0	-	VDD	v	$4.5V \leq VDD \leq 5.5V$
D040A			0.25VDD	-	Vdd	V	For entire VDD range
			+ 0.8V				, , , , , , , , , , , , , , , , , , ,
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	I PURB	50	250	400	μA	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \leq VPIN \leq VDD, Pin at hi-impedance$
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP
							osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			-	-	0.6	v	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	v	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
D083A			-	-	0.6	v	IOL = 1.2 mA, VDD = 4.5 V, -40°C to +125°C

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

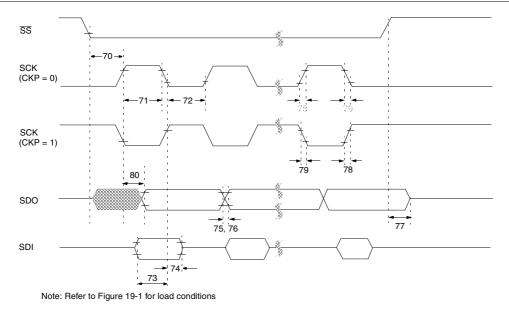
19.0 ELECTRICAL CHARACTERISTICS FOR PIC16C65

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +85°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOI	H) x IOH} + \sum (VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C65-04	PIC16C65-10	PIC16C65-20	PIC16LC65-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 µA typ. at 4.5V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 15 mA max. at 5.5V IPD 1.0 μA typ. at 4.5V Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 105 μA max. at 32 kHz, 3.0V IPD: 800 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 105 μA max. at 32 kHz, 3.0V IPD: 800 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

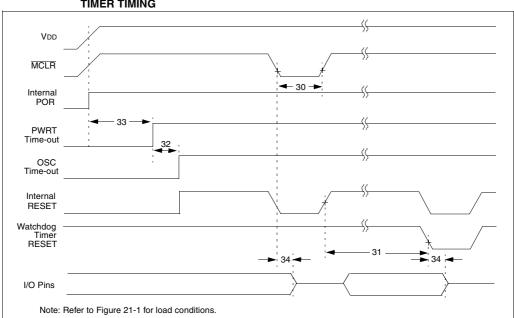


TABLE 19-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	—	ns	
75	TdoR	SDO data output rise time		10	25	ns	
76	TdoF	SDO data output fall time	-	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 21-5: BROWN-OUT RESET TIMING

TABLE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	-	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	_	_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or WDT reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	V DD \leq BVDD (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

22.3 DC Characteristics: PIC16C66/67-04 (Commercial, Industrial, Extended) PIC16C66/67-10 (Commercial, Industrial, Extended) PIC16C66/67-20 (Commercial, Industrial, Extended) PIC16LC66/67-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)									
		$\label{eq:constraint} Operating \ temperature \qquad -40^{\circ}C \qquad \leq TA \leq +125^{\circ}C \ for \ extended,$							
DC CHA	ARACTERISTICS				-40°0		$A \le +85^{\circ}C$ for industrial and		
50 01.		_			0°C		$A \le +70^{\circ}C$ for commercial		
			ng voltage ction 22.2	VDD	range as	describ	bed in DC spec Section 22.1		
Dawawa				True	Max	Linite	Conditions		
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions		
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.15VDD	v	For entire VDD range		
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$		
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V			
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	V			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1		
	Input High Voltage								
	I/O ports	Viн		-					
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le V$ DD $\le 5.5V$		
D040A			0.25VDD	-	Vdd	V	For entire VDD range		
			+ 0.8V				Ũ		
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range		
D042	MCLR		0.8VDD	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-		
							impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$		
D063	OSC1		-	-	±5	μA	$Vss \leq VPIN \leq VDD, XT, HS and$		
							LP osc configuration		
	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5 V,		
							-40°C to +85°C		
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5 V,		
D 000							-40°C to +125°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,		
Dooot					0.0	N N	-40°C to +85°C		
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
			L				-40 0 10 + 125 0		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

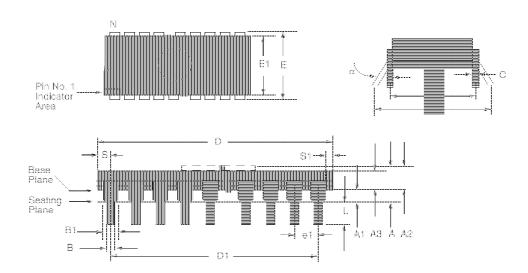
 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

*

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Parameter No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	—	ns	
72*	TscL	SCK input low time (slave mode)	TCY + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	—	ns	
75*	TdoR	SDO data output rise time	—	10	25	ns	
76*	TdoF	SDO data output fall time	_	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	—	10	25	ns	
79*	TscF	SCK output fall time (master mode)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	—	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	Тсү	—	—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40	—	—	ns	


TABLE 22-8: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)							
		Millimeters		Inch			
Symbol	Min	Мах	Notes	Min	Мах	Notes	
α	0°	10°		0°	10°		
А	4.318	5.715		0.170	0.225		
A1	0.381	1.778		0.015	0.070		
A2	3.810	4.699		0.150	0.185		
A3	3.810	4.445		0.150	0.175		
В	0.355	0.585		0.014	0.023		
B1	1.270	1.651	Typical	0.050	0.065	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	51.435	52.705		2.025	2.075		
D1	48.260	48.260	Reference	1.900	1.900	Reference	
E	15.240	15.875		0.600	0.625		
E1	12.954	15.240		0.510	0.600		
e1	2.540	2.540	Reference	0.100	0.100	Reference	
eA	14.986	16.002	Typical	0.590	0.630	Typical	
eB	15.240	18.034		0.600	0.710		
L	3.175	3.810		0.125	0.150		
Ν	40	40		40	40		
S	1.016	2.286		0.040	0.090		
S1	0.381	1.778		0.015	0.070		

F.10 PIC17CXXX Family of Devices

		PIC17C42A	PIC17CR42	PIC17C43	PIC17CR43	PIC17C44
Clock	Maximum Frequency of Operation (MHz)	33	33	33	33	33
	EPROM Program Memory (words)	2K	—	4K	—	8K
Memory	ROM Program Memory (words)	-	2К	-	4K	—
	RAM Data Memory (bytes)	232	232	454	454	454
Peripherals	Timer Module(s)	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3
	Captures/PWM Module(s)	2	2	2	2	2
	Serial Port(s) (USART)	Yes	Yes	Yes	Yes	Yes
	Hardware Multiply	Yes	Yes	Yes	Yes	Yes
	External Interrupts	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	11	11	11	11	11
	I/O Pins	33	33	33	33	33
Features	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	Number of Instructions	58	58	58	58	58
	Packages	40-pin DIP; 44-pin PLCC, MQFP, TQFP				

		PIC17C752	PIC17C756
Clock	Maximum Frequency of Operation (MHz)	33	33
	EPROM Program Memory (words)	8K	16K
Memory	ROM Program Memory (words)	_	-
	RAM Data Memory (bytes)	454	902
Peripherals	Timer Module(s)	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3
	Captures/PWM Module(s)	4/3	4/3
	Serial Port(s) (USART)	2	2
	Hardware Multiply	Yes	Yes
	External Interrupts	Yes	Yes
	Interrupt Sources	18	18
	I/O Pins	50	50
Features	Voltage Range (Volts)	3.0-6.0	3.0-6.0
	Number of Instructions	58	58
	Packages	64-pin DIP; 68-pin LCC, 68-pin TQFP	64-pin DIP; 68-pin LCC, 68-pin TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.