

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c64a-04-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.2 OPTION REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB. Note: To achieve a 1:1 prescaler assignment for TMR0 register, assign the prescaler to the Watchdog Timer.

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RBPU INTEDG TOCS T0SE PSA PS2 PS1 PS0 R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' n = Value at POR reset bit 7: RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values INTEDG: Interrupt Edge Select bit bit 6: 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5: TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) TOSE: TMR0 Source Edge Select bit bit 4. 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin PSA: Prescaler Assignment bit bit 3: 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0: PS2:PS0: Prescaler Rate Select bits Bit Value TMR0 Rate WDT Rate 000 1:1 1:2 001 1:2 1 · 4 1:4 010 1:8 1:8 011 1:16 100 1:32 1:16 1:32 101 1:64 1:64 110 1:128 1:128 111 1:256

FIGURE 4-10: OPTION REGISTER (ADDRESS 81h, 181h)

г

FIGURE 4-19: PIR1 REGISTER FOR PIC16C65/65A/R65/67 (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
PSPIF bit7	—	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	PSPIF: Part $1 = A \text{ read}$ 0 = No read	or a write o	peration ha	as taken pla	ace (must be ce	cleared in s	oftware)	
bit 6:	Reserved:	Always ma	intain this I	bit clear.				
bit 5:	RCIF: USA 1 = The US 0 = The US	SART receiv	/e buffer is	full (cleared	d by reading	RCREG)		
bit 4:	TXIF: USA 1 = The US 0 = The US	SART trans	nit buffer is	empty (cle	eared by writ	ing to TXRE	EG)	
bit 3:	SSPIF : Syr 1 = The tra 0 = Waiting	nsmission/	reception is		ag bit (must be clea	ared in softw	vare)	
bit 2:	0 = No TMI Compare M	ode 1 register c R1 register <u>Aode</u> 1 register c R1 register <u>e</u>	apture occi capture oc ompare ma	urred (must curred atch occurre	be cleared i ed (must be o red	,	oftware)	
bit 1:	TMR2IF : T 1 = TMR2 t 0 = No TMI	to PR2 mat	ch occurred	d (must be	bit cleared in so	ftware)		
bit 0:	TMR1IF : T 1 = TMR1 1 0 = No TMI	register ove	rflow occur	red (must b	be cleared in	software)		
global		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to

5.7 Parallel Slave Port

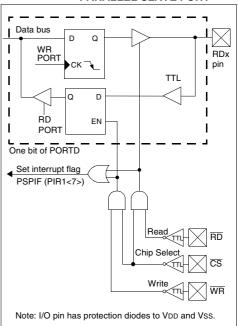
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTD operates as an 8-bit wide parallel slave port (microprocessor port) when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through $\overline{\text{RD}}$ control input (RE0/ $\overline{\text{RD}}$) and $\overline{\text{WR}}$ control input pin (RE1/ $\overline{\text{WR}}$).

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored since the microprocessor is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

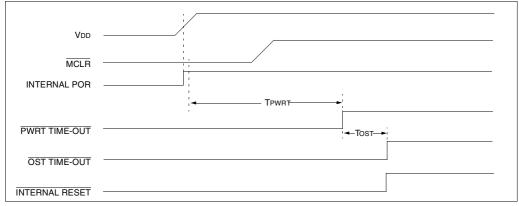
FIGURE 5-11: PORTD AND PORTE AS A PARALLEL SLAVE PORT

Steps to follow when setting up an Asynchronous Reception:

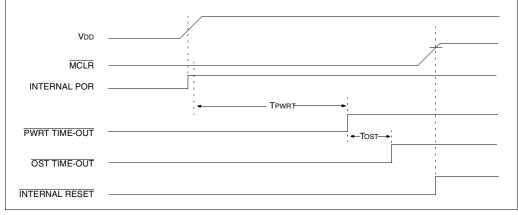
- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{RCIE}}$.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Registe	ər					0000 0000	0000 0000


TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.


Note 1: PSPIE and PSPIF are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

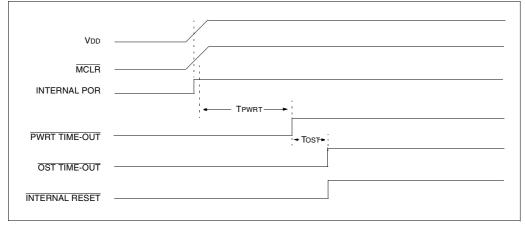

FIGURE 13-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 13-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 13-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

TABLE 14-2: PIC16CXX INSTRUCTION SET

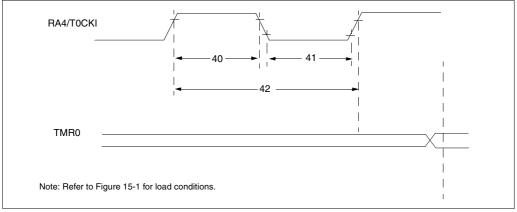
Mnemonic,		Description	Cycles		14-Bit	Opcode	e	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
NOULIN	ĸ		· ·	11	TOTO	ĸĸĸĸ	кккк	~	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

BCF	Bit Clear	f							
Syntax:	[<i>label</i>] BC	CF f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ 0 \leq b \leq 7 \end{array}$	7							
Operation:	$0 \rightarrow (f < b;$	>)							
Status Affected:	None								
Encoding:	01	00bb	bfff	ffff					
Description:	Bit 'b' in re	gister 'f' is	s cleared.						
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write register 'f'					
Example	BCF	FLAG_	REG, 7						
	BCF FLAG_REG, 7 Before Instruction FLAG_REG = 0xC7 After Instruction FLAG_REG = 0x47								


BTFSC	Bit Test,	Skip if Cl	ear									
Syntax:	[<i>label</i>] B1	FSC f,b										
Operands:	$0 \le f \le 127$ $0 \le b \le 7$											
Operation:	skip if (f<	skip if (f) = 0										
Status Affected:	None	None										
Encoding:	01	10bb	bfff	ffff								
Description:	instruction If bit 'b', in instruction executed i	If bit 'b' in register 'f' is '1' then the next instruction is executed. If bit 'b', in register 'f', is '0' then the next instruction is discarded, and a NOP is executed instead, making this a 2Tcy instruction.										
Words:	1											
Cycles:	1(2)											
Q Cycle Activity:	Q1 Q2 Q3 Q4											
	Decode	Read register 'f'	Process data	No- Operation								
If Skip:	(2nd Cyc	le)										
	Q1	Q2	Q3	Q4								
	No- Operation	No- Operation	No- Operation	No- Operation								
Example	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • Before Instruction PC = address HERE After Instruction if FLAG<1> = 0,											

BSF	Bit Set f									
Syntax:	[<i>label</i>] BS	SF f,b								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$									
Operation:	$1 \rightarrow (f < b >)$									
Status Affected:	None									
Encoding:	01	01bb	bfff	ffff						
Description:	Bit 'b' in re	gister 'f' is	s set.							
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write register 'f'						
Example	BSF	FLAG_F	REG, 7							
	Before Instruction FLAG REG = 0x0A									
	After Inst	ruction								
		FLAG_RE	EG = 0x8A	4						

PC = address TRUE if FLAG<1>=1, PC = address FALSE

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_	_		Must also meet
			With Prescaler	10	—	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	—	—		Must also meet
			With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	TCY + 40	_	_		N = prescale value
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N	_	_	ns	(2, 4,, 256)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

DC CHA	RACTERISTICS	Operatir Operatir	ng temper	ature	-40°C 0°C	È`≤TA ≤TA	so otherwise stated) $\Delta \le +85^{\circ}$ C for industrial and $\Delta \le +70^{\circ}$ C for commercial ed in DC spec Section 17.1
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions
D100	Capacitive Loading Specs on Output Pins OSC2 pin	Cosc2	-	-	15		In XT, HS and LP modes when external clock is used to drive OSC1.
D101 D102	All I/O pins and OSC2 (in RC mode) SCL, SDA in I ² C mode	Cio Cb	-	-	50 400	pF pF	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

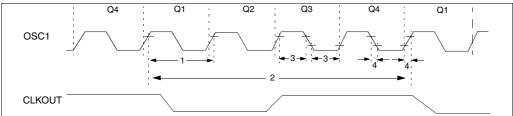
	Applicable Devices	61	62	62A	B62	63	B63	64	64A	R64	65	65A	B65	66	67
--	--------------------	----	----	-----	------------	----	-----	----	-----	------------	----	-----	------------	----	----

		Standa	rd Operat	ina (Conditior	ns (unle	ess otherwise stated)
			ng temper	•		•	TA \leq +125°C for extended,
	ARACTERISTICS				-40°	C ≤	TA \leq +85°C for industrial and
	ANACIENISTICS				0°C	-	TA \leq +70°C for commercial
				VDD	range as	descri	bed in DC spec Section 18.1 and
		Section	18.2				
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
	Capacitive Loading Specs on Out-						
	put Pins						
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.


2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

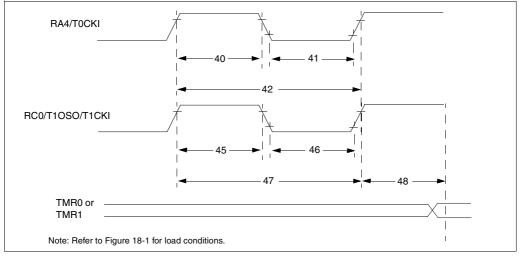
3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.5 <u>Timing Diagrams and Specifications</u>

FIGURE 18-2: EXTERNAL CLOCK TIMING

TABLE 18-2: EXTERNAL CLOCK TIMING REQUIREMENTS

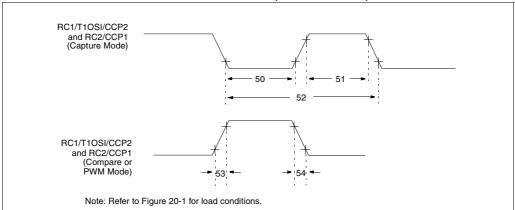

arameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency					
		(Note 1)	DC	_	4	MHz	XT and RC osc mode
			DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	-	—	ns	XT and RC osc mode
		(Note 1)	250	_	—	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	_	250	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	-	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TABLE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Typ†	Мах	Units	Conditions
40*	Tt0H	H T0CKI High Pulse Width		No Prescaler	0.5TCY + 20	—	-	ns	Must also meet
				With Prescaler	10	—	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	-	-	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	—	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	-	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	-	_	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	_	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	—	ns	
			Asynchronous	PIC16 C 6X	30	—	—	ns	
				PIC16 LC 6X	50	—	-	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F	rescaler = 1	0.5TCY + 20	_	—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	_	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	—	ns	
			Asynchronous	PIC16 C 6X	30	-	—	ns	
				PIC16 LC 6X	50	-	-	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	_	ns	N = prescale value (1, 2, 4, 8)
				PIC16 LC 6X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16 C 6X	60	—	-	ns	
				PIC16 LC 6X	100	-	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	-	200	kHz	
48	TCKEZtmr1	Delay from external	clock edge to tir	ner increment	2Tosc	_	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

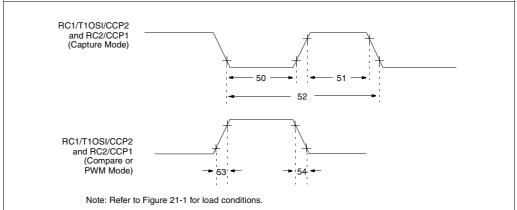
Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16 C 63/65A	10	—		ns	
				PIC16LC63/65A	20	—		ns	
51*	TccH CCP1 and CCP2		No Prescaler		0.5TCY + 20	-		ns	
		input high time	With Prescaler	PIC16 C 63/65A	10	—		ns	
				PIC16 LC 63/65A	20	-		ns	
52*	TccP	CCP1 and CCP2 input period			<u>3Tcy + 40</u> N	-		ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 o	utput rise time	PIC16 C 63/65A	_	10	25	ns	
		PIC16LC63/65	PIC16 LC 63/65A	_	25	45	ns		
54*	TccF	F CCP1 and CCP2 output fall time		PIC16 C 63/65A	_	10	25	ns	
				PIC16 LC 63/65A	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

21.1 DC Characteristics: PIC16CR63/R65-04 (Commercial, Industrial) PIC16CR63/R65-10 (Commercial, Industrial) PIC16CR63/R65-20 (Commercial, Industrial)

DC CH		Standa ı Operatir		•)°C ≤	unless otherwise stated) $\leq TA \leq +85^{\circ}C$ for industrial and $\leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5		5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA~	XT, RC, osc config Fosc = 4 MHz, VDD = 5:5V (Note 4)
D013			-	10	20	mA	HS osc config Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V
D020 D021 D021A	Power-down Current (Note 3, 5)		-	10.5 1.5 1.5	42 16 19	μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} V\text{DD} = 4.0\text{V}, \text{WDT enabled}, -40^{\circ}\text{C to} +85^{\circ}\text{C} \\ \text{VDD} = 4.0\text{V}, \text{WDT disabled}, -0^{\circ}\text{C to} +70^{\circ}\text{C} \\ \text{VDD} = 4.0\text{V}, \text{WDT disabled}, -40^{\circ}\text{C to} +85^{\circ}\text{C} \end{array}$
D023*	Brown-out Reset Current (Note 6)		-	350	425	μA	BOR enabled, VDD = 5.0V


These parameters are characterized but not tested.

† Data in "Typ" column is at 50, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VoD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - $OSC1 \neq external Square wave, from rail to rail; all I/O pins tristated, pulled to VDD, MCLR \neq VDD; WDT enabled/disabled as specified.$
- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

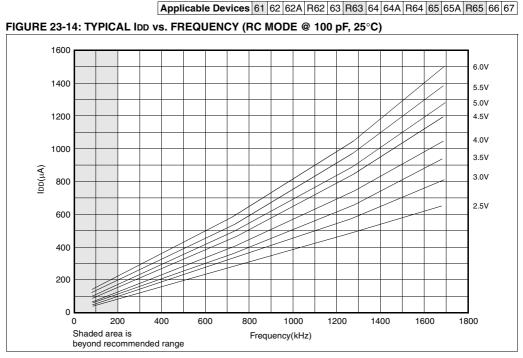
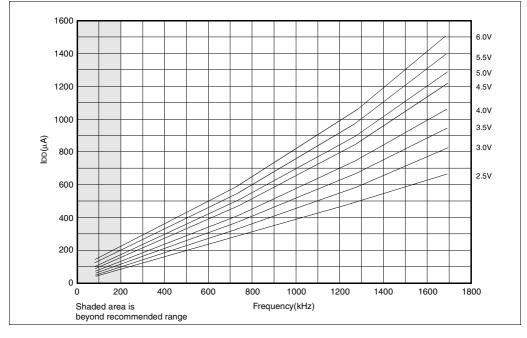
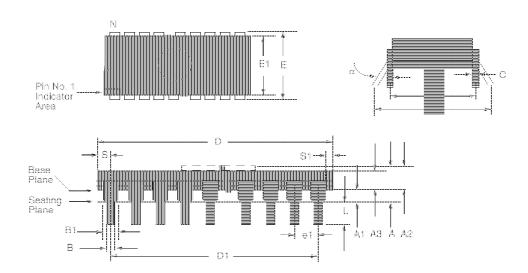

FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

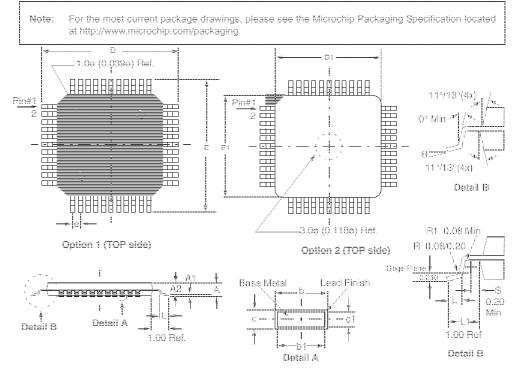

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions	
50*	TccL CCP1 and CCP2		No Prescaler		0.5TCY + 20	—	_	ns	
		input low time With Presca		PIC16CR63/R65	10	—	—	ns	
				PIC16LCR63/R65	20	-	_	ns	
51*	TccH CCP1 and CCP2		No Prescaler		0.5TCY + 20	—	—	ns	
		input high time	With Prescaler	PIC16CR63/R65	10	_	_	ns	
				PIC16LCR63/R65	20	-	_	ns	
52*	TccP	CCP1 and CCP2 ir	put period		<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 o	utput rise time	PIC16CR63/R65	_	10	25	ns	
					_	25	45	ns	
54*	TccF	CCP1 and CCP2 output fall time		PIC16 CR 63/R65	—	10	25	ns	
				PIC16LCR63/R65	—	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.



Data based on matrix samples. See first page of this section for details.



Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)								
		Millimeters		Inches				
Symbol	Min	Мах	Notes	Min	Мах	Notes		
α	0°	10°		0°	10°			
А	4.318	5.715		0.170	0.225			
A1	0.381	1.778		0.015	0.070			
A2	3.810	4.699		0.150	0.185			
A3	3.810	4.445		0.150	0.175			
В	0.355	0.585		0.014	0.023			
B1	1.270	1.651	Typical	0.050	0.065	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	51.435	52.705		2.025	2.075			
D1	48.260	48.260	Reference	1.900	1.900	Reference		
E	15.240	15.875		0.600	0.625			
E1	12.954	15.240		0.510	0.600			
e1	2.540	2.540	Reference	0.100	0.100	Reference		
eA	14.986	16.002	Typical	0.590	0.630	Typical		
eB	15.240	18.034		0.600	0.710			
L	3.175	3.810		0.125	0.150			
Ν	40	40		40	40			
S	1.016	2.286		0.040	0.090			
S1	0.381	1.778		0.015	0.070			

24.13 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form) (TQ)

		Packag	e Group: Plast	ic TQFP		
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
A	1.00	1.20		0.039	0.047	
A1	0.05	0.15		0.002	0.006	
A2	0.95	1.05		0.037	0.041	
D	11.75	12.25		0.463	0.482	
D1	9.90	10.10		0.390	0.398	
E	11.75	12.25		0.463	0.482	
E1	9.90	10.10		0.390	0.398	
L	0.45	0.75		0.018	0.030	
е	0.80	BSC		0.03	I BSC	
b	0.30	0.45		0.012	0.018	
b1	0.30	0.40		0.012	0.016	
С	0.09	0.20		0.004	0.008	
c1	0.09	0.16		0.004	0.006	
Ν	44	44		44	44	
Θ	0°	7 °		0°	7°	

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.

3: This outline conforms to JEDEC MS-026.

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSs and $\overline{\text{MCLR}}$ pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509, PIC12C671, PIC12C672	8-pin
PIC16C154, PIC16CR154, PIC16C156, PIC16CR156, PIC16C158, PIC16CR158, PIC16C52, PIC16C54, PIC16C54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C554, PIC16CR58A, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622 PIC16C641, PIC16C642, PIC16C661, PIC16C662 PIC16C710, PIC16C71, PIC16C711, PIC16C715 PIC16F83, PIC16CR83, PIC16F84A, PIC16CR84	18-pin, 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63, PIC16C66, PIC16C72, PIC16C73A, PIC16C76	28-pin
PIC16CR64, PIC16C64A, PIC16C65A, PIC16CR65, PIC16C67, PIC16C74A, PIC16C77	40-pin
PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin
PIC17C756, PIC17C752	64/68-pin

TABLE F-1: PIN COMPATIBLE DEVICES

Figure 23-12:	SPI Slave Mode Timing (CKE = 1)
Figure 23-13:	I ² C Bus Start/Stop Bits Timing278
Figure 23-14: Figure 23-15:	I ² C Bus Data Timing
Figure 23-15.	USART Synchronous Transmission (Master/Slave) Timing
Figure 23-16:	USART Synchronous Receive
1 iguro 20 101	(Master/Slave) Timing
Figure 24-1:	Typical IPD vs. VDD
	(WDT Disabled, RC Mode)
Figure 24-2:	Maximum IPD vs. VDD
	(WDT Disabled, RC Mode) 281
Figure 24-3:	Typical IPD vs. VDD @ 25°C
- :	(WDT Enabled, RC Mode)282
Figure 24-4:	Maximum IPD vs. VDD
Figure 04 Fr	(WDT Enabled, RC Mode)
Figure 24-5:	Typical RC Oscillator Frequency vs. VDD
Figure 24-6:	Typical RC Oscillator
riguie 24 0.	Frequency vs. VDD
Figure 24-7:	Typical RC Oscillator
3	Frequency vs. VDD
Figure 24-8:	Typical IPD vs. VDD Brown-out
	Detect Enabled (RC Mode)283
Figure 24-9:	Maximum IPD vs. VDD Brown-out
	Detect Enabled
	(85°C to -40°C, RC Mode)
Figure 24-10:	Typical IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1 = 33 pF/33 pF,
Figure 24-11:	RC Mode)
1 igule 24-11.	(32 kHz, RC0/RC1 = 33 pF/33 pF,
	85°C to -40°C, RC Mode)
Figure 24-12:	Typical IDD vs. Frequency
0	(RC Mode @ 22 pF, 25°C)
Figure 24-13:	Maximum IDD vs. Frequency
	(RC Mode @ 22 pF, -40°C to 85°C)
Figure 24-14:	Typical IDD vs. Frequency
	(RC Mode @ 100 pF, 25°C)
Figure 24-15:	Maximum IDD vs. Frequency
Figure 24-16:	(RC Mode @ 100 pF, -40°C to 85°C) 285 Typical IDD vs. Frequency
Figure 24-10.	(RC Mode @ 300 pF, 25°C)
Figure 24-17:	Maximum IDD vs. Frequency
guio 2 i i i i	(RC Mode @ 300 pF, -40°C to 85°C) 286
Figure 24-18:	Typical IDD vs. Capacitance @ 500 kHz
	(RC Mode)
Figure 24-19:	Transconductance(gm) of HS
	Oscillator vs. VDD287
Figure 24-20:	Transconductance(gm) of LP
	Oscillator vs. VDD
Figure 24-21:	Transconductance(gm) of XT
Einung 04 00	Oscillator vs. VDD
Figure 24-22:	(LP Mode, 25°C)
Figure 24-23:	
1 iguio 21 20.	(HS Mode, 25°C)
Figure 24-24:	Typical XTAL Startup Time vs. VDD
5	(XT Mode, 25°C)
Figure 24-25:	Typical Idd vs. Frequency
-	(LP Mode, 25°C)
Figure 24-26:	Maximum IDD vs. Frequency
	(LP Mode, 85°C to -40°C)289
Figure 24-27:	Typical IDD vs. Frequency
Figure 04.00	(XT Mode, 25°C)
Figure 24-28:	Maximum IDD vs. Frequency (XT Mode, -40°C to 85°C)289
	(AT MODE, -40 C 10 63 C)

Figure 24-29:	Typical IDD vs. Frequency
	(HS Mode, 25°C) 290
Figure 24-30:	Maximum IDD vs. Frequency
	(HS Mode, -40°C to 85°C) 290