

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	·
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c64a-04i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C6X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C6X family of devices, there are four device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**64. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**64. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C6X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

ROM devices do not allow serialization information in the program memory space. The user may have this information programmed in the data memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1			•								
80h ⁽¹⁾	INDF	Addressing	this location	uses conte	nts of FSR to	address dat	a memory (n	ot a physica	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sig	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quui
84h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress point	er					xxxx xxxx	սսսս սսսս
85h	TRISA	—	—	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	TRISD	PORTD Da	ta Direction I	Register						1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ta Direction	Bits	0000 -111	0000 -111
8Ah ^(1,2)	PCLATH	_	Write Buffer for the upper 5 bits of the Program Counter						ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 0001
8Ch	PIE1	PSPIE	(6)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	—	—	_	—	_	_	CCP2IE	0	(
8Eh	PCON	_	—	—	_	—	_	POR	BOR ⁽⁴⁾	dd	ui
8Fh	_	Unimpleme	nted							_	—
90h	_	Unimpleme	nted							_	_
91h	_	Unimpleme	nted							_	_
92h	PR2	Timer2 Peri	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	—	_	D/A	Р	S	R/W	UA	BF	00 0000	00 0000
95h	-	Unimpleme	nted							-	—
96h	—	Unimpleme	nted							-	—
97h	-	Unimpleme	nted							-	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generator R	egister						0000 0000	0000 0000
9Ah	_	Unimpleme	nted							-	—
9Bh	_	Unimpleme	nted							_	—
9Ch	—	Unimpleme	nted							—	—
9Dh	—	Unimpleme	nted							-	—
9Eh	—	Unimpleme	nted							—	_
9Fh	_	Unimpleme	nted								

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A/R65 (Cont.'d)

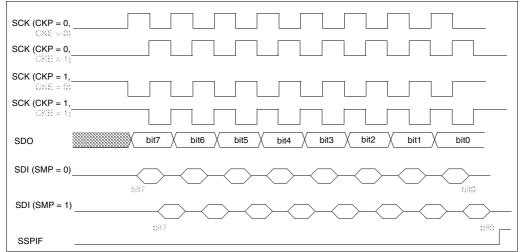
Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

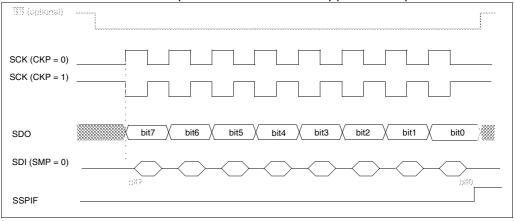
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.


5: The IRP and RP1 bits are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.


- Note: When the SPI is in Slave Mode with SS pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the SS pin is set to VDD.
- Note: If the SPI is used in Slave Mode with CKE = '1', then the SS pin control must be enabled.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C66/67)

FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C66/67)

12.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous Mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) bit or enable bit CREN (RCSTA<4>). Data is sampled on the DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until bit CREN is cleared. If both the bits are set then bit CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit, OERR (RCSTA<1>) is set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun error bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value. Therefore it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old RX9D bit information.

Steps to follow when setting up Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{RCIE}}$.
- 5. If 9-bit reception is desired, then set bit RX9.
- If a single reception is required, set enable bit SREN. For continuous reception set enable bit CREN.
- 7. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing enable bit CREN.

	2-J. I							1000 100			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	99h SPBRG Baud Rate Generator Register									0000 0000	0000 0000

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	e	Status	Notes
Operands				MSb		LSb		Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
NOULIN	ĸ		· ·	11	TOTO	ĸĸĸĸ	кккк	~	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

CLRF	Clear f			
Syntax:	[label] C	LRF f		
Operands:	$0 \le f \le 12$	7		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	1		
Status Affected:	Z			
Encoding:	00	0001	lfff	ffff
Description:	The conter and the Z		ster 'f' are	cleared
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write register 'f'
Example	CLRF	FLAG	_REG	
	Before In			
	After Inst	FLAG_RE	EG =	0x5A
		FLAG RE	EG =	0x00
		Z	=	1

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (N 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	0 0	0001	0xxx	xxxx
Description:	W register set.	is cleared	. Zero bit ((Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	No- Operation	Process data	Write to W
Example	CLRW			
	Before In	struction		
	After Inst		0x5A	
			0x00	
		Z =	1	
CLRWDT		tobdog -	Finan	
Syntax:		CLRWD1		
Operands:	None	OLIMBI		
Operation:	$00h \rightarrow W$	/DT		
oporation	$0 \rightarrow WD$	T prescale	ər,	
	$1 \rightarrow \overline{\text{TO}}$			
Status Affactad:	$1 \rightarrow \overline{PD}$			
Status Affected:	$1 \rightarrow \overline{PD}$ TO, \overline{PD}	0000	0110	0100
Encoding:	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00	0000	0110	0100 Watch-
	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00 $CLRWDT ir dog Timer$	0000 nstruction r t It also res T. Status b	esets the ' set <u>s th</u> e pr	Watch- e <u>sca</u> ler
Encoding:	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00 $CLRWDT ir dog Timer of the WD$	nstruction r	esets the ' set <u>s th</u> e pr	Watch- e <u>sca</u> ler
Encoding: Description:	$1 \rightarrow \overline{PD}$ $\overline{TO, PD}$ 00 $CLRWDT ir dog Timer of the WD set.$	nstruction r	esets the ' set <u>s th</u> e pr	Watch- e <u>sca</u> ler
Encoding: Description: Words:	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00 $CLRWDT in dog Timer of the WD set.$ 1	nstruction r	esets the ' set <u>s th</u> e pr	Watch- e <u>sca</u> ler
Encoding: Description: Words: Cycles:	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00 $CLRWDT in dog Timer of the WD set.$ 1 1	Instruction r It also res T. Status b	esets the ' set <u>s th</u> e pr its TO and	Watch- escaler PD are
Encoding: Description: Words: Cycles:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO}, \overrightarrow{PD}$ 00 $CLRWDT ir dog Timei of the WD set.$ 1 1 $Q1$	Istruction r : It also res T. Status b Q2 No-	esets the pr sets the pr its TO and Q3 Process	Watch- escaler PD are Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO}, \overrightarrow{PD}$ $\boxed{00}$ $CLRWDT if dog Timeto of the WD set.$ 1 1 $Q1$ $Decode$ $CLRWDT$ Before In	Q2 No- Operation	esets the prite prite TO and Q3	Watch- escaler PD are Q4 Clear WDT Counter
Encoding: Description: Words: Cycles: Q Cycle Activity:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO, PD}$ 00 $CLRWDT ir dog Timeto of the WD set.$ 1 1 $Q1$ $CLRWDT$ $Before Interval of the term of term$	Q2 No- Operation WDT cour	esets the prite prite TO and Q3	Watch- escaler PD are Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO}, \overrightarrow{PD}$ $\boxed{00}$ $CLRWDT if dog Timeto of the WD set.$ 1 1 $Q1$ $Decode$ $CLRWDT$ Before In	Q2 No- Operation WDT cour	esets the prits TO and Q3 Process data	Watch- escaler PD are Q4 Clear WDT Counter
Encoding: Description: Words: Cycles: Q Cycle Activity:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO, PD}$ 00 $CLRWDT ir dog Timeto of the WD set.$ 1 1 $Q1$ $Q1$ $CLRWDT$ $Before Interval of the term of ter$	Q2 No- Operation WDT cour ruction	esets the prits TO and Q3 Process data ter = ter = caler=	Watch- escaler PD are Q4 Clear WDT Counter

-

INCFSZ	Increment f, Skip if 0	IORLW	Inclusive OR Literal with W
Syntax:	[label] INCFSZ f,d	Syntax:	[label] IORLW k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$
	d ∈ [0,1]	Operation:	(W) .OR. $k \rightarrow$ (W)
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0	Status Affected:	Z
Status Affected:	None	Encoding:	11 1000 kkkk kkkk
Encoding:	00 1111 dfff ffff	Description:	The contents of the W register is
Description:	The contents of register 'f' are incre-		OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Description.	mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is	Words:	1
	placed back in register 'f'. If the result is 1, the next instruction is	Cycles:	1
	executed. If the result is 0, a NOP is exe- cuted instead making it a 2TCY instruc-	Q Cycle Activity:	Q1 Q2 Q3 Q4
	tion.		Decode Read Process Write to literal 'k' data W
Words:	1		
Cycles:	1(2)	Example	IORLW 0x35
Q Cycle Activity:	Q1 Q2 Q3 Q4	·	Before Instruction
	Decode Read Process Write to register 'f' data destination		W = 0x9A
If Skip:	(2nd Cycle)		After Instruction W = 0xBF
ii enipi	Q1 Q2 Q3 Q4		Z = 1
	No- OperationNo- OperationNo- Operation		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE •		
	$\begin{array}{rcl} Before \mbox{ Instruction} & PC & = & \mbox{ address HERE} \\ After \mbox{ Instruction} & \\ CNT & = & CNT + 1 & \\ \mbox{ if } CNT = & 0, & \\ PC & = & \mbox{ address CONTINUE} & \\ \mbox{ if } CNT \neq & 0, & \\ PC & = & \mbox{ address HERE } +1 & \\ \end{array}$		

XORLW	Exclusive OR Literal with W								
Syntax:	[<i>label</i>]	XORLV	Vk						
Operands:	$0 \le k \le 2$	55							
Operation:	(W) .XO	(W) .XOR. $k \rightarrow (W)$							
Status Affected:	Z								
Encoding:	11	1010	kkkk	kkkk					
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W register.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'	Process data	Write to W					
Example:	XORLW	0xAF							
	Before Ir	nstruction	n						
		W =	0xB5						
	After Ins	truction							
		W =	0x1A						

XORWF	Exclusiv	Exclusive OR W with f								
Syntax:	[label]	XORWF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	27								
Operation:	(W) .XOF	$R.(f) \to (f)$	destinatio	on)						
Status Affected:	Z									
Encoding:	00	0110	dfff	ffff						
Description:	Exclusive register wi result is st 1 the resu	th registe ored in the	r 'f'. If 'd' is e W regist	s 0 the er. If 'd' is						
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Example	XORWF	REG	1							
	Before In	struction	I							
		REG W	0/1	AF B5						
	After Inst	ruction								
		REG W	0/1	1A B5						

=

17.3

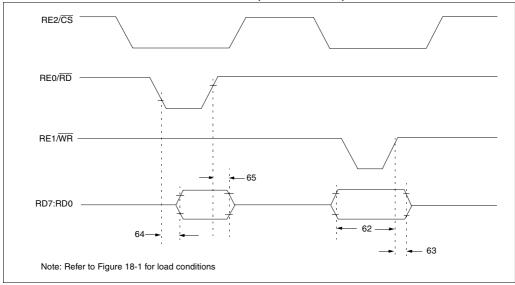
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

DC Characteristics: PIC16C62/64-04 (Commercial, Industrial) PIC16C62/64-10 (Commercial, Industrial) PIC16C62/64-20 (Commercial, Industrial) PIC16LC62/64-04 (Commercial, Industrial)

DC CHA	RACTERISTICS		rd Operati ng tempera			` ≤ T/	as otherwise stated) $A \le +85^{\circ}C$ for industrial and $A \le +70^{\circ}C$ for commercial
		•	ng voltage ction 17.2	Vdd	range as o	lescrib	ed in DC spec Section 17.1
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
	Input High Voltage						
	I/O ports	VIH					
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25Vdd	-	Vdd	V	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd		For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9VDD	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	200	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and
						-	LP osc configuration
	Output Low Voltage						-
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D150*	Open-Drain High Voltage	VOD	-	-	14	V	RA4 pin

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

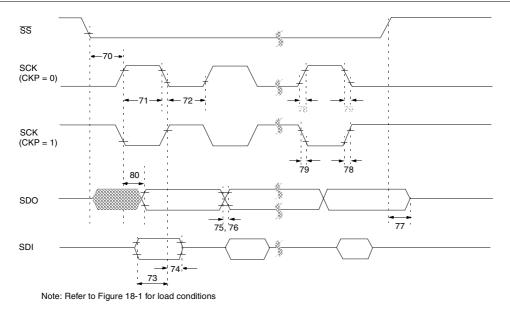
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-8: PARALLEL SLAVE PORT TIMING (PIC16C64A/R64)

TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64A/R64)


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)		20	—	_	ns	
				25	_	-	ns	Extended Range Only
63*	TwrH2dtl		PIC16 C 64A/R64	20	—	—	ns	
		time)	PIC16 LC 64A.R64	35	_	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		I	_	80	ns	
				—	_	90	ns	Extended Range Only
65*	TrdH2dtI	$\overline{\text{RD}}$ for $\overline{\text{CS}}$ to data-out invalid		10	_	30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

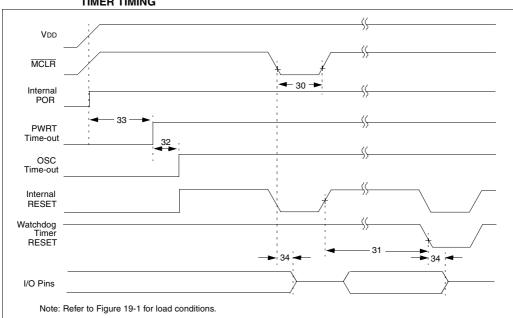
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 18-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	TCY + 20	_		ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	-	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

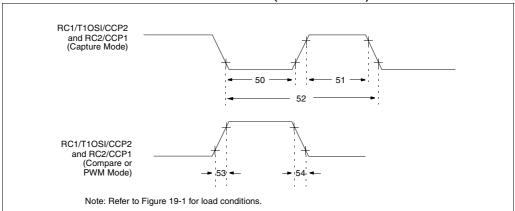
19.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S		3. Tcc:s	 (I²C specifications only)
2. TppS			4. Ts	(I ² C specifications only)
Т				
F	Frequency		т	Time
Lowercas	e letters (pp) and their me	anings:	÷	
рр				
сс	CCP1		OSC	OSC1
ck	CLKOUT		rd	RD
CS	CS		rw	RD or WR
di	SDI		SC	SCK
do	SDO		SS	SS
dt	Data in		tO	ТОСКІ
io	I/O port		t1	T1CKI
mc	MCLR		wr	WR
1	e letters and their meaning	js:		
S				
F	Fall		Р	Period
Н	High		R	Rise
I	Invalid (Hi-impedance)		V	Valid
L	Low		Z	Hi-impedance
I ² C only				
AA	output access		High	High
BUF	Bus free		Low	Low
Tcc:st (l ²	² C specifications only)			
CC				
HD	Hold		SU	Setup
ST				
DAT	DATA input hold		STO	STOP condition
STA	START condition			
FIGURE 19	-1: LOAD CONDITIO	NS FOR DEVIC		SPECIFICATIONS
	Load condition	<u>11</u>		Load condition 2
		Vdd/2		
		φ 00/2		
		\geq RL		Pin CL
		\geq		▼ Mar
		-•		Vss
	Pin			
			= 464 Ω	
		Vss CL	_ = 50 pF	for all pins except OSC2/CLKOUT
				but including D and E outputs as ports
			15 pF	for OSC2 output

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING


TABLE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

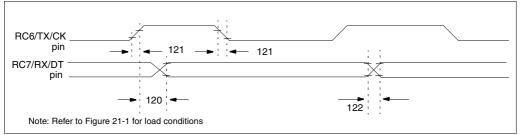
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	—	—	ns	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$VDD = 5V$, $-40^{\circ}C$ to $+85^{\circ}C$
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	_	—	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period or WDT reset	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +85^{\circ}C$
34	Tioz	I/O Hi-impedance from $\overline{\text{MCLR}}$ Low	_	—	100	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

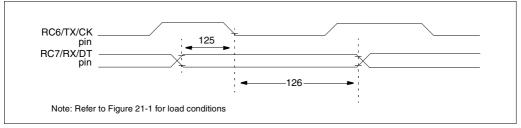

TABLE 19-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns	
		input low time	With Prescaler	PIC16 C 65	10	_		ns	
				PIC16 LC 65	20	—	-	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_		ns	
		input high time	With Prescaler	PIC16 C 65	10	_		ns	
				PIC16 LC 65	20	—		ns	
52*	TccP	CCP1 and CCP2 input period			<u>3Tcy + 40</u> N	_	I	ns	N = prescale value (1,4, or 16)
53	TccR	CCP1 and CCP2 c	utput rise time	PIC16 C 65	_	10	25	ns	
		PIC16 LC 6		PIC16 LC 65	—	25	45	ns	
54	54 TccF CCP1 and CCP2 output fall time		PIC16 C 65	—	10	25	ns		
				PIC16 LC 65	—	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING


TABLE 21-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

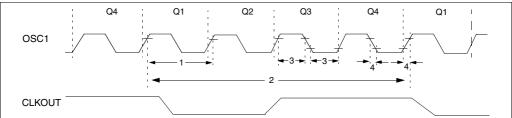
Param No.	Sym	Characteristic	eristic			Max	Units	Conditions
120*	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16CR63/R65	—	—	80	ns	
	Clock high to data out valid		PIC16LCR63/R65	—	—	100	ns	
121*	121* Tckrf Clock out rise time and fall time (Master Mode)	PIC16CR63/R65	_	—	45	ns		
		Master Mode)	PIC16LCR63/R65	—	—	50	ns	
122*	Tdtrf	Data out rise time and fall time	PIC16CR63/R65	_	—	45	ns	
			PIC16LCR63/R65	_	—	50	ns	

* These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 21-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 21-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

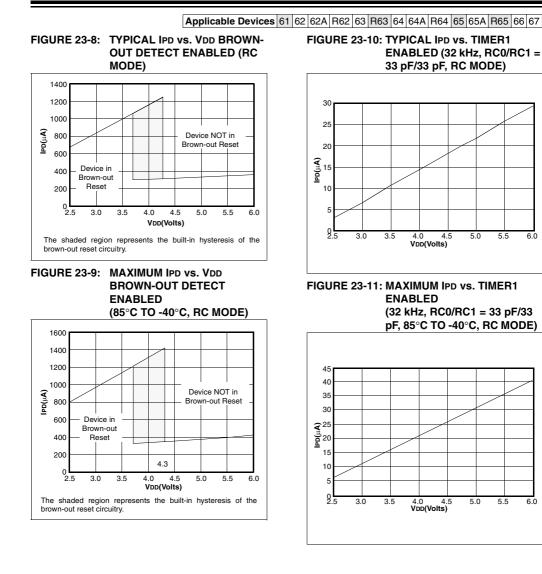

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125*	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK ↓ (DT setup time)	15	I		ns	
126*	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	-	_	ns	

These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

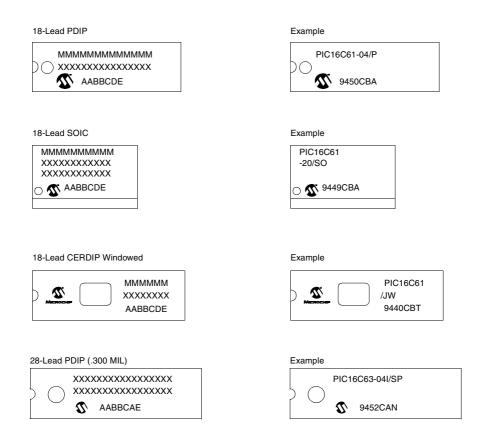
22.5 <u>Timing Diagrams and Specifications</u>

FIGURE 22-2: EXTERNAL CLOCK TIMING


TABLE 22-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250		—	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—		25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Data based on matrix samples. See first page of this section for details.

24.14 Package Marking Information

Legend:	MMM	Microchip part number information
	XXX	Customer specific information*
	AA	Year code (last 2 digits of calender year)
	BB	Week code (week of January 1 is week '01')
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.
	D ₁	Mask revision number for microcontroller
	D ₂	Mask revision number for EEPROM
	E	Assembly code of the plant or country of origin in which part was assembled.
Note:	line, it will b	t the full Microchip part number cannot be marked on one be carried over to the next line thus limiting the number of naracters for customer specific information.

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSs and $\overline{\text{MCLR}}$ pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509, PIC12C671, PIC12C672	8-pin
PIC16C154, PIC16CR154, PIC16C156, PIC16CR156, PIC16C158, PIC16CR158, PIC16C52, PIC16C54, PIC16C54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C554, PIC16CR58A, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622 PIC16C641, PIC16C642, PIC16C661, PIC16C662 PIC16C710, PIC16C71, PIC16C711, PIC16C715 PIC16F83, PIC16CR83, PIC16F84A, PIC16CR84	18-pin, 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63, PIC16C66, PIC16C72, PIC16C73A, PIC16C76	28-pin
PIC16CR64, PIC16C64A, PIC16C65A, PIC16CR65, PIC16C67, PIC16C74A, PIC16C77	40-pin
PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin
PIC17C756, PIC17C752	64/68-pin

TABLE F-1: PIN COMPATIBLE DEVICES

I ² C Bus Start/Stop Bits	
Oscillator Start-up Timer	239
Parallel Slave Port	
Power-up Timer	239
Reset	239
SPI Mode	243
Timer0	
Timer1	
USART Synchronous Receive	
(Master/Slave)	246
Watchdog Timer	
PIC16C66	209
Brown-out Reset	071
Capture/Compare/PWM	271
CLKOUT and I/O	273
External Clock	
I ² C Bus Data	
I ² C Bus Start/Stop Bits	
Oscillator Start-up Timer	
Power-up Timer	
Reset	
Timer0	272
Timer1	272
USART Synchronous Receive	
(Master/Slave)	280
Watchdog Timer	271
PIC16C67	
Brown-out Reset	271
Capture/Compare/PWM	
CLKOUT and I/O	
External Clock	
I ² C Bus Data	
I ² C Bus Start/Stop Bits	
Oscillator Start-up Timer	
Parallel Slave Port	
Power-up Timer	
Reset	
Timer0	
Timer1	272
USART Synchronous Receive	
(Master/Slave)	
Watchdog Timer	2/1
PIC16CR62	
Capture/Compare/PWM	
CLKOUT and I/O	
External Clock	
I ² C Bus Data	
I ² C Bus Start/Stop Bits	
Oscillator Start-up Timer	
Power-up Timer	207
Reset	207
SPI Mode	211
Timer0	208
Timer1	
	208

PIC16CR63	
Brown-out Reset	. 255
Capture/Compare/PWM	. 257
CLKOUT and I/O	. 254
External Clock	
I ² C Bus Data	
I ² C Bus Start/Stop Bits	
Oscillator Start-up Timer	
Power-up Timer	
Reset	
SPI Mode Timer0	
Timer1	
USART Synchronous Receive	. 200
(Master/Slave)	262
Watchdog Timer	
PIC16CR64	. 200
Capture/Compare/PWM	. 209
CLKOUT and I/O	
External Clock	
I ² C Bus Data	. 213
I ² C Bus Start/Stop Bits	. 212
Oscillator Start-up Timer	
Parallel Slave Port	. 210
Power-up Timer	
Reset	
SPI Mode	
Timer0	
Timer1	
Watchdog Timer	. 207
PIC16CR65 Brown-out Reset	255
Capture/Compare/PWM	
CLKOUT and I/O	
External Clock	
I ² C Bus Data	
I ² C Bus Start/Stop Bits	
Oscillator Start-up Timer	
Parallel Slave Port	
Power-up Timer	
Reset	. 255
SPI Mode	. 259
Timer0	. 256
Timer1	. 256
USART Synchronous Receive	
(Master/Slave)	. 262
Watchdog Timer	
Power-up Timer	
PWM Output	
RB0/INT Interrupt	
RX Pin Sampling	
SPI Mode, Master/Slave Mode,	93
No SS Control	88
SPI Mode, Slave Mode With SS Control	88
SPI Slave Mode (CKE = 1)	
SPI Slave Mode Timing (CKE = 0)	93
Timer0 with External Clock	
TMR0 Interrupt Timing	
USART Asynchronous Master Transmission	
USART Asynchronous Master Transmission	
(Back to Back)	
USART Asynchronous Reception	. 114
USART Synchronous Reception in	
Master Mode	
USART Synchronous Tranmission	
Wake-up from SLEEP Through Interrupts	. 142

-

-