

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c64a-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA3 5 I/O TTL RA4 can also be the clock input to the Timer0 tir Output is open drain type. RA4 can also be the clock input to the Timer0 tir Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchr port. RB0/INT 21 I/O TTL/ST ⁴⁰ RB0 can also be the external interrupt pin. RB2 23 I/O TTL RB0 can also be the external interrupt pin. RB4 25 I/O TTL Interrupt on change pin. RB6 27 I/O TTL Interrupt on change pin. RB6 27 I/O TTL Interrupt on change pin. RC1/TLOS(¹¹ //CCP2 ⁽²⁾) 12 I/O ST RC0 can also be the Timer1 oscillator uppuf ¹ clock input. RC2/CCP1 13 I/O ST RC1 can	Pin Name	Pin#	Pin Type	Buffer Type	Description
MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA3 5 I/O TTL RA4 6 I/O ST RA4/T0CKI 6 I/O TTL RA5/SS 7 I/O TTL RA5/SS 7 I/O TTL RA5/SS 7 I/O TTL RB0/INT 21 I/O TTL/ST ⁽⁴⁾ RB1 22 I/O TTL RB2 23 I/O TTL RB4 25 I/O TTL RB5 26 I/O TTL RB6 27 I/O TTL RB6 27 I/O TTL RC0/T1OSO ⁽¹⁾ /T1CKI 11 I/O RC1/T1OSO ⁽¹⁾ /CCP2 ⁽²⁾ 12 I/O RC2/CCP1 13 I/O RC2/CCP	OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 tin Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchr port. RB0/INT 21 I/O TTL/ST ⁴⁰ RB0 can also be the slave select for the synchr port. RB0/INT 21 I/O TTL/ST ⁴⁰ RB0 can also be the external interrupt pin. RB2 23 I/O TTL RB0 can also be the external interrupt pin. RB3 24 I/O TTL Interrupt on change pin. RB6 27 I/O TTL Interrupt on change pin. RB6 27 I/O TTL/ST ⁶⁹ Interrupt on change pin. Serial programming dat RC0/T1CS0 ⁽¹⁾ /TCKI 11 I/O ST RC2 can also be the Timer1 oscillator uppuf ¹⁰ clock input. RC1/TLOS(¹¹ //CCP2 ⁽²⁾) 12 I/O ST RC2 can also be the Serial programming dat RC2/CCP1	OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crys
MICLIVIP Annow Strugge year RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA4/TOCKI 6 I/O ST RA4 can also be the clock input to the Timer0 timer 0 t					tal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA3 5 I/O TTL RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 tin Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchr output. RB0/INT 21 I/O TTL/ST ⁽⁴⁾ RB0 can also be the external interrupt pin. RB1 22 I/O TTL RB0 can also be the external interrupt pin. RB2 23 I/O TTL Interrupt on change pin. RB4 25 I/O TTL Interrupt on change pin. RB5 26 I/O TTL Interrupt on change pin. RB7 28 I/O TTL/ST ⁽⁹⁾ Interrupt on change pin. Serial programming dat RC0/T10S0 ⁽¹⁾ /T1CKI 11 I/O ST RC1 can also be the Timer1 oscillator output ⁽¹⁾ input/Compare2 output/PMZ output ⁽²⁾	MCLR/Vpp	1	I/P	ST	Master clear reset input or programming voltage input. This pin is an active low reset to the device.
RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 time Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchropot. RB0/INT 21 I/O TTL/ST ⁽⁴⁾ RB0 can also be the external interrupt on all inputs. RB1 22 I/O TTL RA5 can also be the external interrupt on. RB2 23 I/O TTL RB0 can also be the external interrupt on. RB5 26 I/O TTL Interrupt on change pin. RB6 27 I/O TTL/ST ⁽⁵⁾ Interrupt on change pin. RB7 28 I/O TTL Interrupt on change pin. Serial programming dat RC0/T10S0 ⁽¹⁾ /T1CKI 11 I/O ST RC0 can also be the Timer1 oscillator output ⁽²⁾ RC2/CCP1 13 I/O ST RC1 can also be the synchronous serial clock for both SPI and I ² C modes. RC4/SDI/SDA 15 I/O ST RC2 can also be the sync					PORTA is a bi-directional I/O port.
RA24I/OTTLRA35I/OTTLRA4/T0CKI6I/OSTRA4 can also be the clock input to the Timer0 tin Output is open drain type.RA5/SS7I/OTTLRA5 can also be the slave select for the synchr port.RB0/INT21I/OTTL/ST(4)PORTB is a bi-directional I/O port. PORTB can be so grammed for internal weak pull-up on all inputs.RB0/INT21I/OTTL/ST(4)RB0 can also be the external interrupt pin.RB122I/OTTLRB0 can also be the external interrupt pin.RB324I/OTTLInterrupt on change pin.RB425I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin. Serial programming datRB627I/OTTL/ST(5)Interrupt on change pin. Serial programming datRC0/T1OSO(1)/T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ^[1] input/Compare2 output/PWM2 output ^[2] .RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SSCK/SCL14I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the USART Asynchronous F Synch	RA0	2	I/O	TTL	
RA3 5 I/O TTL RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 tin Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchra port. RB0/INT 21 I/O TTL/ST(4) RB0 can also be the slave select for the synchra port. RB0/INT 21 I/O TTL/ST(4) RB0 can also be the external interrupt pin. RB1 22 I/O TTL RB0 can also be the external interrupt pin. RB2 23 I/O TTL Interrupt on change pin. RB4 25 I/O TTL Interrupt on change pin. RB5 26 I/O TTL/ST(5) Interrupt on change pin. Serial programming dot RC0/T10S0 ⁽¹⁾ /T1CKI 11 I/O ST RC0 can also be the Timer1 oscillator output ⁽¹⁾ clock input. RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12 I/O ST RC1 can also be the Capture1 input/Com put/PM1 output. RC3/SCK/SCL 14 I/O ST RC2 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI D	RA1	3	I/O	TTL	
RA4/T0CKI6I/OSTRA4 can also be the clock input to the Timer0 tin Output is open drain type.RA5/SS7I/OTTLRA5 can also be the slave select for the synchr port.RB0/INT21I/OTTL/ST ⁽⁴⁾ PORTB is a bi-directional I/O port. PORTB can be so grammed for internal weak pull-up on all inputs.RB0/INT21I/OTTL/ST ⁽⁴⁾ RB0 can also be the external interrupt pin.RB122I/OTTLRB0 can also be the external interrupt pin.RB324I/OTTLInterrupt on change pin.RB425I/OTTLInterrupt on change pin.RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin.RB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ⁽¹⁾ input/Compare2 output/PWM2 output ⁽²⁾ .RC2/CCP113I/OSTRC2 can also be the Synchronous serial clock for both SPI and I ² C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the USART Asynchronous Ta Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the USART Asynchronous Ta Synchronous Clock ⁽²⁾ .	RA2	4	I/O	TTL	
RA5/SS7I/OTTLOutput is open drain type.RA5/SS7I/OTTLRA5 can also be the slave select for the synchr port.RB0/INT21I/OTTL/ST(4)PORTB is a bi-directional I/O port. PORTB can be so grammed for internal weak pull-up on all inputs.RB122I/OTTLRB223I/OTTLRB425I/OTTLRB425I/OTTLRB627I/OTTL/ST(5)Interrupt on change pin.Interrupt on change pin.RB627I/OTTL/ST(5)RC0/T1OSO(1)/T1CKI11I/OSTRC0/T1OSO(1)/T1CKI11I/OSTRC1/T1OSI(1)/CCP2(2)12I/OSTRC2/SCK/SCL14I/OSTRC3/SDDA15I/OSTRC4/SDI/SDA15I/OSTRC5/SDO16I/OSTRC6/TX/CK(2)17I/OSTRC6/TX/CK(2)18I/OSTRC6/SDD16I/OSTRC6/SDD16I/OSTRC6/CAU(2)18I/ORC7/RX/DT(2)18I/OStRC6 can also be the SPI Data In (SPI mode).RC7/RX/DT(2)18I/OStRC6 can also be the USART Asynchronous F Synchronous Clock ² .RC7/RX/DT(2)18I/OStRC6 can also be the USART Asynchronous F Synchronous Data ² .	RA3	5	I/O	TTL	
RA5/SS7I/OTTLRA5 can also be the slave select for the synchroport. port.RB0/INT21I/OTTL/ST ⁽⁴⁾ PORTB is a bidirectional I/O port. PORTB can be so grammed for internal weak pull-up on all inputs.RB122I/OTTLRB0 can also be the external interrupt pin.RB223I/OTTLRB0 can also be the external interrupt pin.RB324I/OTTLInterrupt on change pin.RB425I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin. Serial programming cloRB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTRC1 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Capture1 input/Com put/PWM1 output ⁽²⁾ .RC3/SCK/SCL14I/OSTRC2 can also be the SPI Data In (SPI mode) or data I/O (I ² C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the USA	RA4/T0CKI	6	I/O	ST	RA4 can also be the clock input to the Timer0 timer/counte Output is open drain type.
RB0/INT21I/OTTL/ST(4)grammed for internal weak pull-up on all inputs.RB122I/OTTLRB0 can also be the external interrupt pin.RB223I/OTTLRB0 can also be the external interrupt pin.RB324I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin.RB627I/OTTL/ST(5)Interrupt on change pin. Serial programming cloRB728I/OTTL/ST(5)Interrupt on change pin. Serial programming datRC0/T1OSO(1)/T1CKI11I/OSTRC0 can also be the Timer1 oscillator output(1) clock input.RC1/T1OSI(1)/CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator input(1) input/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the SPI Data In (SPI mode) or data I/O (1² c mode).RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or 	RA5/SS	7	I/O	TTL	RA5 can also be the slave select for the synchronous seria port.
RB0/INT21I/OTTL/ST ⁽⁴⁾ RB0 can also be the external interrupt pin.RB122I/OTTLRB223I/OTTLRB324I/OTTLRB425I/OTTLInterrupt on change pin.RB526I/OTTLRB627I/ORB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming cloRC0/T10S0 ⁽¹⁾ /T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator input ⁽²⁾ .RC3/SCK/SCL14I/OSTRC2 can also be the capture1 input/Com put/PWM1 output.RC5/SDO16I/ORC5/SDO16I/ORC6/TX/CK ⁽²⁾ 17INOSTRC5 can also be the SPI Data In (SPI mode).RC6/TX/CK ⁽²⁾ 18I/OSTRC5 can also be the USART Asynchronous Ta Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .VSS8,19P—Ground reference for logic and I/O pins.					PORTB is a bi-directional I/O port. PORTB can be software pro-
RB122I/OTTLRB223I/OTTLRB324I/OTTLRB425I/OTTLInterrupt on change pin.RB526I/OTTLRB627I/OTTL/ST ⁽⁵⁾ RB728I/OTTL/ST ⁽⁵⁾ RC0/T10S0 ⁽¹⁾ /T1CKI11I/OSTRC1/T10S1 ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC2/CCP113I/OSTRC3/SCK/SCL14I/OSTRC4/SDI/SDA15I/OSTRC5/SDO16I/OSTRC6/TX/CK ⁽²⁾ 17I/OSTRC6/TX/CK ⁽²⁾ 18I/OSTRC7/RX/DT ⁽²⁾ 18I/OSTRC7/RX/DT ⁽²⁾ 18I/OSTRC7/RX/DT ⁽²⁾ 18I/OSTRC7/RX/DT ⁽²⁾ 18I/OSTRC7can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .RC38,19P—Ground reference for logic and I/O pins.	BB0/INT	21	1/0	TTI /ST(4)	· · · ·
RB223I/OTTLRB324I/OTTLRB425I/OTTLInterrupt on change pin.RB526I/OTTLRB627I/OTTL/ST ⁽⁵⁾ RB728I/OTTL/ST ⁽⁵⁾ RC0/T1OSO ⁽¹⁾ /T1CKI11I/ORC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC2/CCP113RC3/SCK/SCL14I/ORC4/SDI/SDA15I/OSTRC4 can also be the SPI Data Out (SPI mode).RC5/SDO16I/ORC5/SDO16I/ORC6/TX/CK ⁽²⁾ 17INI/OSTRC6 can also be the SPI Data Out (SPI mode).RC5/SDO16I/ORC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ 19P—Ground reference for logic and I/O pins.					
RB324I/OTTLRB425I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin.RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming cloRB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator input ⁽¹⁾ input/Compare2 output/PWM2 output ⁽²⁾ .RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode).RC6/TX/CK ⁽²⁾ 17I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous Tr Synchronous Data ⁽²⁾ .VSS8,19P—Ground reference for logic and I/O pins.					
RB425I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin.RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin.RB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTPORTC is a bi-directional I/O port.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator output ⁽²⁾ .RC2/CCP113I/OSTRC2 can also be the Capture1 input/Compare2 output/PWM2 output ⁽²⁾ .RC3/SCK/SCL14I/OSTRC3 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode).RC6/TX/CK ⁽²⁾ 17I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Data ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .		-			
RB526I/OTTLInterrupt on change pin.RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin.RB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin.RC0/T10S0 ⁽¹⁾ /T1CKI11I/OSTPORTC is a bi-directional I/O port.RC0/T10S0 ⁽¹⁾ /T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC1/T10SI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator input ⁽¹⁾ input/Compare2 output/PWM2 output ⁽²⁾ .RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC5 can also be the SPI Data Out (SPI mode).RC6/TX/CK ⁽²⁾ 17I/OSTRC6 can also be the USART Asynchronous T Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .					latere et en aleman ain
RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming cloRB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTPORTC is a bi-directional I/O port.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I²C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I²C mode).RC5/SDO16I/OSTRC5 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .Vss8,19P—Ground reference for logic and I/O pins.		-			
RB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTPORTC is a bi-directional I/O port.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the SPI bata In (SPI mode).RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode).RC5/SDO16I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .VSS8,19P—Ground reference for logic and I/O pins.					
RC0/T1OSO(1)/T1CKI11I/OSTPORTC is a bi-directional I/O port.RC0/T1OSO(1)/T1CKI11I/OSTRC0 can also be the Timer1 oscillator output(1) clock input.RC1/T1OSI(1)/CCP2(2)12I/OSTRC1 can also be the Timer1 oscillator input(1) input/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I2C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode).RC6/TX/CK(2)17I/OSTRC6 can also be the USART Asynchronous TI Synchronous Clock(2).RC7/RX/DT(2)18I/OSTRC7 can also be the USART Asynchronous TI Synchronous Data(2).Vss8,19P—Ground reference for logic and I/O pins.					
RC0/T1OSO(1)/T1CKI11I/OSTRC0 can also be the Timer1 oscillator output clock input.RC1/T1OSI(1)/CCP2(2)12I/OSTRC1 can also be the Timer1 oscillator input(1) input/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I2C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).RC5/SDO16I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Clock(2).RC7/RX/DT(2)18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data(2).VSS8,19P—Ground reference for logic and I/O pins.	RB7	28	I/O	TTL/ST(3)	
RC1/T1OSI(1)/CCP2(2)12I/OSTclock input.RC1/T1OSI(1)/CCP2(2)12I/OSTRC1 can also be the Timer1 oscillator input(1) input/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I2C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).RC5/SDO16I/OSTRC5 can also be the SPI Data Out (SPI mode).RC6/TX/CK(2)17I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Clock(2).RC7/RX/DT(2)18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data(2).Vss8,19P—Ground reference for logic and I/O pins.					•
Individualinput/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the Capture1 input/Comput/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I ² C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC5 can also be the SPI Data Out (SPI mode).RC6/TX/CK ⁽²⁾ 17I/OSTRC5 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .Vss8,19P—Ground reference for logic and I/O pins.	RC0/T1OSO ⁽¹⁾ /T1CKI	11	I/O	ST	clock input.
RC3/SCK/SCL 14 I/O ST Put/PWM1 output. RC4/SDI/SDA 15 I/O ST RC3 can also be the synchronous serial clock for both SPI and I ² C modes. RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). RC5/SDO 16 I/O ST RC5 can also be the SPI Data Out (SPI mode). RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous To Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous For Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	12	I/O	ST	RC1 can also be the Timer1 oscillator input ⁽¹⁾ or Capture input/Compare2 output/PWM2 output ⁽²⁾ .
RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). RC5/SDO 16 I/O ST RC5 can also be the SPI Data Out (SPI mode). RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous The Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous Festive Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	RC2/CCP1	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 out put/PWM1 output.
RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). RC5/SDO 16 I/O ST RC5 can also be the SPI Data Out (SPI mode). RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous The Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous Ferror Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	RC3/SCK/SCL	14	I/O	ST	RC3 can also be the synchronous serial clock input/output
RC5/SDO 16 I/O ST RC5 can also be the SPI Data Out (SPI mode). RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous To Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous For Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	RC4/SDI/SDA	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or
RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	BC5/SDO	16	1/0	ST	
RC7/RX/DT ⁽²⁾ 18 I/O ST Synchronous Clock ⁽²⁾ . RC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.		-			
Vss 8,19 P — Ground reference for logic and I/O pins.					Synchronous Clock ⁽²⁾ .
				ST	Synchronous Data ⁽²⁾ .
		,		_	° 1
VDD 20 P — Positive supply for logic and I/O pins. Legend: I = input O = output I/O = input/output P = power		20	Р		

TABLE 3-2: PIC16C62/62A/R62/63/R63/66 PINOUT DESCRIPTION

Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C62.

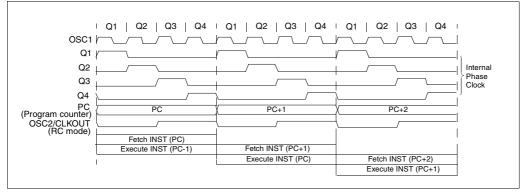
2: The USART and CCP2 are not available on the PIC16C62/62A/R62.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: This buffer is a Schmitt Trigger input when configured as the external interrupt.

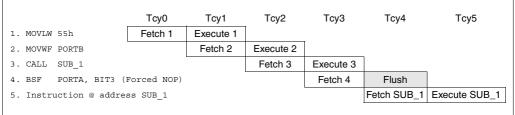
5: This buffer is a Schmitt Trigger input when used in serial programming mode.

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-5.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-5: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											<u> </u>
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	Idress pointe	ər					xxxx xxxx	uuuu uuuu
05h	PORTA		_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	PORTD	PORTD Dat	ta Latch whe	n written: PC	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h	PORTE		_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	-	—	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2		_	_		_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the L	east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the M	Aost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON		_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit	Register		•		xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM1 (MSB)								uuuu uuuu
17h	CCP1CON	-	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	JSART Transmit Data Register								0000 0000	0000 0000
1Ah	RCREG	USART Red	JSART Receive Data Register 0							0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	Capture/Compare/PWM2 (LSB)								uuuu uuuu
1Ch	CCPR2H	Capture/Co	apture/Compare/PWM2 (MSB) xxxx xxxx								uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted							—	_

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A/R65

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that the PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

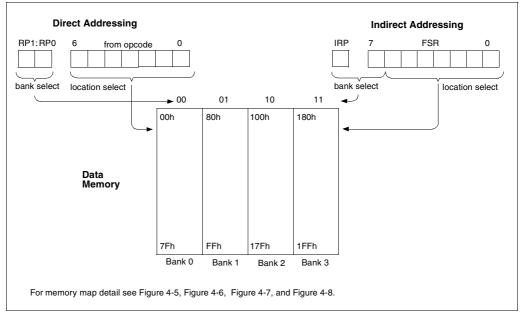
EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x	500	
BSF	PCLATH, 3	;Select page 1 (800h-FFFh)
BCF	PCLATH,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x	900	
SUB1_P	1:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine ;in page 0 (000h-7FFh)

4.5 Indirect Addressing, INDF and FSR Registers

Applicable	Devices	

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-25.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movlw movwf clrf incf btfss	0x20 FSR INDF FSR,F FSR,4	<pre>;initialize pointer ; to RAM ;clear INDF register ;inc pointer ;all done?</pre>
CONTINUE	goto	NEXT	;NO, clear next
	:		;YES, continue

FIGURE 4-25: DIRECT/INDIRECT ADDRESSING

TABLE 5-6: PORTC FUNCTIONS FOR PIC16C62A/R62/64A/R64

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture input/Compare output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4		RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger input

TABLE 5-7: PORTC FUNCTIONS FOR PIC16C63/R63/65/65A/R65/66/67

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit, or USART Syn- chronous Clock
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive, or USART Syn- chronous Data

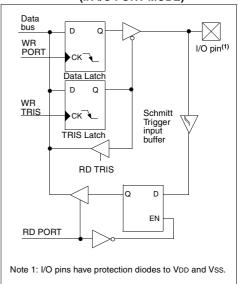
Legend: ST = Schmitt Trigger input

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0								uuuu uuuu
87h	TRISC	PORTC D	Data Direc	1111 1111	1111 1111						

Legend: x = unknown, u = unchanged.

5.4 PORTD and TRISD Register


Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 5-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

TABLE 5-9: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port mode.

TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	PORTD I	Data Direc	1111 1111	1111 1111						
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Directio	n Bits	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

SWITCHING PRESCALER ASSIGNMENT 7.3.1

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note:	To avoid an unintended device RESET, the								
	following instruction sequence (shown in								
	Example 7-1) must be executed when								
	changing the prescaler assignment from								
	Timer0 to the WDT. This precaution must								
	be followed even if the WDT is disabled.								

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0→WDT)

	1)	BSF	STATUS, RPO	;Bank 1
Lines 2 and 3 do NOT have to	2)	MOVLW	b'xx0x0xxx'	;Select clock source and prescale value of
be included if the final desired	3)	MOVWF	OPTION_REG	;other than 1:1
prescale value is other than 1:1.	4)	BCF	STATUS, RPO	;Bank 0
If 1:1 is final desired value, then a temporary prescale value is	5)	CLRF	TMR0	;Clear TMR0 and prescaler
set in lines 2 and 3 and the final	6)	BSF	STATUS, RP1	;Bank 1
prescale value will be set in line	7)	MOVLW	b'xxxx1xxx'	;Select WDT, do not change prescale value
10 and 11.	8)	MOVWF	OPTION_REG	;
	9)	CLRWDT		;Clears WDT and prescaler
	10)	MOVLW	b'xxxx1xxx'	;Select new prescale value and WDT
	11)	MOVWF	OPTION_REG	;
	12)	BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT → TIMER0)

CLRWDT ;Clear WDT and prescaler BSF STATUS, RP0 ;Bank 1 MOVLW b'xxxx0xxx' ;Select TMR0, new prescale value and clock source MOVWF OPTION REG ; BCF STATUS, RPO ;Bank 0

TABLE 7-1: **REGISTERS ASSOCIATED WITH TIMER0**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h, 101h	TMR0	Timer0	module's r	egister				xxxx xxxx	uuuu uuuu		
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE ⁽¹⁾	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h, 181h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	_	PORTA Data	Direction F	11 1111	11 1111				

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

CCP2 is implemented on the PIC16C63/R63/65/65A/ R65/66/67 only.

If CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCPxM3:CCPxM0 = 1011), this signal will reset Timer1.

Note: The "special event trigger" from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF(PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If the Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for the Timer1 module.

8.6 <u>Resetting of TMR1 Register Pair</u> (TMR1H:TMR1L)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 or CCP2 special event trigger.

The T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescaler. In all other resets, the register is unaffected.

8.7 <u>Timer1 Prescaler</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	Value on: POR, BOR		e on other sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
0Eh	TMR1L	Holding register for the Least Significant Byte of the 16-bit TMR1 register										uuuu	uuuu
0Fh	TMR1H	Holding re	Holding register for the Most Significant Byte of the 16-bit TMR1 register									uuuu	uuuu
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: The USART is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)

U-0	U-0 R/W-0 R	/W-0 R/W-0	R/W-0	R/W-0	R/W-0								
—	- CCPxX CC	CPxY CCPxM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit							
bit7					bit0	W = Writable bit							
						U = Unimplemented bit, read as '0'							
						- n =Value at POR reset							
bit 7-6:	Unimplemented: F	Poad as '0'											
	•												
bit 5-4:	CCPxX:CCPxY: PV	VM Least Significa	ant bits										
	Capture Mode Unused												
	Compare Mode												
	Unused												
	PWM Mode												
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.												
bit 3-0:	3-0: CCPxM3:CCPxM0: CCPx Mode Select bits												
	0000 = Capture/Co	•		k module)									
	0100 = Capture mo		•										
	0101 = Capture mo		•										
	0110 = Capture mo	· ·	0 0										
	1000 = Compare m	· ·	• •	CCPxIF is	set)								
	1001 = Compare m		•		,								
	•		•		,	is set, CCPx pin is unaffected)							
	•		al event (CC	PxIF bit is s	et; CCP1 res	ets TMR1; CCP2 resets TMR1)							
	11xx = PWM mode	9											

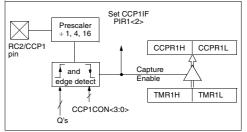
10.1 Capture Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1 (Figure 10-2). An event is defined as:

- · Every falling edge
- · Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an
	output, a write to PORTC can cause a cap-
	ture condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work consistently.

10.1.3 SOFTWARE INTERRUPT

When the Capture event is changed, a false capture interrupt may be generated. The user should clear enable bit CCP1IE (PIE1<2>) to avoid false interrupts and should clear flag bit CCP1IF following any such change in operating mode.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets		
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	RBIE TOIF INTF RBIF		0000 000x	0000 000u			
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000		
0Dh ⁽⁴⁾	PIR2	—	_	_	_	_	_	_	CCP2IF		 0		
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000		
8Dh ⁽⁴⁾	PIE2	—	_	-	_	-	—	-	CCP2IE		 0		
87h	TRISC												
11h	TMR2	Timer2 m	iodule's regi	0000	0000								
92h	PR2	Timer2 m	iodule's Per	iod register						1111 1111	1111 1111		
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000		
15h	CCPR1L	Capture/0	Compare/P	VM1 (LSB)	1					xxxx xxxx	uuuu uuuu		
16h	CCPR1H	Capture/0	Compare/P	VM1 (MSB)					xxxx xxxx	นนนน นนนน		
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000		
1Bh ⁽⁴⁾	CCPR2L	Capture/0	Compare/P\	VM2 (LSB)	1		1			xxxx xxxx	นนนน นนนน		
1Ch ⁽⁴⁾	CCPR2H	Capture/0	Compare/P\	VM2 (MSB)					xxxx xxxx	นนนน นนนน		
1Dh ⁽⁴⁾	CCP2CON	-	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000		

TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

 Legend:
 x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

 Note
 1:
 These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.

13.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 13-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 13-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

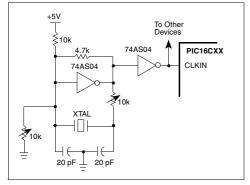
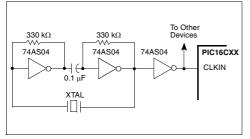
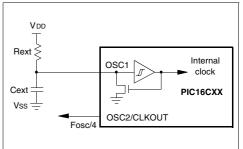



Figure 13-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 13-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

13.2.4 RC OSCILLATOR


For timing insensitive applications the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 13-8 shows how the RC combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-5 for waveform).

FIGURE 13-8: RC OSCILLATOR MODE

RETLW	Return v	vith Liter	al in W		RETURN	Return fi	rom Sub	routine				
Syntax:	[label]	RETLW	k		Syntax:	[label]	RETUR	N				
Operands:	$0 \le k \le 2$	55			Operands:	None						
Operation:	$k \rightarrow (W);$				Operation:	$\text{TOS} \to \text{F}$	ъС					
	$TOS \rightarrow F$	PC			Status Affected:	None						
Status Affected:	None	-			Encoding:	00	0000	0000	1000			
Encoding:	11	01xx	1xx kkkk kkkk		Description:	Return from subroutine. The stack is						
Description:	The W reg bit literal 'I loaded fro	k'. The pro	gram coun of the stac	iter is k (the		POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.						
	instruction	Iress). This 1.	s is a two c	cycle	Words:	1						
Words:	1				Cycles:	2						
Cycles:	2				Q Cycle Activity:	Q1	Q2	Q3	Q4			
Q Cycle Activity:	Q1	Q2	Q3	Q4	1st Cycle	Decode	No- Operation	No- Operation	Pop from the Stack			
1st Cycle	Decode	Read literal 'k'	No- Operation	Write to W, Pop from the Stack	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation			
2nd Cycle	No-	No-	No-	No-	Example	RETURN						
	Operation	Operation	Operation	Operation		After Interrupt						
Example	CALL TABL	;offse	tains tabl t value has table				PC =	TOS				
TABLE	ADDWF PC RETLW k1 RETLW k2 •	;W = 0 ;Begin ;										
	RETLW kn		of table									
	Before In After Inst	truction	0x07 value of k8	3								

PIC16C6X

XORLW	Exclusiv	/e OR Li	teral wit	h W
Syntax:	[<i>label</i>]	XORLV	Vk	
Operands:	$0 \le k \le 2$	55		
Operation:	(W) .XO	$R. k \to (N$	N)	
Status Affected:	Z			
Encoding:	11	1010	kkkk	kkkk
Description:	The conte XOR'ed v The resul ter.	vith the eig	ght bit lite	ral 'k'.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example:	XORLW	0xAF		
	Before Ir	nstruction	n	
		W =	0xB5	
	After Ins	truction		
		W =	0x1A	

XORWF	Exclusiv	e OR W	with f		
Syntax:	[label]	XORWF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	27			
Operation:	(W) .XOF	$R.(f) \to (f)$	destinatio	on)	
Status Affected:	Z				
Encoding:	0.0	0110	dfff	ffff	
Description:	Exclusive register wi result is studied 1 the result	th registe ored in the	r 'f'. If 'd' is e W regist	s 0 the er. If 'd' is	
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read register 'f'	Process data	Write to destination	
Example	XORWF	REG	1	•	
	Before In	struction	1		
		REG W	0/1	AF B5	
	After Inst	ruction			
		REG W	••••	1A B5	

=

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

17.4 Timing Parameter Symbology

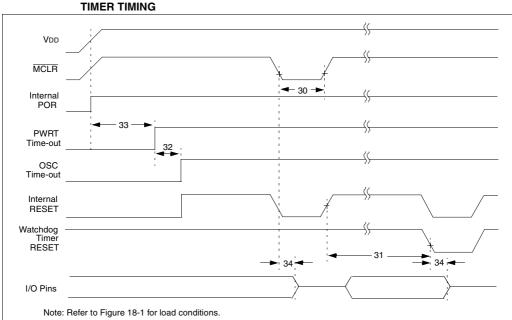
The timing parameter symbols have been created following one of the following formats:

2. TppS 4. Ts (I ² C specifications only) T F Frequency T Time Lowercase letters (pp) and their meanings: T Time Time cc CCP1 osc OSC1 ck CLKOUT rd RD
F Frequency T Time Lowercase letters (pp) and their meanings:
Description Description pp cc CCP1 osc OSC1 ck CLKOUT rd RD
pp osc OSC1 ck CLKOUT rd RD
cc CCP1 osc OSC1 ck CLKOUT rd RD
ck CLKOUT rd RD
cs CS rw RD or WR
di SDI sc SCK
do SDO ss SS
dt Data in t0 T0CKI
io I/O port t1 T1CKI
mc MCLR wr WR
Uppercase letters and their meanings:
S
F Fall P Period
H High R Rise
I Invalid (Hi-impedance) V Valid
L Low Z Hi-impedance
I ² C only
AA output access High High
BUF Bus free Low Low
TCC:ST (I ² C specifications only)
CC
HD Hold SU Setup
ST
DAT DATA input hold STO STOP condition
STA START condition
FIGURE 17-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1 VDD/2 Load condition 2
ρ
Pin USS VSS
▼ Vss
$R_L = 464\Omega$ Note 1: PORTD and PORTE are not imple-
CL = 50 pF for all pins except OSC2/CLKOUT mented on the PIC16C62.
but including D and E outputs as ports
15 pF for OSC2 output

	Applicable Devices	61	62	62A	B62	63	B63	64	64A	R64	65	65A	B65	66	67
--	--------------------	----	----	-----	------------	----	-----	----	-----	------------	----	-----	------------	----	----

		Standa	Standard Operating Conditions (unless otherwise stated)							
		Operating temperature $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended,								
DC CHARACTERISTICS		-40° C \leq TA \leq +85°C for industrial and								
	ANACIENISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial								
		Operating voltage VDD range as described in DC spec Section 18.1 and								
		Section 18.2								
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions			
No.				†						
	Output High Voltage									
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C			
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C			
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С			
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C			
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin			
	Capacitive Loading Specs on Out-									
	put Pins									
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.			
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF				
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF				

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

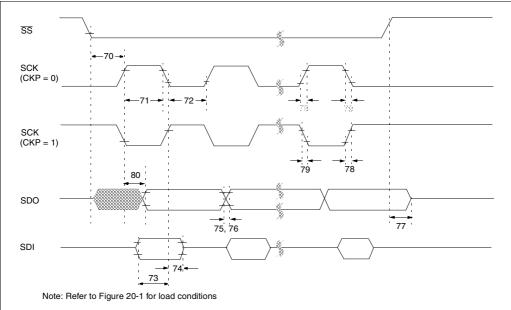
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 18-5: BROWN-OUT RESET TIMING

TABLE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

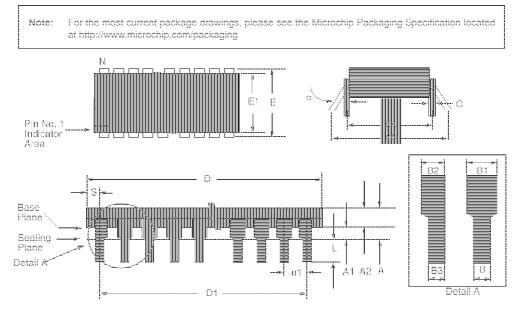
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—	I	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024Tosc	Ι	-	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or WDT Reset		—	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—		μs	V DD \leq BVDD (param. D005)


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


TABLE 20-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	—	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)		10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

24.2 28-Lead Plastic Dual In-line (300 mil) (SP)

Package Group: Plastic Dual In-Line (PLA)								
	Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
А	3.632	4.572		0.143	0.180			
A1	0.381	-		0.015	-			
A2	3.175	3.556		0.125	0.140			
В	0.406	0.559		0.016	0.022			
B1	1.016	1.651	Typical	0.040	0.065	Typical		
B2	0.762	1.016	4 places	0.030	0.040	4 places		
B3	0.203	0.508	4 places	0.008	0.020	4 places		
С	0.203	0.331	Typical	0.008	0.013	Typical		
D	34.163	35.179		1.385	1.395			
D1	33.020	33.020	Reference	1.300	1.300	Reference		
E	7.874	8.382		0.310	0.330			
E1	7.112	7.493		0.280	0.295			
e1	2.540	2.540	Typical	0.100	0.100	Typical		
eA	7.874	7.874	Reference	0.310	0.310	Reference		
eB	8.128	9.652		0.320	0.380			
L	3.175	3.683		0.125	0.145			
Ν	28	28		28	28			
S	0.584	1.220		0.023	0.048			

APPENDIX A: MODIFICATIONS

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. Timer0 pin is also a port pin (RA4/T0CKI) now.
- 14. FSR is made a full 8-bit register.
- "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, VPP, RB6 (clock) and RB7 (data in/out).
- Power Control register (PCON) is added with a Power-on Reset status bit (POR).(Not on the PIC16C61).
- Brown-out Reset has been added to the following devices: PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/ 67.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSs and $\overline{\text{MCLR}}$ pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509, PIC12C671, PIC12C672	8-pin
PIC16C154, PIC16CR154, PIC16C156, PIC16CR156, PIC16C158, PIC16CR158, PIC16C52, PIC16C54, PIC16C54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C554, PIC16CR58A, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622 PIC16C641, PIC16C642, PIC16C661, PIC16C662 PIC16C710, PIC16C71, PIC16C711, PIC16C715 PIC16F83, PIC16CR83, PIC16F84A, PIC16CR84	18-pin, 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63, PIC16C66, PIC16C72, PIC16C73A, PIC16C76	28-pin
PIC16CR64, PIC16C64A, PIC16C65A, PIC16CR65, PIC16C67, PIC16C74A, PIC16C77	40-pin
PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin
PIC17C756, PIC17C752	64/68-pin

TABLE F-1: PIN COMPATIBLE DEVICES