

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c64at-04i-l

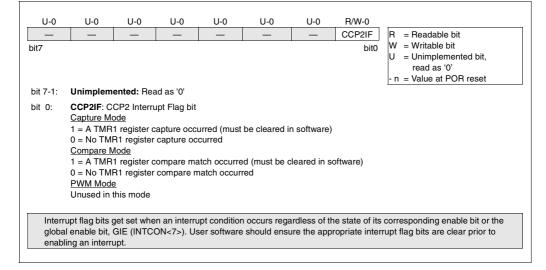
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

г

FIGURE 4-19: PIR1 REGISTER FOR PIC16C65/65A/R65/67 (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
PSPIF bit7	—	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	 R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 		
bit 7:	PSPIF: Parallel Slave Port Interrupt Flag bit 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write operation has taken place									
bit 6:	Reserved:	Always ma	intain this I	bit clear.						
bit 5:	RCIF: USA 1 = The US 0 = The US	SART receiv	/e buffer is	full (cleared	d by reading	RCREG)				
bit 4:	TXIF: USA 1 = The US 0 = The US	SART trans	nit buffer is	empty (cle	eared by writ	ing to TXRE	EG)			
bit 3:	1 = The tra	SSPIF: Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive								
bit 2:	0 = No TMI Compare M	ode 1 register c R1 register <u>Aode</u> 1 register c R1 register <u>e</u>	apture occi capture oc ompare ma	urred (must curred atch occurre	be cleared i ed (must be o red	,	oftware)			
bit 1:	TMR2IF : T 1 = TMR2 t 0 = No TMI	to PR2 mat	ch occurred	d (must be	bit cleared in so	ftware)				
bit 0:	TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflow occurred (must be cleared in software) 0 = No TMR1 register overflow occurred									
global		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to		


4.2.2.7 PIR2 REGISTER

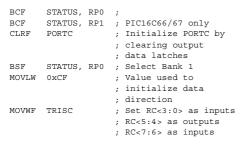
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

This register contains the CCP2 interrupt flag bit.

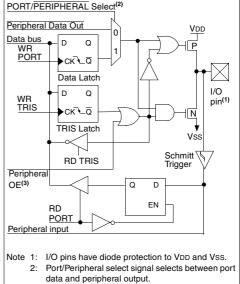
Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-21: PIR2 REGISTER (ADDRESS 0Dh)

5.3 PORTC and TRISC Register


Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


PORTC is an 8-bit wide bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 5-3: INITIALIZING PORTC

FIGURE 5-6: PORTC BLOCK DIAGRAM

3: Peripheral OE (output enable) is only activated if peripheral select is active.

TABLE 5-5: PORTC FUNCTIONS FOR PIC16C62/64

Name	Bit#	Buffer Type	Function
RC0/T1OSI/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator input or Timer1 clock input
RC1/T1OSO	bit1	ST	Input/output port pin or Timer1 oscillator output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger input

TABLE 5-6:PORTC FUNCTIONS FOR PIC16C62A/R62/64A/R64

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture input/Compare output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4		RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger input

TABLE 5-7: PORTC FUNCTIONS FOR PIC16C63/R63/65/65A/R65/66/67

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit, or USART Syn- chronous Clock
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive, or USART Syn- chronous Data

Legend: ST = Schmitt Trigger input

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC D	Data Direc	tion Regist	er					1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

5.7 Parallel Slave Port

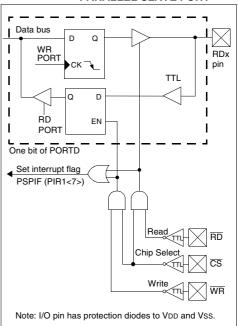
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTD operates as an 8-bit wide parallel slave port (microprocessor port) when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through $\overline{\text{RD}}$ control input (RE0/ $\overline{\text{RD}}$) and $\overline{\text{WR}}$ control input pin (RE1/ $\overline{\text{WR}}$).

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

There are actually two 8-bit latches, one for data-out (from the PIC16/17) and one for data input. The user writes 8-bit data to PORTD data latch and reads data from the port pin latch (note that they have the same address). In this mode, the TRISD register is ignored since the microprocessor is controlling the direction of data flow.


A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. When either the \overline{CS} or \overline{WR} lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE<7>) is set on the Q4 clock cycle, following the next Q2 cycle, to signal the write is complete (Figure 5-12). The interrupt flag bit PSPIF (PIR1<7>) is also set on the same Q4 clock cycle. IBF can only be cleared by reading the PORTD input latch. The input Buffer Overflow status flag bit IBOV (TRISE<5>) is set if a second write to the Parallel Slave Port is attempted when the previous byte has not been read out of the buffer.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE<6>) is cleared immediately (Figure 5-13) indicating that the PORTD latch is waiting to be read by the external bus. When either the \overline{CS} or \overline{RD} pin becomes high (level triggered), the interrupt flag bit PSPIF is set on the Q4 clock cycle, following the next Q2 cycle, indicating that the read is complete. OBF remains low until data is written to PORTD by the user firmware.

When not in Parallel Slave Port mode, the IBF and OBF bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.

An interrupt is generated and latched into flag bit PSPIF when a read or write operation is completed. PSPIF must be cleared by the user in firmware and the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 5-11: PORTD AND PORTE AS A PARALLEL SLAVE PORT

7.0 TIMER0 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

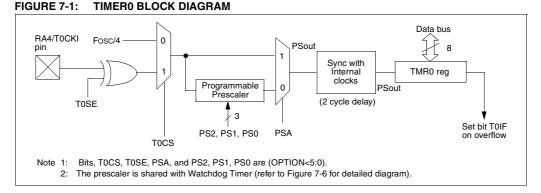
The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
 - Read and write capability
 - Interrupt on overflow from FFh to 00h
- 8-bit software programmable prescaler
- Internal or external clock select
- Edge select for external clock

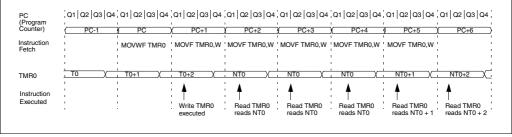
Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit T0CS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.


The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 TMR0 Interrupt


Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The TMR0 interrupt is generated when the register (TMR0) overflows from FFh to 00h. This overflow sets interrupt flag bit T0IF (INTCON<2>). The interrupt can be masked by clearing enable bit T0IE (INTCON<5>). Flag bit T0IF must be cleared in software by the TImer0 interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. Figure 7-4 displays the Timer0 interrupt timing.

FIGURE 7-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALER

© 1997-2013 Microchip Technology Inc.

11.5.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the l^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.5.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- · Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buffe	r/Transmit	Register			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C	mode) Ad	ldress Re	gister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽³⁾	CKE ⁽³⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Da	PORTC Data Direction register							1111 1111	1111 1111

TABLE 11-5: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16C66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

3: The SMP and CKE bits are implemented on the PIC16C66/67 only. All other PIC16C6X devices have these two bits unimplemented, read as '0'. NOTES:

-

COMF	Complement f	DECFSZ	Decrement f, Skip if 0
Syntax:	[<i>label</i>] COMF f,d	Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\bar{f}) \rightarrow (destination)$	Operation:	(f) - 1 \rightarrow (destination);
Status Affected:	Z		skip if result = 0
Encoding:	00 1001 dfff ffff	Status Affected:	None
Description:	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in	Encoding:	00 1011 dfff ffff
Words: Cycles:	W. If 'd' is 1 the result is stored back in register 'f'. 1	Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. If the result is 1, the next instruction, is executed. If the result is 0, then a NOP is
Q Cycle Activity:	Q1 Q2 Q3 Q4		executed instead making it a 2TCY instruc- tion.
, ,	Decode Read Process Write to	Words:	1
	register data destination	Cycles:	1(2)
		Q Cycle Activity:	Q1 Q2 Q3 Q4
Example	COMF REG1, 0 Before Instruction	, ,	Decode Read Process Write to register 'f' data destination
	$\begin{array}{rcl} REG1 &=& 0x13\\ After Instruction & \\ REG1 &=& 0x13\\ W &=& 0xEC \end{array}$	lf Skip:	Q1 Q2 Q3 Q4 No- Operation Operation Operation Operation
DECF	Decrement f		
Syntax:	[<i>label</i>] DECF f,d	Example	HERE DECFSZ CNT, 1 GOTO LOOP
Operands:	$0 \le f \le 127$		CONTINUE •
	d ∈ [0,1]		•
Operation:	$d \in [0,1]$ (f) - 1 \rightarrow (destination)		• Before Instruction
Operation: Status Affected:			• Before Instruction PC = address HERE
•	(f) - 1 \rightarrow (destination)		PC = address HERE After Instruction
Status Affected:	(f) - 1 → (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE
Status Affected: Encoding:	(f) - 1 → (destination) Z 00 0011 dfff ffff		$\begin{array}{rcl} PC &=& address {}_{HERE}\\ \textbf{After Instruction}\\ & CNT &=& CNT-1\\ & & & & \\ & & & & \\ & & & & \\ & & & &$
Status Affected: Encoding: Description: Words:	(f) - 1 \rightarrow (destination) Z Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE
Status Affected: Encoding: Description: Words: Cycles:	(f) - 1 \rightarrow (destination) Z Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0,
Status Affected: Encoding: Description: Words:	(f) - 1 \rightarrow (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1		$\begin{array}{rcl} PC &=& address \mbox{ HERE} \\ \mbox{After Instruction} \\ CNT &=& CNT - 1 \\ \mbox{if CNT} &=& 0, \\ PC &=& address \mbox{ continue} \\ \mbox{if CNT} &\neq& 0, \\ \end{array}$
Status Affected: Encoding: Description: Words: Cycles:	(f) - 1 \rightarrow (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1 Q1 Q2 Q3 Q4 Decode Read Process Write to data destination		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0,
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	$ \begin{array}{c c} (f) - 1 \rightarrow (destination) \\ \hline Z \\ \hline 00 & 0011 & dfff & ffff \\ \hline Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. \\ 1 & & \\ 1 & & \\ Q1 & Q2 & Q3 & Q4 \\ \hline \hline Decode & Read & Process & Write to destination \\ \hline & & \\ f'' & & \\ \end{array} $		$\begin{array}{rcl} PC &=& address {}_{HERE}\\ \textbf{After Instruction}\\ & CNT &=& CNT-1\\ & & & & \\ & & & & \\ & & & & \\ & & & &$
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(f) - 1 \rightarrow (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 2 Q1 Q2 Q3 Q4 Decode Read Process Write to data destination DECF CNT, 1 Before Instruction CNT = 0x01		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0,
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(f) - 1 → (destination) Z 00 0011 dfff fff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1 Q1 Q2 Q3 Q4 Decode Read Process Write to register data destination DECF CNT, 1 Before Instruction CNT = 0x01 Z = 0		PC = address HERE After Instruction CNT = CNT - 1 if CNT = 0, PC = address CONTINUE if CNT ≠ 0,
Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(f) - 1 \rightarrow (destination) Z 00 0011 dfff ffff Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 2 Q1 Q2 Q3 Q4 Decode Read Process Write to data destination DECF CNT, 1 Before Instruction CNT = 0x01		$\begin{array}{rcl} PC &=& address \mbox{ HERE} \\ \mbox{After Instruction} \\ CNT &=& CNT - 1 \\ \mbox{if CNT} &=& 0, \\ PC &=& address \mbox{ continue} \\ \mbox{if CNT} &\neq& 0, \\ \end{array}$

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.1 DC Characteristics: PIC16C61-04 (Commercial, Industrial, Extended) PIC16C61-20 (Commercial, Industrial, Extended)

		Standa	rd Opei	rating	Condi	tions (ı	unless otherwise stated)			
	ACTERISTICS	$Operating \ temperature -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ extended,$								
DC CHAR	ACTERISTICS	-40°C \leq TA \leq +85°C for industrial and								
					0°0	C ≤	$TA \leq +70^{\circ}C$ for commercial			
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage	Vdd	4.0	-	6.0	V	XT, RC and LP osc configuration			
D001A			4.5	-	5.5	V	HS osc configuration			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V				
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V			
D020	Power-down Current	IPD	-	7	28	μA	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D021	(Note 3)		-	1.0	14	μA	VDD = 4.0V, WDT disabled, -0°C to +70°C			
D021A			-	1.0	16	μA	VDD = 4.0V, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021B			-	1.0	20	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S		3. TCC:ST	(I ² C specifications only)
2. TppS			4. Ts	(I ² C specifications only)
Т				
F	Frequency		т	Time
Lowercas	e letters (pp) and their meani	ngs:		
рр				
сс	CCP1		OSC	OSC1
ck	CLKOUT		rd	RD
CS	CS		rw	RD or WR
di	SDI		SC	SCK
do	SDO		SS	SS
dt	Data in		t0	TOCKI
io	I/O port		t1	T1CKI
mc	MCLR		wr	WR
	e letters and their meanings:		1	
S				
F	Fall		Р	Period
Н	High		R	Rise
I	Invalid (Hi-impedance)		V	Valid
L	Low		Z	Hi-impedance
I ² C only				
AA	output access		High	High
BUF	Bus free		Low	Low
TCC:ST (I ²	C specifications only)			
CC				
HD	Hold		SU	Setup
ST				
DAT	DATA input hold		STO	STOP condition
STA	START condition			
FIGURE 15	-1: LOAD CONDITIONS	FOR DEVICE	TIMING SP	PECIFICATIONS
	Load condition 1			Load condition 2
	Load condition 1			Load condition 2
	VD	D/2		
	(
	<	⊧ ≥ RL		
	<	> '``		
	Pin =	CL		
	FIII .	7	Г	- III
	Vs	SS		Vss
	$RL = 464\Omega$			
		all pins except C		ІТ
		OSC2 output		
	- 1			

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.5 <u>Timing Diagrams and Specifications</u>

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode (-04)
			1	_	20	MHz	HS osc mode (-20)
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			50	_	_	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	1,000	ns	HS osc mode (-04)
			50	_	1,000	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μs	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	_	ns	XT oscillator
	TosH	Low Time	2.5	_	—	μs	LP oscillator
			10	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	_	_	ns	XT oscillator
	TosF	Fall Time	50	_	—	ns	LP oscillator
			15	_	_	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.1 DC Characteristics: PIC16C62A/R62/64A/R64-04 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-10 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-20 (Commercial, Industrial, Extended)

DC CHA		Standar Operatir			ə -40)°C ≤	unless otherwise stated) $TA \le +125^{\circ}C$ for extended,
					-4(0°(\leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
			3.7	4.0	4.4	v	Extended Range Only
D010	Supply Current (Note 2, 5)	Idd	-	2.7	5	mA	XT, RC, osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc configuration FOSC = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δ Ibor	-	350	425	μA	BOR enabled, VDD = 5.0V
D020	Power-down Current (Note	IPD	-	10.5	42	μA	VDD = 4.0V, WDT enabled, -40°C to +85°C
D021	3, 5)		-	1.5	16	μA	VDD = 4.0V, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$
D021A			-	1.5 2.5	19	μA	$V_{DD} = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021B			-	2.5	19	μA	VDD = 4.0V, WDT disabled, -40°C to +125°C
D023*	Brown-out Reset Current (Note 6)	Δ Ibor	-	350	425	μA	BOR enabled, VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.1 DC Characteristics: PIC16C65-04 (Commercial, Industrial) PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)							
DC CHA	DC CHARACTERISTICS Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and						
					0°0	C ≤	\leq TA \leq +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	v v	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D020 D021 D021A	Power-down Current (Note 3, 5)	IPD		10.5 1.5 1.5	800 800 800	μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD=4.0V, WDT \mbox{ enabled}, -40^\circ C \mbox{ to } +85^\circ C \\ VDD=4.0V, WDT \mbox{ disabled}, -0^\circ C \mbox{ to } +70^\circ C \\ VDD=4.0V, WDT \mbox{ disabled}, -40^\circ C \mbox{ to } +85^\circ C \end{array}$

These parameters are characterized but not tested.

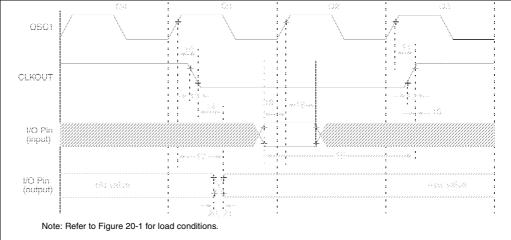
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,


 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

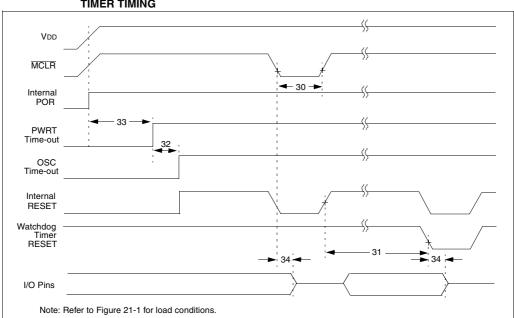
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-3: CLKOUT AND I/O TIMING

TABLE 20-3:	CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		_	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		Tosc + 200	_	-	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	50	150	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port input	PIC16 C 63/65A	100	_	_	ns	
		invalid (I/O in hold time)	PIC16LC63/65A	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in	setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16 C 63/65A	_	10	40	ns	
			PIC16LC63/65A	_	_	80	ns	
21*	TioF	Port output fall time	PIC16 C 63/65A	_	10	40	ns	
			PIC16LC63/65A	_	_	80	ns	
22††*	Tinp	INT pin high or low time		Тсү	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high or low time		Тсү	—	_	ns	


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events not related to any internal clock edge.

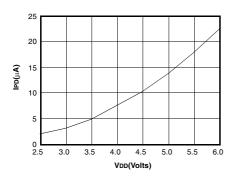
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

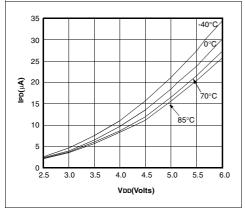
FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 21-5: BROWN-OUT RESET TIMING

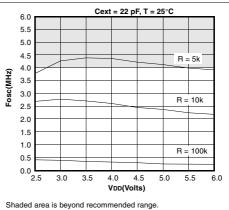
TABLE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

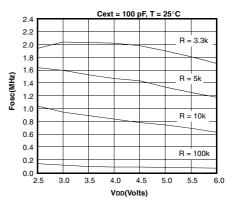

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	-	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	_	_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or WDT reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	V DD \leq BVDD (D005)

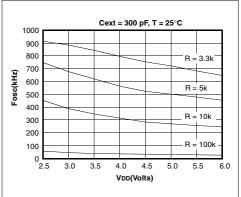

* These parameters are characterized but not tested.

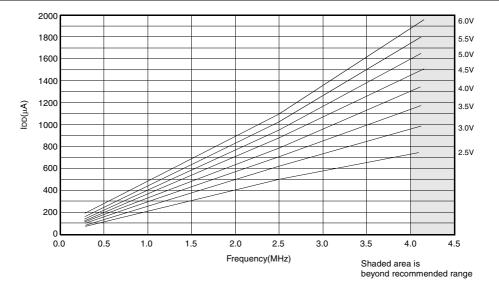

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

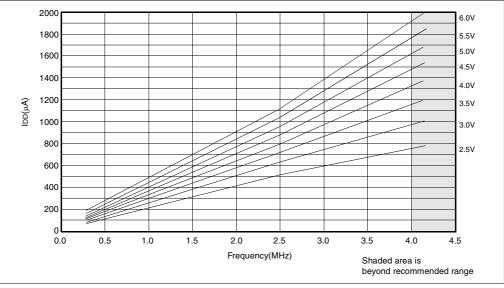
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


FIGURE 23-3: TYPICAL IPD vs. VDD @ 25°C (WDT ENABLED, RC MODE)




FIGURE 23-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD





Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 23-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)

APPENDIX F: PIC16/17 MICROCONTROLLERS

F.1 PIC12CXXX Family of Devices

		PIC12C508	PIC12C509	PIC12C671	PIC12C672
lock	Maximum Frequency of Operation (MHz)	4	4	4	4
emory	EPROM Program Memory	512 x 12	1024 x 12	1024 x 14	2048 x 14
emory	Data Memory (bytes)	25	41	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
eripherals	A/D Converter (8-bit) Channels		_	4	4
	Wake-up from SLEEP on pin change	Yes	Yes	Yes	Yes
	I/O Pins	5	5	5	5
	Input Pins	1	1	1	1
atures	Internal Pull-ups	Yes	Yes	Yes	Yes
	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5	2.5-5.5
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Number of Instructions	33	33	35	35
	Packages	8-pin DIP, SOIC	8-pin DIP, SOIC	8-pin DIP, SOIC	8-pin DIP, SOIC

All PIC12C5XX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC12C5XX devices use serial programming with data pin GP1 and clock pin GP0.

F.2 PIC14C000 Family of Devices

		PIC14C000
Clock	Maximum Frequency of Operation (MHz)	20
	EPROM Program Memory (x14 words)	4K
Memory	Data Memory (bytes)	192
Memory	Timer Module(s)	TMR0 ADTMR
Peripherals	Serial Port(s) (SPI/I ² C, USART)	I ² C with SMBus Support
	Slope A/D Converter Channels	8 External; 6 Internal
	Interrupt Sources	11
	I/O Pins	22
	Voltage Range (Volts)	2.7-6.0
Features	In-Circuit Serial Programming	Yes
	Additional On-chip Features	Internal 4MHz Oscillator, Bandgap Reference,Temperature Sensor, Calibration Factors, Low Voltage Detector, SLEEP, HIBERNATE, Comparators with Programmable References (2)
	Packages	28-pin DIP (.300 mil), SOIC, SSOP

OSC1/CLKIN1	
OSC2/CLKOUT1	
PORTA5	2
PORTB5	64
PORTC5	5
PORTD5	7
PORTE	9
RA4/T0CKI	
RA5/SS	
RB0/INT	
RB614	
RB714	
RC0/T1OSI/T1CKI	
RC0/T1OS0/T1CKI	
RC0/110S0/11CK1	
RC1/T1OSI/CCP216, 5	
RC1/T10SO5	
RC2/CCP116, 55, 5	
RC3/SCK/SCL 16, 55, 5	6
RC4/SDI/SDA16, 55, 5	
RC5/SDO16, 55, 5	6
RC6/TX/CK	20
RC7/RX/DT	0
RD7/PSP7:RD0/PSP0	
RE0/RD17, 59, 6	
RE1/WR	
RE2/CS 17, 59, 6	
SCK	
SDI	
<u>SD</u> O	
SS	
VDD1	7
Vss1	7
PIR1	1
1 11 11	94
PIR2	
	84
PIR2	4 8
PIR2	4 8 1
PIR2	4 8 1 4
PIR2	4 8 1 4 3 3
PIR2	4 8 1 4 3 1 3
PIR2	4 8 14 13 13
PIR2	14 14 14 13 13 13 13 13 13
PIR2	14 18 19 19 19 19 19 19 19 19 19 19 19 19 19
PIR2	4 8 1 4 3 1 3 1 3 8 6 5
PIR2	4 8 1 4 3 1 3 8 6 5 7
PIR2	4 8 1 4 3 1 3 8 6 5 7
PIR2	4 8 1 4 3 1 3 8 6 5 7 8
PIR2	4 8 1 4 3 1 3 8 6 5 7 8
PIR2	4 8 1 4 3 1 3 8 6 5 7 8 0
PIR2	48143138657800
PIR2	481431386578 006
PIR2	481431386578 0066
PIR2	481431386578 00666
PIR2	481431386578 006667
PIR2	481431386578 0066677
PIR2	481431386578 00666770
PIR2	481431386578 006667700
PIR2	481431386578 0066677005
PIR2	481431386578 00666770051
PIR2	481431386578 006667700519
PIR2	481431386578 0066677005197
PIR2	481431386578 0066677005197
PIR2	481431386578 00666770051979
PIR2	481431386578 006667700519794
PIR2	481431386578 0066677005197948
PIR2	48143133865578 0006666770005119794886
PIR2	44 8 11 44 33 11 33 8 66 55 77 8 60 06 6 6 6 7 7 7 00 05 11 99 77 99 44 86 66
PIR2	44 8 11 44 33 11 33 8 66 55 77 8 60 06 6 6 6 7 7 7 00 05 11 99 77 99 44 86 66

Мар	19, 20
Organization	19
Paging	
Section	
Programming While In-circuit	
PS2:PS0	
PSA	36
PSPIE	39
PSPIF	43
Pull-ups	53
PUSH	
PWM	
Block Diagram	80
Calculations	81
Mode	80
Output Timing	80
PWM Least Significant bits	

Q

Quadrature Clocks	18
Quick-Turnaround-Production	. 7

R

R/W bit	89 96 100 101 102
RA0 pin	
RA1 pin	
RA2 pin	
RA3 pin	
RA4/T0CKI pin	
RA5 pin	
RB Port Change Interrupt Enable bit, F	RBIE 37
RB Port Change Interrupt Flag bit, RBI	F 37
RB0	
RB0/INT	
RB0/INT External Interrupt Enable bit,	INTE 37
RB0/INT External Interrupt Flag bit, IN	TF 37
RB1	
RB2	
RB3	
RB4	53
RB5	53
RB6	53
RB7	53
RBIE	
RBIF	
RBPU	
RC Oscillator	
RCIE	
RCIF	
RCREG	
RCSTA	
RCV_MODE	
Read Only Memory	
Read/Write bit Information, R/W	
Receive and Control Register	
Receive Overflow Detect bit, SSPOV	
Receive Overflow Indicator bit, SSPOV	
Register Bank Select bit, Indirect	
Register Bank Select bits. Direct	