

When the second second

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c64at-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA3 5 I/O TTL RA4 can also be the clock input to the Timer0 tir Output is open drain type. RA4 can also be the clock input to the Timer0 tir Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchr port. RB0/INT 21 I/O TTL/ST ⁴⁰ RB0 can also be the external interrupt pin. RB2 23 I/O TTL RB0 can also be the external interrupt pin. RB4 25 I/O TTL Interrupt on change pin. RB6 27 I/O TTL Interrupt on change pin. RB6 27 I/O TTL Interrupt on change pin. RC1/TLOS(¹¹ //CCP2 ⁽²⁾) 12 I/O ST RC0 can also be the Timer1 oscillator uppuf ¹ clock input. RC2/CCP1 13 I/O ST RC1 can	Pin Name	Pin#	Pin Type	Buffer Type	Description
MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA3 5 I/O TTL RA4 6 I/O ST RA4/T0CKI 6 I/O TTL RA5/SS 7 I/O TTL RA5/SS 7 I/O TTL RA5/SS 7 I/O TTL RB0/INT 21 I/O TTL/ST ⁽⁴⁾ RB1 22 I/O TTL RB2 23 I/O TTL RB4 25 I/O TTL RB5 26 I/O TTL RB6 27 I/O TTL RB6 27 I/O TTL RC0/T1OSO ⁽¹⁾ /T1CKI 11 I/O RC1/T1OSO ⁽¹⁾ /CCP2 ⁽²⁾ 12 I/O RC2/CCP1 13 I/O RC2/CCP	OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
MCLR/VPP 1 I/P ST Master clear reset input or programming voltage input an active low reset to the device. RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 tin Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchr port. RB0/INT 21 I/O TTL/ST ⁴⁰ RB0 can also be the slave select for the synchr port. RB0/INT 21 I/O TTL/ST ⁴⁰ RB0 can also be the external interrupt pin. RB2 23 I/O TTL RB0 can also be the external interrupt pin. RB3 24 I/O TTL Interrupt on change pin. RB6 27 I/O TTL Interrupt on change pin. RB6 27 I/O TTL/ST ⁶⁹ Interrupt on change pin. Serial programming dat RC0/T1CS0 ⁽¹⁾ /TCKI 11 I/O ST RC2 can also be the Timer1 oscillator uppuf ¹⁰ clock input. RC1/TLOS(¹¹ //CCP2 ⁽²⁾) 12 I/O ST RC2 can also be the Serial programming dat RC2/CCP1	OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crys
MICLIVIP Annow Strugge year RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA4/TOCKI 6 I/O ST RA4 can also be the clock input to the Timer0 timer 0 t					tal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
RA0 2 I/O TTL RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA3 5 I/O TTL RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 tin Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchr output. RB0/INT 21 I/O TTL/ST ⁽⁴⁾ RB0 can also be the external interrupt pin. RB1 22 I/O TTL RB0 can also be the external interrupt pin. RB2 23 I/O TTL Interrupt on change pin. RB4 25 I/O TTL Interrupt on change pin. RB5 26 I/O TTL Interrupt on change pin. RB7 28 I/O TTL/ST ⁽⁹⁾ Interrupt on change pin. Serial programming dat RC0/T10S0 ⁽¹⁾ /T1CKI 11 I/O ST RC1 can also be the Timer1 oscillator output ⁽¹⁾ input/Compare2 output/PMZ output ⁽²⁾	MCLR/Vpp	1	I/P	ST	Master clear reset input or programming voltage input. This pin is an active low reset to the device.
RA1 3 I/O TTL RA2 4 I/O TTL RA3 5 I/O TTL RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 time Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchropot. RB0/INT 21 I/O TTL/ST ⁽⁴⁾ RB0 can also be the external interrupt on all inputs. RB1 22 I/O TTL RA5 can also be the external interrupt on. RB2 23 I/O TTL RB0 can also be the external interrupt on. RB5 26 I/O TTL Interrupt on change pin. RB6 27 I/O TTL/ST ⁽⁵⁾ Interrupt on change pin. RB7 28 I/O TTL Interrupt on change pin. Serial programming dat RC0/T10S0 ⁽¹⁾ /T1CKI 11 I/O ST RC0 can also be the Timer1 oscillator output ⁽²⁾ RC2/CCP1 13 I/O ST RC1 can also be the synchronous serial clock for both SPI and I ² C modes. RC4/SDI/SDA 15 I/O ST RC2 can also be the sync					PORTA is a bi-directional I/O port.
RA24I/OTTLRA35I/OTTLRA4/T0CKI6I/OSTRA4 can also be the clock input to the Timer0 tin Output is open drain type.RA5/SS7I/OTTLRA5 can also be the slave select for the synchr port.RB0/INT21I/OTTL/ST(4)PORTB is a bi-directional I/O port. PORTB can be so grammed for internal weak pull-up on all inputs.RB0/INT21I/OTTL/ST(4)RB0 can also be the external interrupt pin.RB122I/OTTLRB0 can also be the external interrupt pin.RB324I/OTTLInterrupt on change pin.RB425I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin. Serial programming datRB627I/OTTL/ST(5)Interrupt on change pin. Serial programming datRC0/T1OSO(1)/T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ^[1] input/Compare2 output/PWM2 output ^[2] .RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SSCK/SCL14I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the USART Asynchronous F Synch	RA0	2	I/O	TTL	
RA3 5 I/O TTL RA4/T0CKI 6 I/O ST RA4 can also be the clock input to the Timer0 tin Output is open drain type. RA5/SS 7 I/O TTL RA5 can also be the slave select for the synchra port. RB0/INT 21 I/O TTL/ST(4) RB0 can also be the slave select for the synchra port. RB0/INT 21 I/O TTL/ST(4) RB0 can also be the external interrupt pin. RB1 22 I/O TTL RB0 can also be the external interrupt pin. RB2 23 I/O TTL Interrupt on change pin. RB4 25 I/O TTL Interrupt on change pin. RB5 26 I/O TTL/ST(5) Interrupt on change pin. Serial programming dot RC0/T10S0 ⁽¹⁾ /T1CKI 11 I/O ST RC0 can also be the Timer1 oscillator output ⁽¹⁾ clock input. RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12 I/O ST RC1 can also be the Capture1 input/Com put/PM1 output. RC3/SCK/SCL 14 I/O ST RC2 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI D	RA1	3	I/O	TTL	
RA4/T0CKI6I/OSTRA4 can also be the clock input to the Timer0 tin Output is open drain type.RA5/SS7I/OTTLRA5 can also be the slave select for the synchr port.RB0/INT21I/OTTL/ST ⁽⁴⁾ PORTB is a bi-directional I/O port. PORTB can be so grammed for internal weak pull-up on all inputs.RB0/INT21I/OTTL/ST ⁽⁴⁾ RB0 can also be the external interrupt pin.RB122I/OTTLRB0 can also be the external interrupt pin.RB324I/OTTLInterrupt on change pin.RB425I/OTTLInterrupt on change pin.RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin.RB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ⁽¹⁾ input/Compare2 output/PWM2 output ⁽²⁾ .RC2/CCP113I/OSTRC2 can also be the Synchronous serial clock for both SPI and I ² C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the USART Asynchronous Ta Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the USART Asynchronous Ta Synchronous Clock ⁽²⁾ .	RA2	4	I/O	TTL	
RA5/SS7I/OTTLOutput is open drain type.RA5/SS7I/OTTLRA5 can also be the slave select for the synchr port.RB0/INT21I/OTTL/ST(4)PORTB is a bi-directional I/O port. PORTB can be so grammed for internal weak pull-up on all inputs.RB122I/OTTLRB223I/OTTLRB425I/OTTLRB425I/OTTLRB627I/OTTL/ST(5)Interrupt on change pin.Interrupt on change pin.RB627I/OTTL/ST(5)RB728I/OTTL/ST(5)RC0/T1OSO(1)/T1CKI11I/OSTRC1/T1OSI(1)/CCP2(2)12I/OSTRC2/CCP113I/OSTRC3/SCK/SCL14I/OSTRC4/SDI/SDA15I/OSTRC5/SDO16I/OSTRC6/TX/CK(2)17I/OSTRC6/TX/CK(2)18I/OSTRC6/TX/CK(2)18I/OSTRC6/TX/CK(2)16I/OSTRC6/TX/CK(2)17I/OSTRC6/TX/CK(2)18I/OSTRC6/TX/CK(2)17I/OSTRC6/TX/CK(2)18I/OSTRC6/TX/CK(2)17I/ORC7/RX/DT(2)18I/OSTRC6/TX/CK(2)17I/ORC7/RX/DT(2)18I/ORC7/RX/DT(2)18 <td>RA3</td> <td>5</td> <td>I/O</td> <td>TTL</td> <td></td>	RA3	5	I/O	TTL	
RA5/SS7I/OTTLRA5 can also be the slave select for the synchroport. port.RB0/INT21I/OTTL/ST ⁽⁴⁾ PORTB is a bidirectional I/O port. PORTB can be so grammed for internal weak pull-up on all inputs.RB122I/OTTLRB0 can also be the external interrupt pin.RB223I/OTTLRB0 can also be the external interrupt pin.RB324I/OTTLInterrupt on change pin.RB425I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin. Serial programming cloRB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTRC1 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Capture1 input/Com put/PWM1 output ⁽²⁾ .RC3/SCK/SCL14I/OSTRC2 can also be the SPI Data In (SPI mode) or data I/O (I ² C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC7/RX/DT ⁽²⁾ 18I/OSTRC6 can also be the SPI Data Out (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the USA	RA4/T0CKI	6	I/O	ST	RA4 can also be the clock input to the Timer0 timer/counte Output is open drain type.
RB0/INT21I/OTTL/ST(4)grammed for internal weak pull-up on all inputs.RB122I/OTTLRB0 can also be the external interrupt pin.RB223I/OTTLRB0 can also be the external interrupt pin.RB324I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin.RB627I/OTTL/ST(5)Interrupt on change pin. Serial programming cloRB728I/OTTL/ST(5)Interrupt on change pin. Serial programming datRC0/T1OSO(1)/T1CKI11I/OSTRC0 can also be the Timer1 oscillator output(1) clock input.RC1/T1OSI(1)/CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator input(1) input/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the SPI Data In (SPI mode) or data I/O (12 cmode).RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or 	RA5/SS	7	I/O	TTL	RA5 can also be the slave select for the synchronous seria port.
RB0/INT21I/OTTL/ST ⁽⁴⁾ RB0 can also be the external interrupt pin.RB122I/OTTLRB223I/OTTLRB324I/OTTLRB425I/OTTLInterrupt on change pin.RB526I/OTTLRB627I/ORB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming cloRC0/T10S0 ⁽¹⁾ /T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator input ⁽²⁾ .RC3/SCK/SCL14I/OSTRC2 can also be the capture1 input/Com put/PWM1 output.RC5/SDO16I/ORC5/SDO16I/ORC6/TX/CK ⁽²⁾ 17INOSTRC5 can also be the SPI Data In (SPI mode).RC6/TX/CK ⁽²⁾ 18I/OSTRC5 can also be the USART Asynchronous Ta Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .VSS8,19P—Ground reference for logic and I/O pins.					PORTB is a bi-directional I/O port. PORTB can be software pro-
RB122I/OTTLRB223I/OTTLRB324I/OTTLRB425I/OTTLInterrupt on change pin.RB526I/OTTLRB627I/OTTL/ST ⁽⁵⁾ RB728I/OTTL/ST ⁽⁵⁾ RC0/T10S0 ⁽¹⁾ /T1CKI11I/OSTRC1/T10S1 ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC2/CCP113I/OSTRC3/SCK/SCL14I/OSTRC4/SDI/SDA15I/OSTRC5/SDO16I/OSTRC6/TX/CK ⁽²⁾ 17I/OSTRC6/TX/CK ⁽²⁾ 18I/OSTRC7/RX/DT ⁽²⁾ 18I/OSTRC7/RX/DT ⁽²⁾ 18I/OSTRC7/RX/DT ⁽²⁾ 18I/OSTRC7/RX/DT ⁽²⁾ 18I/OSTRC7can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .RC38,19P—Ground reference for logic and I/O pins.	BB0/INT	21	1/0	TTI /ST(4)	· · · ·
RB223I/OTTLRB324I/OTTLRB425I/OTTLInterrupt on change pin.RB526I/OTTLRB627I/OTTL/ST ⁽⁵⁾ RB728I/OTTL/ST ⁽⁵⁾ RC0/T1OSO ⁽¹⁾ /T1CKI11I/ORC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/ORC2/CCP113I/ORC3/SCK/SCL14I/ORC4/SDI/SDA15I/ORC5/SDO16I/ORC5/SDO16I/ORC6/TX/CK ⁽²⁾ 17INI/OSTRC6 can also be the SPI Data Out (SPI mode).RC5/SDO16I/ORC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ 18INOSTRC7/RX/DT ⁽²⁾ RC58,19P—Ground reference for logic and I/O pins.					
RB324I/OTTLRB425I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin.RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming cloRB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator input ⁽¹⁾ input/Compare2 output/PWM2 output ⁽²⁾ .RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode).RC6/TX/CK ⁽²⁾ 17I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous Tr Synchronous Data ⁽²⁾ .					
RB425I/OTTLInterrupt on change pin.RB526I/OTTLInterrupt on change pin.RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin.RB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTPORTC is a bi-directional I/O port.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator output ⁽²⁾ .RC2/CCP113I/OSTRC2 can also be the Capture1 input/Compare2 output/PWM2 output ⁽²⁾ .RC3/SCK/SCL14I/OSTRC3 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode).RC6/TX/CK ⁽²⁾ 17I/OSTRC6 can also be the USART Asynchronous To Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous For Synchronous Data ⁽²⁾ .		-			
RB526I/OTTLInterrupt on change pin.RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin.RB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin.RC0/T10S0 ⁽¹⁾ /T1CKI11I/OSTPORTC is a bi-directional I/O port.RC0/T10S0 ⁽¹⁾ /T1CKI11I/OSTRC0 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC1/T10SI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator input ⁽¹⁾ input/Compare2 output/PWM2 output ⁽²⁾ .RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC5 can also be the SPI Data Out (SPI mode).RC6/TX/CK ⁽²⁾ 17I/OSTRC6 can also be the USART Asynchronous T Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .					latere et en aleman ain
RB627I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming cloRB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTPORTC is a bi-directional I/O port.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I²C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I²C mode).RC5/SDO16I/OSTRC5 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .Vss8,19P—Ground reference for logic and I/O pins.		-			
RB728I/OTTL/ST ⁽⁵⁾ Interrupt on change pin. Serial programming datRC0/T1OSO ⁽¹⁾ /T1CKI11I/OSTPORTC is a bi-directional I/O port.RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾ 12I/OSTRC1 can also be the Timer1 oscillator output ⁽¹⁾ clock input.RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the SPI bata In (SPI mode).RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode).RC5/SDO16I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .VSS8,19P—Ground reference for logic and I/O pins.					
RC0/T1OSO(1)/T1CKI11I/OSTPORTC is a bi-directional I/O port.RC0/T1OSO(1)/T1CKI11I/OSTRC0 can also be the Timer1 oscillator output(1) clock input.RC1/T1OSI(1)/CCP2(2)12I/OSTRC1 can also be the Timer1 oscillator input(1) input/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I2C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).RC5/SDO16I/OSTRC6 can also be the SPI Data Out (SPI mode).RC6/TX/CK(2)17I/OSTRC6 can also be the USART Asynchronous TI Synchronous Clock(2).RC7/RX/DT(2)18I/OSTRC7 can also be the USART Asynchronous TI Synchronous Data(2).Vss8,19P—Ground reference for logic and I/O pins.					
RC0/T1OSO(1)/T1CKI11I/OSTRC0 can also be the Timer1 oscillator output clock input.RC1/T1OSI(1)/CCP2(2)12I/OSTRC1 can also be the Timer1 oscillator input(1) input/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I2C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).RC5/SDO16I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Clock(2).RC7/RX/DT(2)18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data(2).VSS8,19P—Ground reference for logic and I/O pins.	RB7	28	I/O	TTL/ST(3)	
RC1/T1OSI(1)/CCP2(2)12I/OSTclock input.RC1/T1OSI(1)/CCP2(2)12I/OSTRC1 can also be the Timer1 oscillator input(1) input/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the Capture1 input/Com put/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I2C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).RC5/SDO16I/OSTRC5 can also be the SPI Data Out (SPI mode).RC6/TX/CK(2)17I/OSTRC6 can also be the USART Asynchronous Tr Synchronous Clock(2).RC7/RX/DT(2)18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data(2).Vss8,19P—Ground reference for logic and I/O pins.					•
Individualinput/Compare2 output/PWM2 output(2).RC2/CCP113I/OSTRC2 can also be the Capture1 input/Comput/PWM1 output.RC3/SCK/SCL14I/OSTRC3 can also be the synchronous serial clock for both SPI and I ² C modes.RC4/SDI/SDA15I/OSTRC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).RC5/SDO16I/OSTRC5 can also be the SPI Data Out (SPI mode).RC6/TX/CK ⁽²⁾ 17I/OSTRC5 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ .RC7/RX/DT ⁽²⁾ 18I/OSTRC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ .Vss8,19P—Ground reference for logic and I/O pins.	RC0/T1OSO ⁽¹⁾ /T1CKI	11	I/O	ST	clock input.
RC3/SCK/SCL 14 I/O ST Put/PWM1 output. RC4/SDI/SDA 15 I/O ST RC3 can also be the synchronous serial clock for both SPI and I ² C modes. RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). RC5/SDO 16 I/O ST RC5 can also be the SPI Data Out (SPI mode). RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous To Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous For Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	12	I/O	ST	RC1 can also be the Timer1 oscillator input ⁽¹⁾ or Capture input/Compare2 output/PWM2 output ⁽²⁾ .
RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). RC5/SDO 16 I/O ST RC5 can also be the SPI Data Out (SPI mode). RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous The Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous Festive Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	RC2/CCP1	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 out put/PWM1 output.
RC4/SDI/SDA 15 I/O ST RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode). RC5/SDO 16 I/O ST RC5 can also be the SPI Data Out (SPI mode). RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous The Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous Ferror Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	RC3/SCK/SCL	14	I/O	ST	RC3 can also be the synchronous serial clock input/output
RC5/SDO 16 I/O ST RC5 can also be the SPI Data Out (SPI mode). RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous To Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous For Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	RC4/SDI/SDA	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or
RC6/TX/CK ⁽²⁾ 17 I/O ST RC6 can also be the USART Asynchronous Tr Synchronous Clock ⁽²⁾ . RC7/RX/DT ⁽²⁾ 18 I/O ST RC7 can also be the USART Asynchronous Tr Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.	BC5/SDO	16	1/0	ST	
RC7/RX/DT ⁽²⁾ 18 I/O ST Synchronous Clock ⁽²⁾ . RC7 can also be the USART Asynchronous F Synchronous Data ⁽²⁾ . Vss 8,19 P — Ground reference for logic and I/O pins.		-			
Vss 8,19 P — Ground reference for logic and I/O pins.					Synchronous Clock ⁽²⁾ .
				ST	Synchronous Data ⁽²⁾ .
		,		_	° 1
VDD 20 P — Positive supply for logic and I/O pins. Legend: I = input O = output I/O = input/output P = power		20	Р		

TABLE 3-2: PIC16C62/62A/R62/63/R63/66 PINOUT DESCRIPTION

Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C62.

2: The USART and CCP2 are not available on the PIC16C62/62A/R62.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: This buffer is a Schmitt Trigger input when configured as the external interrupt.

5: This buffer is a Schmitt Trigger input when used in serial programming mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾		
Bank 0											·		
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physica	register)	0000 0000	0000 0000		
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu		
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000		
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu		
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu		
05h	PORTA	-	_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu		
06h	PORTB	PORTB Dat	TB Data Latch when written: PORTB pins when read xxxx										
07h	PORTC	PORTC Da	ta Latch whe	xxxx xxxx	uuuu uuuu								
08h	PORTD	PORTD Dat	ta Latch whe		xxxx xxxx	uuuu uuuu							
09h	PORTE		—	_	_	—	RE2	RE1	RE0	xxx	uuu		
0Ah ^(1,2)	PCLATH		_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000		
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u		
0Ch	PIR1	PSPIF	(6)	_	1	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000		
0Dh	_	Unimpleme	nted							—	_		
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu		
0Fh	TMR1H	Holding reg	ister for the M	/lost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu		
10h	T1CON	-	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu		
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000		
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000		
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu		
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000		
15h	CCPR1L	Capture/Compare/PWM1 (LSB)								xxxx xxxx	uuuu uuuu		
16h	CCPR1H	Capture/Compare/PWM1 (MSB)									uuuu uuuu		
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000		
18h-1Fh	—	Unimpleme	nted							_			

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect dat	a memory ac	Idress pointe	ər					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PO	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Da	ta Latch whe	n written: PO	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h ⁽⁵⁾	PORTE	—	—	—	—	—	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	—	—		0 0000	0 0000					
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 0000
0Ch	PIR1	PSPIF ⁽⁶⁾	(4)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—			—	—	—	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the I	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Por	t Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Data F		0000 0000	0000 0000					
1Ah	RCREG	USART Re	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM		xxxx xxxx	uuuu uuuu					
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	-	Unimpleme	nted							—	—

TABLE 4-6: SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: PIE1<6> and PIR1<6> are reserved on the PIC16C66/67, always maintain these bits clear.

5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.

6: PSPIF (PIR1<7>) and PSPIE (PIE1<7>) are reserved on the PIC16C66, maintain these bits clear.

4.2.2.3 INTCON REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-11: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh 18Bh)

R/W-0 GIE	R/W-0 PEIE	R/W-0 T0IE	R/W-0 INTE	R/W-0 RBIE	R/W-0 T0IF	R/W-0 INTF	R/W-x RBIF	R = Readable bit						
bit7	1 212	TOLE	INTE	TIDIL	1011		bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset x = unknown						
bit 7:	GIE: ⁽¹⁾ Glo 1 = Enable 0 = Disable	s all un-ma	sked interri											
bit 6:	PEIE: ⁽²⁾ Pe 1 = Enable 0 = Disable	s all un-ma	sked peripl	neral interru	ipts									
bit 5:		s the TMR	Interrupt E 0 overflow ii 0 overflow i	nterrupt										
bit 4:	1 = Enable	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt												
bit 3:		s the RB p	e Interrupt ort change ort change	interrupt										
bit 2:	TOIF: TMR 1 = TMR0 0 = TMR0	register ove	erflowed (m	ust be cleai	red in softwa	re)								
bit 1:		30/INT exte	rnal interru	pt occurred	(must be cle ccur	ared in soft	ware)							
bit 0:	 0 = The RB0/INT external interrupt did not occur RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt) 0 = None of the RB7:RB4 pins have changed state 													
	be re-enab description	led by the 1	RETFIE ins	truction in t	he user's Inte	errupt Servi		red, the GIE bit may unintentionally Refer to Section 13.5 for a detailed						
	The PEIE I	bit (bit6) is			PIC16C61, r									
globa		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to						

8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and generate an interrupt on overflow which will wake the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair, TMR1L and TMR1H (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters (45 - 47).

8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

;	All Int	errupts	are	disabled
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
	MOVF	TMR1H,	W	;Read high byte
	SUBWF	TMPH,	W	;Sub 1st read
				;with 2nd read
	BTFSC	STATUS	, Z	;is result = 0
	GOTO	CONTINU	JE	;Good 16-bit read
;	TMR1L mag	y have r	olle	d over between the read
;	of the h	igh and	low	bytes. Reading the high
;	and low	bytes no	w w	ill read a good value.
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
;	Re-enal	ole Inte	rrup	ot (if required)
C	ONTINUE			;Continue with
	:			;your code

8.4 <u>Timer1 Oscillator</u>

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

A crystal oscillator circuit is built in-between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must allow a software time delay to ensure proper oscillator start-up.

TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

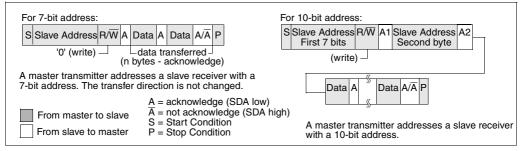
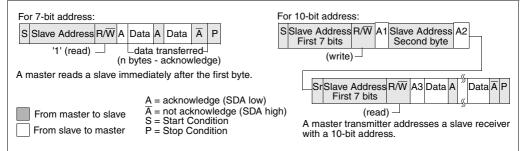

Osc Type	Freq	C1	C2								
LP	32 kHz	33 pF	33 pF								
	100 kHz	15 pF	15 pF								
	200 kHz	15 pF	15 pF								
These values are for design guidance only.											
Crystals Tested:											
32.768 kHz Epson C-001R32.768K-A ± 20 P											
100 kHz	Epson C-2 1	00.00 KC-P	\pm 20 PPM								
200 kHz	STD XTL 20	0.000 kHz	\pm 20 PPM								
 200 kHz STD XTL 200.000 kHz ± 20 PPM Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 											

Figure 11-19 and Figure 11-20 show Master-transmitter and Master-receiver data transfer sequences.


When a master does not wish to relinquish the bus (by generating a STOP condition), a repeated START condition (Sr) must be generated. This condition is identical to the start condition (SDA goes high-to-low while

SCL is high), but occurs after a data transfer acknowledge pulse (not the bus-free state). This allows a master to send "commands" to the slave and then receive the requested information or to address a different slave device. This sequence is shown in Figure 11-21.

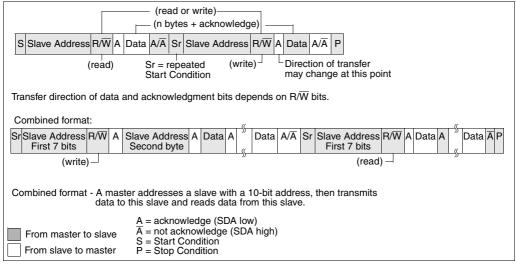

FIGURE 11-19: MASTER-TRANSMITTER SEQUENCE

FIGURE 11-20: MASTER-RECEIVER SEQUENCE

FIGURE 11-21: COMBINED FORMAT

12.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous Mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) bit or enable bit CREN (RCSTA<4>). Data is sampled on the DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until bit CREN is cleared. If both the bits are set then bit CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register, i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit, OERR (RCSTA<1>) is set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun error bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value. Therefore it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old RX9D bit information.

Steps to follow when setting up Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{RCIE}}$.
- 5. If 9-bit reception is desired, then set bit RX9.
- If a single reception is required, set enable bit SREN. For continuous reception set enable bit CREN.
- 7. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000		
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x		
1Ah	RCREG	USART Re	eceive Re	egister						0000 0000	0000 0000		
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000		
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010		
99h	SPBRG	Baud Rate	Generat	or Regis		0000 0000	0000 0000						

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

13.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

Applicable Devices 61|62|62A|R62|63|R63|64|64A|R64|65|65A|R65|66|67

13.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the \overline{MCLR}/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

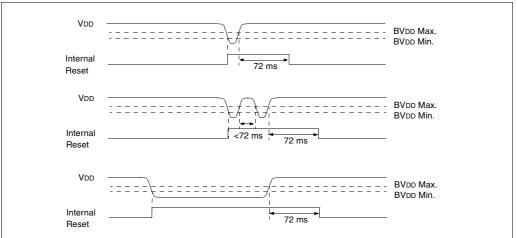
13.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

13.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures the crystal oscillator or resonator has started and stabilized.


The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

13.4.4 BROWN-OUT RESET (BOR)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (parameter D005 in Electrical Specification section) for greater than parameter #34 (see Electrical Specification section), the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #34. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 13-10 shows typical brown-out situations.

FIGURE 13-10: BROWN-OUT SITUATIONS

13.8 Power-down Mode (SLEEP)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, status bit \overline{PD} (STATUS<3>) is cleared, status bit \overline{TO} (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, and disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC).

13.8.1 WAKE-UP FROM SLEEP

The device can wake from SLEEP through one of the following events:

- 1. External reset input on MCLR/VPP pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or some peripheral interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/I²C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. USART TX or RX (synchronous slave mode).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the subset of the new provide the instruction after the subset (on address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

13.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

FIGURE 13-22: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Q1 Q2 Q3 Q4 Q1 Q2 Q3	Q4 Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
0SC1/_/_/_/_/_/_/_/					
CLKOUT(4)	Tost(2)		·/	\/	\/
INT pin			1 I		
INTF flag (INTCON<1>)	\		Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	Processor in SLEEP				
INSTRUCTION FLOW					
PC X PC X PC+1	χ PC+2	PC+2	X PC + 2	X 0004h	X 0005h
Instruction Inst(PC) = SLEEP Inst(PC + 1)		Inst(PC + 2)	1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP oscillator mode assume	ed.				

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine.

If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

13.9 Program Verification/Code Protection

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

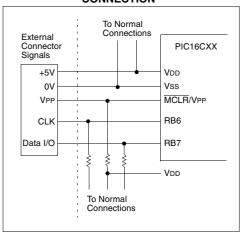
13.10 ID Locations

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

13.11 In-Circuit Serial Programming


Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The PIC16CXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. The device is placed into a program/verify mode by holding pins RB6 and RB7 low while raising the $\overline{\text{MCLR}}$ (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After reset, to place the device in program/verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14-bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature #DS30228).

FIGURE 13-23: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.1 DC Characteristics: PIC16C61-04 (Commercial, Industrial, Extended) PIC16C61-20 (Commercial, Industrial, Extended)

		Standard Operating Conditions (unless otherwise stated)								
	ACTERISTICS	Operatir	ng temp	erature	e -40)°C ≤	\leq TA \leq +125°C for extended,			
DC CHAR	ACTERISTICS						\leq TA \leq +85°C for industrial and			
		$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial								
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001	Supply Voltage	Vdd	4.0	-	6.0	V	XT, RC and LP osc configuration			
D001A			4.5	-	5.5	V	HS osc configuration			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V				
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2)	IDD	-	1.8	3.3	mA	Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V			
D020	Power-down Current	IPD	-	7	28	μA	VDD = 4.0V, WDT enabled, -40°C to +85°C			
D021	(Note 3)		-	1.0	14	μA	VDD = 4.0V, WDT disabled, -0°C to +70°C			
D021A			-	1.0	16	μA	VDD = 4.0V, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021B			-	1.0	20	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$			

These parameters are characterized but not tested.

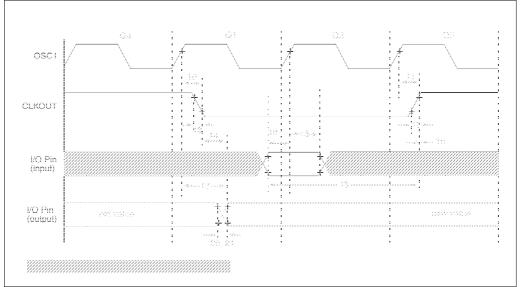
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,


MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 15-3: CLKOUT AND I/O TIMING

CLKOUT AND I/O TIMING REQUIREMENTS TABLE 15-3:

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		—	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out va	ılid	_	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKC)UT ↑	0.25Tcy + 25	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOU	т↑	0	_	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Por	t out valid	—	_	80 - 100	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Por (I/O in hold time)	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)			_	ns	
19*	TioV2osH	Port input valid to OSC1 ² time)	(I/O in setup	TBD	_	_	ns	
20*	TioR	Port output rise time	PIC16 C 61	_	10	25	ns	
			PIC16LC61	—	_	60	ns	
21*	TioF	Port output fall time	PIC16 C 61	_	10	25	ns	
		PIC16LC		_	_	60	ns	
22††*	Tinp	RB0/INT pin high or low	time	20	—	—	ns	
23††*	Trbp	RB7:RB4 change int high	n or low time	20	_	_	ns	

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

These parameters are asynchronous events not related to any internal clock edges. ††

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

17.3

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

DC Characteristics: PIC16C62/64-04 (Commercial, Industrial) PIC16C62/64-10 (Commercial, Industrial) PIC16C62/64-20 (Commercial, Industrial) PIC16LC62/64-04 (Commercial, Industrial)

DC CHA	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions			
	Input Low Voltage									
	I/O ports	VIL								
D030	with TTL buffer		Vss	-	0.15VDD	V	For entire VDD range			
D030A			Vss	-	0.8V	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V				
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	V				
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1			
	Input High Voltage									
	I/O ports	Vін								
D040	with TTL buffer		2.0	-	VDD	V	$4.5V \le VDD \le 5.5V$			
D040A			0.25VDD + 0.8V	-	Vdd	V	For entire VDD range			
D041	with Schmitt Trigger buffer		0.8Vdd	-	Vdd		For entire VDD range			
D042	MCLR		0.8VDD	-	Vdd	V				
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1			
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V				
D070	PORTB weak pull-up current	IPURB	50	200	400	μΑ	VDD = 5V, VPIN = VSS			
	Input Leakage Current (Notes 2, 3)									
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance			
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$			
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration			
	Output Low Voltage									
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C			
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C			
	Output High Voltage									
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C			
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C			
D150*	Open-Drain High Voltage	VOD	-	-	14	V	RA4 pin			

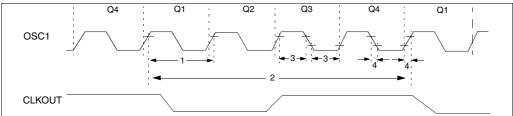
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.5 <u>Timing Diagrams and Specifications</u>

FIGURE 18-2: EXTERNAL CLOCK TIMING

TABLE 18-2: EXTERNAL CLOCK TIMING REQUIREMENTS

arameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency					
		(Note 1)	DC	_	4	MHz	XT and RC osc mode
			DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	-	—	ns	XT and RC osc mode
		(Note 1)	250	_	—	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	_	250	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	-	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

20.2 DC Characteristics: PIC16LC63/65A-04 (Commercial, Industrial)

DC CHA		Standaı Operatir				°C ≤	nless otherwise stated) TA \leq +85°C for industrial and TA \leq +70°C for commercial		
Param No.			Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	BVDD	3.7	4.0	4.3	٧	BODEN configuration bit is enabled		
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V		
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3, 5)		-	0.9	5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.9	5	μ A	VDD = 3.0V, WDT disabled, -40°C to +85°C		
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

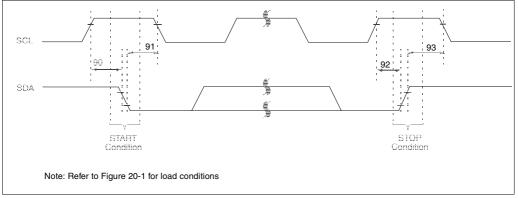
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

- $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

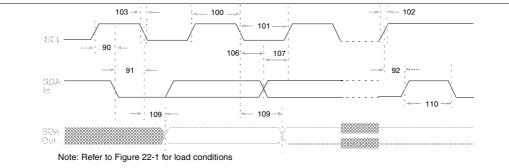

Param No.	Sym	Characteristic			Min	Тур†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
		v		With Prescaler	10	-	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	_	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	-	—	ns	
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	-	_	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	-	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	-	ns	
			Asynchronous	PIC16 C 6X	30	—	—	ns	
				PIC16 LC 6X	50	-	_	ns	
46*	Tt1L	S P 2	Synchronous, Prescaler = 1		0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	-	ns	
			Asynchronous	PIC16 C 6X	30	—	—	ns	
				PIC16 LC 6X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	_	ns	N = prescale value (1, 2, 4, 8)
				PIC16 LC 6X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16 C 6X	60	—	—	ns	
				PIC16 LC 6X	100	-	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	-	200	kHz	
48	TCKEZtmr1	Delay from external	clock edge to tir	ner increment	2Tosc	—	7Tosc	_	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-10: I²C BUS START/STOP BITS TIMING


TABLE 20-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	—	110	condition
91*	THD:STA	START condition	100 kHz mode	4000	_	_	ns	After this period the first clock
		Hold time	400 kHz mode	600	—	—	115	pulse is generated
92*	TSU:STO	STOP condition	100 kHz mode	4700	—	—	ns	
		Setup time	400 kHz mode	600	—	—	113	
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	ns	
		Hold time	400 kHz mode	600	—	—	115	

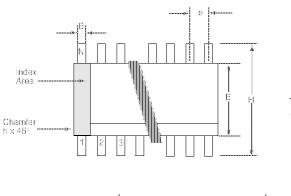
These parameters are characterized but not tested.

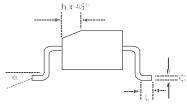
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

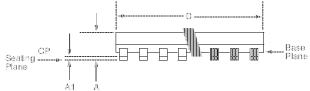
FIGURE 22-14: I²C BUS DATA TIMING

TABLE 22-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	4.0	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	_
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	_	ns	_
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	_	μS	
		time	400 kHz mode	0.6	—	μs	
109*	TAA	Output valid from	100 kHz mode	-	3500	ns	Note 1
		clock	400 kHz mode	-	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	-	μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	


These parameters are characterized but not tested.


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.


2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

24.4 18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Package Group: Plastic SOIC (SO)											
		Millimeters		Inches								
Symbol	Min	Max	Notes	Min	Max	Notes						
α	0°	8°		0°	8°							
А	2.362	2.642		0.093	0.104							
A1	0.101	0.300		0.004	0.012							
В	0.355	0.483		0.014	0.019							
С	0.241	0.318		0.009	0.013							
D	11.353	11.735		0.447	0.462							
E	7.416	7.595		0.292	0.299							
е	1.270	1.270	Reference	0.050	0.050	Reference						
Н	10.007	10.643		0.394	0.419							
h	0.381	0.762		0.015	0.030							
L	0.406	1.143		0.016	0.045							
N	18	18		18	18							
CP	_	0.102		-	0.004							