

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c65a-04i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

-

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	register)	0000 0000	0000 0000					
01h	TMR0	Timer0 mod	lule's registe		xxxx xxxx	uuuu uuuu					
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect dat	a memory ac	Idress pointe	ər					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PO	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Da	ta Latch whe	n written: PO	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h ⁽⁵⁾	PORTE	—	—	—	—	—	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	—	— — Write Buffer for the upper 5 bits of the Program Counter								
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 0000
0Ch	PIR1	PSPIF ⁽⁶⁾	(4)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—			—	—	—	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the I	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Por	t Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Data F	legister						0000 0000	0000 0000
1Ah	RCREG	USART Re	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	-	Unimpleme	nted							—	—

TABLE 4-6: SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

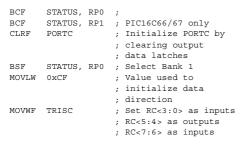
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: PIE1<6> and PIR1<6> are reserved on the PIC16C66/67, always maintain these bits clear.

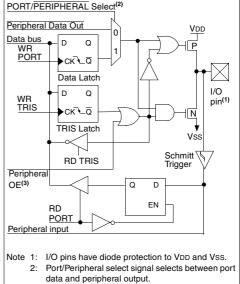
5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.

6: PSPIF (PIR1<7>) and PSPIE (PIE1<7>) are reserved on the PIC16C66, maintain these bits clear.

5.3 PORTC and TRISC Register


Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


PORTC is an 8-bit wide bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 5-3: INITIALIZING PORTC

FIGURE 5-6: PORTC BLOCK DIAGRAM

3: Peripheral OE (output enable) is only activated if peripheral select is active.

TABLE 5-5: PORTC FUNCTIONS FOR PIC16C62/64

Name	Bit#	Buffer Type	Function
RC0/T1OSI/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator input or Timer1 clock input
RC1/T1OSO	bit1	ST	Input/output port pin or Timer1 oscillator output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

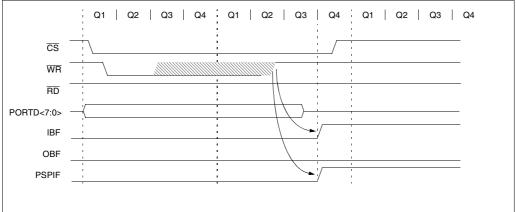
Legend: ST = Schmitt Trigger input

TABLE 5-6: PORTC FUNCTIONS FOR PIC16C62A/R62/64A/R64

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input
RC2/CCP1	bit2	ST	Input/output port pin or Capture input/Compare output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I ² C modes.
RC4/SDI/SDA	bit4		RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

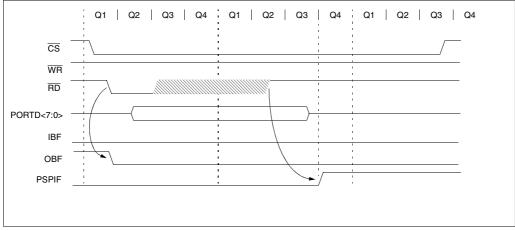
Legend: ST = Schmitt Trigger input

TABLE 5-7: PORTC FUNCTIONS FOR PIC16C63/R63/65/65A/R65/66/67


Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit, or USART Syn- chronous Clock
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive, or USART Syn- chronous Data

Legend: ST = Schmitt Trigger input

TABLE 5-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0							xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC Data Direction Register								1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

TABLE 5-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0		Value on: POR, BOR	Value on all other resets		
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	_			_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Directior	n Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	(1)	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TRM1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	(1)	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved, always maintain these bits clear.

2: These bits are implemented on the PIC16C65/65A/R65/67 only.

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

All PIC16C6X devices have three timer modules except for the PIC16C61, which has one timer module. Each module can generate an interrupt to indicate that an event has occurred (i.e., timer overflow). Each of these modules are detailed in the following sections. The timer modules are:

- Timer0 module (Section 7.0)
- Timer1 module (Section 8.0)
- Timer2 module (Section 9.0)

6.1 <u>Timer0 Overview</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. TMR0 can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u>

Ap	plicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

TImer1 also has a prescaler option which allows TMR1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. TMR1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit compare and must be synchronized to the device.

6.3 <u>Timer2 Overview</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer2 is an 8-bit timer with a programmable prescaler and a programmable postscaler, as well as an 8-bit Period Register (PR2). Timer2 can be used with the CCP module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16.

The postscaler allows TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 <u>CCP Overview</u>

e Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The CCP module(s) can operate in one of three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs, an interrupt can be generated and the output pin CCPx can be forced to a given state (High or Low) and Timer1 can be reset. This depends on control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.

11.2 <u>SPI Mode for PIC16C62/62A/R62/63/</u> R63/64/64A/R64/65/65A/R65

This section contains register definitions and operational characteristics of the SPI module for the PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16CR63, PIC16C64A, PIC16CR64, PIC16CR64, PIC16C65, PIC16C65A, PIC16CR65.

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

U-0	U-0	R-0	B-0	B-0	R-0	B-0	B-0				
_	_	D/A	P	S	R/W	UA	BF	R = Readable bit			
bit7			1			<u>I</u>	bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset			
bit 7-6:	Unimpl	emented	Read as	'0'							
bit 5:	1 = Indi	cates that	the last b	,) d or transmit d or transmit						
bit 4:	 P: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 0 = Stop bit was not detected last 										
bit 3:	 Start bit (I²C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET) 0 = Start bit was not detected last 										
bit 2:	This bit	holds the o the next ad	R/W bit i	ation (I ² C r nformation stop bit, or	following the	e last addre	ess match. T	his bit is valid from the address			
bit 1:	1 = Indi	cates that	the user	it I ² C mode needs to up to be upda	odate the add	dress in the	SSPADD re	egister			
bit 0:	BF: Buf	fer Full St	atus bit								
	1 = Rec		olete, SSF	es) PBUF is full SSPBUF is							
	1 = Trar		ogress, S	SPBUF is f PBUF is err							

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

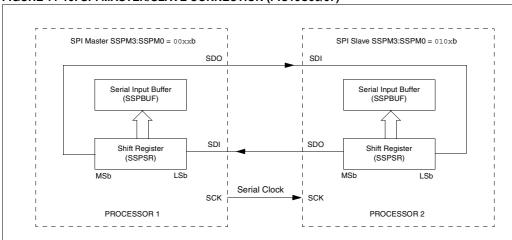
Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and \overline{SS} could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-10 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application firmware. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the firmware protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.


In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched the interrupt flag bit SSPIF (PIR1<3>) is set.

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-11, Figure 11-12, and Figure 11-13 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

FIGURE 11-10: SPI MASTER/SLAVE CONNECTION (PIC16C66/67)

Г

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

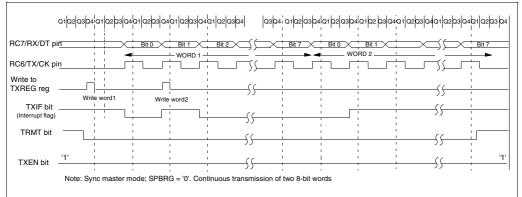
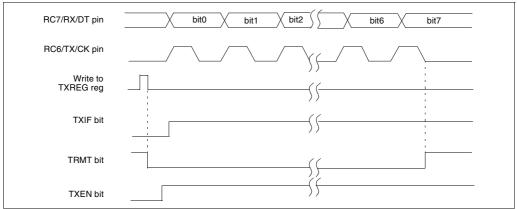

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	R	= Readable bit
bit7							bitO	W U - n x	 Writable bit Unimplemented bit, read as '0' Value at POR rese unknown
bit 7:	SPEN: Ser (Configures 1 = Serial p 0 = Serial p	s RC7/RX/l	DT and RC d	6/TX/CK	pins as seri	al port pins	s when bits	TRIS	C<7:6> are set)
bit 6:	RX9 : 9-bit I 1 = Selects 0 = Selects	9-bit rece	otion						
bit 5:	SREN: Sing	gle Receiv	e Enable bi	t					
	Asynchrone Don't care	ous mode							
	$\frac{Synchronof}{1 = Enables}$ $0 = Disables$ This bit is c	s single ree s single re	ceive ceive	is comple	ete.				
	Synchrono Unused in t		<u>slave</u>						
bit 4:	CREN: Cor	ntinuous R	eceive Ena	ble bit					
	$\frac{\text{Asynchrono}}{1 = \text{Enable}}$ $0 = \text{Disable}$	s continuo							
	$\frac{\text{Synchronor}}{1 = \text{Enables}}$ $0 = \text{Disables}$	s continuo		until enabl	le bit CREN	l is cleared	(CREN ov	erride	s SREN)
bit 3:	Unimplem	ented: Rea	ad as '0'						
bit 2:	FERR: Fran 1 = Framing 0 = No fran	g error (Ca		ed by rea	ding RCRE	G register	and receive	e next	valid byte)
bit 1:	OERR : Ove 1 = Overrun 0 = No ove	n error (Ca		d by clea	ring bit CRI	EN)			
bit 0:	RX9D : 9th								

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	x00- 0000
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat		0000 0000	0000 0000					

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

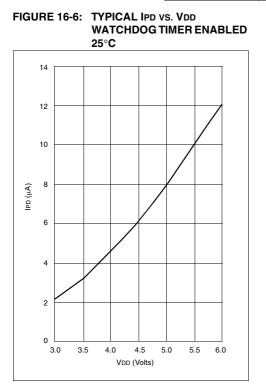
FIGURE 12-12: SYNCHRONOUS TRANSMISSION

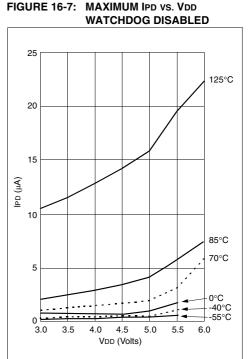
FIGURE 12-13: SYNCHRONOUS TRANSMISSION THROUGH TXEN

TABLE 14-2: PIC16CXX INSTRUCTION SET

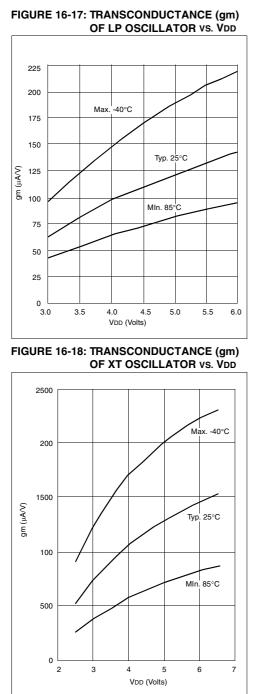
Mnemonic, Description Operands		Description	Cycles	14-Bit Opcode				Status	Notes	
			MSb			LSb	Affected			
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS								
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3	
LITERAL A	ND CO	NTROL OPERATIONS								
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk	c l		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	Return with literal in W 2 11 01xx		01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z		
		Exclusive OR literal with W								

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.


2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.


3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

SUBWF	Subtract	W from f				
Syntax:	[label]	SUBWF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$,				
Operation:	(f) - (W) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Encoding:	00	0010	dfff	ffff		
Description:	Subtract (2' ister from re stored in the result is sto	egister 'f'. l e W regist	f 'd' is 0 the er. If 'd' is 1	result is the		
Words:	1					
Cycles:	1					
Q Cycle Activity:	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process data	Write to destination		
Example 1:	SUBWF	REG1,1				
	Before Ins	truction				
	REG1	=	3			
	W C	=	2 ?			
	Z	=	?			
	After Instru	uction				
	REG1	=	1			
	W C	=	2 1; result is	nositive		
	z	=	0	poolavo		
Example 2:	Before Ins	truction				
	REG1	=	2			
	W C	=	2 ?			
	Z	=	?			
	After Instru	uction				
	REG1	=	0			
	W C	=	2 1; result is	7010		
	z	=	1	2010		
Example 3:	Before Ins	truction				
	REG1	=	1			
	W C	=	2 ?			
	z	=	?			
	After Instru	uction				
	REG1	=	0xFF			
	W C	=	2 0; result is	negative		
	z	=	0	guivo		


SWAPF	Swap Ni	bbles in	f				
Syntax:	[label]	SWAPF 1	,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	27					
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$						
Status Affected:	None						
Encoding:	0 0	1110	dfff	ffff			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write to destination			
Example	SWAPF	REG,	0				
	Before In	struction					
		REG1	= 0xA	45			
	After Inst	ruction					
		REG1 W	= 0xA = 0x5	.0			


TRIS	Load TRIS Register						
Syntax:	[label]	TRIS	f				
Operands:	$5 \leq f \leq 7$						
Operation:	$(W) \rightarrow TI$	RIS regis	ster f;				
Status Affected:	None						
Encoding:	00	0000	0110	Offf			
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.						
Words:	1						
Cycles:	1						
Example							
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.						
	<u>.</u>						

Data based on matrix samples. See first page of this section for details.

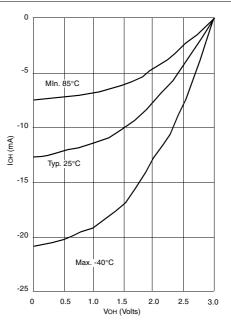
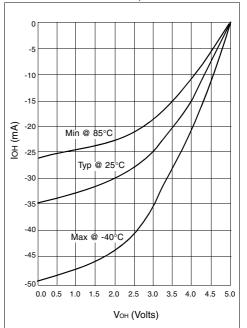



FIGURE 16-20: IOH VS. VOH, VDD = 5V

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

17.1 DC Characteristics: PIC16C62/64-04 (Commercial, Industrial) PIC16C62/64-10 (Commercial, Industrial) PIC16C62/64-20 (Commercial, Industrial)

DC CHAR		Standaı Operatir		•)°C ≤	unless otherwise stated) $\leq TA \leq +85^{\circ}C$ for industrial and $\leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5.0	mA	XT, RC, osc configuration FOSC = 4 MHz, VDD = 5.5V (Note 4)
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D020 D021 D021A	Power-down Current (Note 3, 5)	IPD	- - -	10.5 1.5 1.5	42 21 24	μΑ μΑ μΑ	$ \begin{array}{l} V{}_{DD}=4.0V, WDT \mbox{ enabled}, -40^{\circ}{C} \mbox{ to } +85^{\circ}{C} \\ V{}_{DD}=4.0V, WDT \mbox{ disabled}, -0^{\circ}{C} \mbox{ to } +70^{\circ}{C} \\ V{}_{DD}=4.0V, WDT \mbox{ disabled}, -40^{\circ}{C} \mbox{ to } +85^{\circ}{C} \end{array} $

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSs.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

PIC16C6X

19.3

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

DC Characteristics: PIC16C65-04 (Commercial, Industrial) PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial) PIC16LC65-04 (Commercial, Industrial)

			rd Operati ng tempera	•	-40°C	;` ≤ T,	ss otherwise stated) A ≤ +85°C for industrial and		
DC CHA	RACTERISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial Operating voltage VDD range as described in DC spec Section 19.1 at Section 19.2							
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions		
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range		
D030A			Vss	-	0.8V	V	$4.5V \leq V \text{DD} \leq 5.5V$		
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V			
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1		
	Input High Voltage								
	I/O ports	Vін		-					
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$		
D040A			0.25VDD+ 0.8V	-	VDD	V	For entire VDD range		
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd		For entire VDD range		
D042	MCLR		0.8VDD	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7 VDD	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	I PURB	50	250	400	μA	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \leq VPIN \leq VDD, Pin at hi-impedance$		
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq VPIN \leq VDD$		
D063	OSC1		-	-	±5	μA	$\label{eq:VSS} \begin{split} &Vss \leq V\text{PIN} \leq V\text{DD}, \ &XT, \ &HS, \ and \\ &LP \ osc \ configuration \end{split}$		
1	Output Low Voltage		1						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С		
D150*	Open-Drain High Voltage	VOD	-	-	14	V	RA4 pin		

These parameters are characterized but not tested.

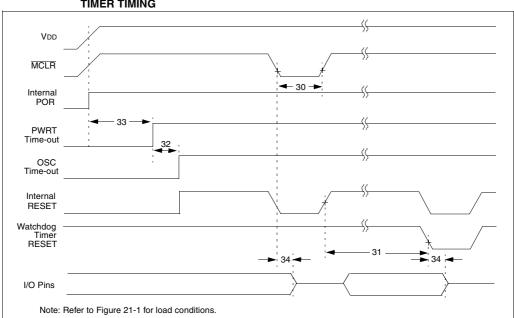
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

21.1 DC Characteristics: PIC16CR63/R65-04 (Commercial, Industrial) PIC16CR63/R65-10 (Commercial, Industrial) PIC16CR63/R65-20 (Commercial, Industrial)


DC CH		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001 D001A	Supply Voltage	Vdd	4.0 4.5		5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details	
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled	
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA~	XT, RC, osc config Fosc = 4 MHz, VDD = 5:5V (Note 4)	
D013			-	10	20	mA	HS osc config Fosc = 20 MHz, VDD = 5.5V	
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V	
D020 D021 D021A	Power-down Current (Note 3, 5)		-	10.5 1.5 1.5	42 16 19	μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} V\text{DD} = 4.0\text{V}, \text{WDT enabled}, -40^{\circ}\text{C to} +85^{\circ}\text{C} \\ \text{VDD} = 4.0\text{V}, \text{WDT disabled}, -0^{\circ}\text{C to} +70^{\circ}\text{C} \\ \text{VDD} = 4.0\text{V}, \text{WDT disabled}, -40^{\circ}\text{C to} +85^{\circ}\text{C} \end{array}$	
D023*	Brown-out Reset Current (Note 6)		-	350	425	μA	BOR enabled, VDD = 5.0V	

These parameters are characterized but not tested.

† Data in "Typ" column is at 50, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

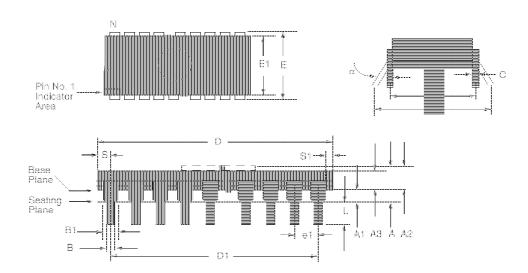
Note 1: This is the limit to which VoD can be lowered without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - $OSC1 \neq external Square wave, from rail to rail; all I/O pins tristated, pulled to VDD, MCLR \neq VDD; WDT enabled/disabled as specified.$
- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

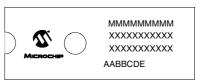
FIGURE 21-5: BROWN-OUT RESET TIMING

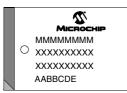
TABLE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	-	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	_	_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or WDT reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	V DD \leq BVDD (D005)

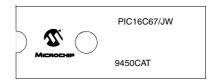
* These parameters are characterized but not tested.

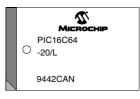
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


Package Group: Ceramic CERDIP Dual In-Line (CDP)								
		Millimeters		Inches				
Symbol	Min	Мах	Notes	Min	Мах	Notes		
α	0°	10°		0°	10°			
А	4.318	5.715		0.170	0.225			
A1	0.381	1.778		0.015	0.070			
A2	3.810	4.699		0.150	0.185			
A3	3.810	4.445		0.150	0.175			
В	0.355	0.585		0.014	0.023			
B1	1.270	1.651	Typical	0.050	0.065	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	51.435	52.705		2.025	2.075			
D1	48.260	48.260	Reference	1.900	1.900	Reference		
E	15.240	15.875		0.600	0.625			
E1	12.954	15.240		0.510	0.600			
e1	2.540	2.540	Reference	0.100	0.100	Reference		
eA	14.986	16.002	Typical	0.590	0.630	Typical		
eB	15.240	18.034		0.600	0.710			
L	3.175	3.810		0.125	0.150			
Ν	40	40		40	40			
S	1.016	2.286		0.040	0.090			
S1	0.381	1.778		0.015	0.070			

Package Marking Information (Cont'd)


44-Lead PLCC


44-Lead MQFP

Example

Example

Example

Legend:	MMM	Microchip part number information			
	XXX	Customer specific information*			
	AA	Year code (last 2 digits of calender year)			
	BB	Week code (week of January 1 is week '01')			
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.			
	D ₁	Mask revision number for microcontroller			
	E	Assembly code of the plant or country of origin in which part was assembled.			
Note:	line, it will b	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.			

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.