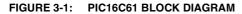
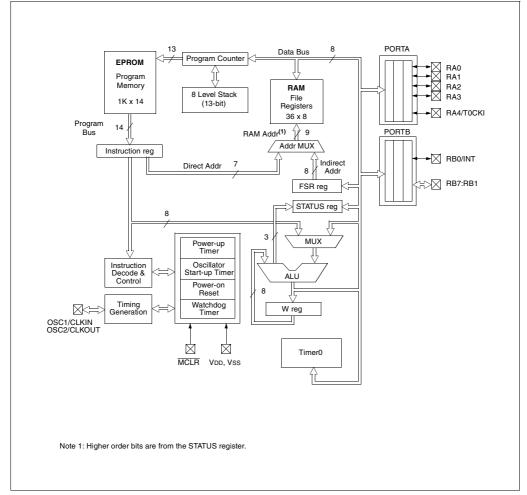


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c66-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.1 STATUS REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The STATUS register, shown in Figure 4-9, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

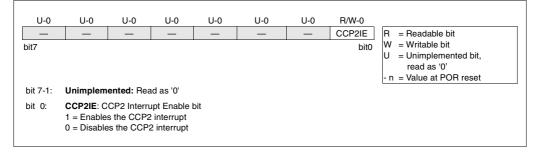
The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit			
bit7							bit0	W = Writable bit - n = Value at POR reset x = unknown			
bit 7:	IRP: Regls 1 = Bank 2 0 = Bank 0	, 3 (100h - 1	1FFh)	ed for indire	ect addressir	ng)					
bit 6-5:	 RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes. 										
bit 4:	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred										
bit 3:	PD : Power- 1 = After po 0 = By exec	ower-up or			tion						
bit 2:	Z : Zero bit 1 = The res $0 = The res$			0 1	tion is zero tion is not ze	ero					
bit 1:	DC: Digit carry/borrow bit (for ADDUW, ADDLW, SUBLW, and SUBWF instructions) (For borrow the polarity is reversed). 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result										
bit 0:	1 = A carry 0 = No carr Note: a sub	-out from th y-out from otraction is o	the most sig the most si executed by	nificant bit of gnificant bit of gnifica	of the result of t of the result tof the result two's comp	occurred t lement of th	ne second op	orrow the polarity is reversed). perand. ow order bit of the source register.			


FIGURE 4-9: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

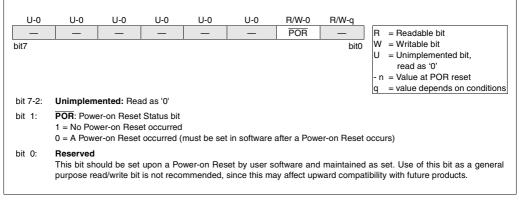
4.2.2.6 PIE2 REGISTER

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

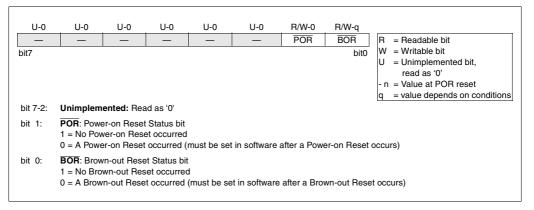
This register contains the CCP2 interrupt enable bit.

FIGURE 4-20: PIE2 REGISTER (ADDRESS 8Dh)

4.2.2.8 PCON REGISTER


Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


The Power Control register (PCON) contains a flag bit to allow differentiation between a Power-on Reset to an external MCLR reset or WDT reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Poweron Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-22: PCON REGISTER FOR PIC16C62/64/65 (ADDRESS 8Eh)

FIGURE 4-23: PCON REGISTER FOR PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67 (ADDRESS 8Eh)

10.0 CAPTURE/COMPARE/PWM (CCP) MODULE(s)

Applicable Devices

61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	CCP1
61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM master/slave duty cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP modules(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the *Embedded Control Handbook*, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION

Desired PWM frequency is 78.125 kHz, Fosc = 20 MHz TMR2 prescale = 1

 $1/78.125 \text{ kHz} = [(PR2) + 1] \cdot 4 \cdot 1/20 \text{ MHz} \cdot 1$ $12.8 \ \mu s = [(PR2) + 1] \cdot 4 \cdot 50 \text{ ns} \cdot 1$ PR2 = 63

Find the maximum resolution of the duty cycle that can be used with a 78.125 kHz frequency and 20 MHz oscillator:

1/78.125 kHz	= $2^{\text{PWM RESOLUTION}} \cdot 1/20 \text{ MHz} \cdot 1$
12.8 µs	= $2^{\text{PWM RESOLUTION}} \bullet 50 \text{ ns} \bullet 1$
256	$= 2^{\text{PWM RESOLUTION}}$
log(256)	= (PWM Resolution) • $log(2)$
8.0	= PWM Resolution

At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and a 20 MHz oscillator, i.e., $0 \leq$ CCPR1L:CCP1CON<5:4> \leq 255. Any value greater than 255 will result in a 100% duty cycle.

In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased.

Table 10-3 lists example PWM frequencies and resolutions for Fosc = 20 MHz. The TMR2 prescaler and PR2 values are also shown.

10.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz 4.88 kHz 19		19.53 kHz	19.53 kHz 78.12 kHz		208.3 kHz	
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1	
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17	
Maximum Resolution (bits)	10	10	10	8	7	5.5	

TABLE 10-4: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on:)R,)R	all o	e on other sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF			0000	
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh ⁽⁴⁾	PIR2	—	_	_	_	-	-	-	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh ⁽⁴⁾	PIE2	—	_	_	_		—		CCP2IE		0		0
87h	TRISC	PORTC D	ata Direc	ction registe	er					1111	1111	1111	1111
0Eh	TMR1L	Holding re	egister for	the Least	Significant	Byte of the	16-bit TMF	R1 registe	r	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	egister for	the Most S	Significant I	Byte of the [·]	16-bit TMF	1 register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00	0000	uu	uuuu
15h	CCPR1L	Capture/C	Compare/	PWM1 (LS	B)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/	PWM1 (MS	SB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh ⁽⁴⁾	CCPR2L	Capture/C	Capture/Compare/PWM2 (LSB)									uuuu	uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/C	Compare/	PWM2 (MS	SB)					xxxx	xxxx	uuuu	uuuu
1Dh ⁽⁴⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes.

Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

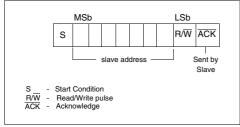
2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

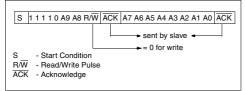
4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.

11.3 SPI Mode for PIC16C66/67

This section contains register definitions and operational characterisitics of the SPI module on the PIC16C66 and PIC16C67 only.

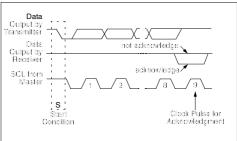

FIGURE 11-7: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)(PIC16C66/67)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE	D/A	Р	S	R/W	UA	BF	R = Readable bit			
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset			
bit 7:	<u>SPI Mas</u> 1 = Inpu 0 = Inpu <u>SPI Slav</u>	<u>ster Mod</u> it data sa it data sa ve Mode	ampled at e ampled at r	end of data niddle of da	output time ata output tir ed in slave m						
bit 6:	$\frac{CKP = 0}{1 = Data}$ $0 = Data$ $\frac{CKP = 1}{1 = Data}$	<u>)</u> a transm a transm <u>1</u> a transm	itted on ris itted on fal itted on fal	ct (Figure ⁻ ing edge of ling edge o ling edge o ing edge of	f SCK f SCK	e 11-12, an	d Figure 11-	13)			
bit 5:	 D/Ā: Data/Āddress bit (I²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 										
bit 4:	detected 1 = India	d last, SS cates tha	SPEN is cle	eared) t has been	cleared whe detected las			isabled, or when the Start bit is T)			
bit 3:	detected 1 = India	d last, SS cates tha	SPEN is cle	eared) t has been	cleared whe			lisabled, or when the Stop bit is			
bit 2:	This bit	holds th match to d	ne R/W bit				Iress match	. This bit is only valid from the			
bit 1:	1 = India	cates that	at the user	it I ² C mode needs to up I to be upda	pdate the ad	dress in the	e SSPADD r	egister			
bit 0:	BF: Buff	fer Full S	status bit								
	1 = Rec 0 = Rec	eive com eive not	complete,	es) PBUF is full SSPBUF is							
	1 = Tran	ismit in p		SPBUF is f PBUF is en							


11.4.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/W bit (Figure 11-15). The more complex is the 10-bit address with a R/W bit (Figure 11-16). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

FIGURE 11-15: 7-BIT ADDRESS FORMAT


FIGURE 11-16: I²C 10-BIT ADDRESS FORMAT

11.4.3 TRANSFER ACKNOWLEDGE

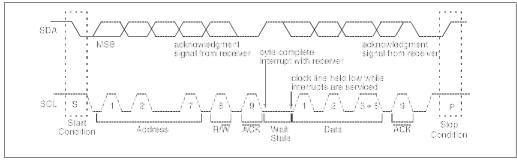

All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (\overline{ACK}) (Figure 11-17). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave SDA high so that the master can generate the STOP condition (Figure 11-14).

FIGURE 11-17: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

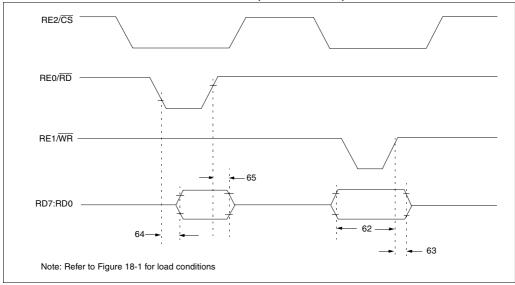

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-18. The slave will inherently stretch the clock, when it is a transmitter, but will not when it is a receiver. The slave will have to clear the SSPCON<4> bit to enable clock stretching when it is a receiver.

FIGURE 11-18: DATA TRANSFER WAIT STATE

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-8: PARALLEL SLAVE PORT TIMING (PIC16C64A/R64)

TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64A/R64)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (set	20	—	_	ns		
					_	-	ns	Extended Range Only
63*	TwrH2dtl	\overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data–in invalid (hold	PIC16 C 64A/R64	20	—	—	ns	
		time)	PIC16 LC 64A.R64	35	_	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		I	_	80	ns	
					_	90	ns	Extended Range Only
65*	TrdH2dtI	$\overline{\text{RD}}$ for $\overline{\text{CS}}$ to data-out invalid		10	_	30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.1 DC Characteristics: PIC16C65-04 (Commercial, Industrial) PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)											
DC CHA	ARACTERISTICS	Operating temperature -40° C \leq TA \leq +85°C for industrial and 0°C $<$ TA \leq +70°C for commercial										
			\leq TA \leq +70°C for commercial									
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions					
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	v v	XT, RC and LP osc configuration HS osc configuration					
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V						
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details					
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details					
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)					
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V					
D020 D021 D021A	Power-down Current (Note 3, 5)	IPD		10.5 1.5 1.5	800 800 800	μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD=4.0V, WDT \mbox{ enabled}, -40^\circ C \mbox{ to } +85^\circ C \\ VDD=4.0V, WDT \mbox{ disabled}, -0^\circ C \mbox{ to } +70^\circ C \\ VDD=4.0V, WDT \mbox{ disabled}, -40^\circ C \mbox{ to } +85^\circ C \end{array}$					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

19.3

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

DC Characteristics: PIC16C65-04 (Commercial, Industrial) PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial) PIC16LC65-04 (Commercial, Industrial)

			rd Operati ng tempera	•	-40°C	;` ≤ T,	ss otherwise stated) A ≤ +85°C for industrial and					
DC CHA	RACTERISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial Operating voltage VDD range as described in DC spec Section 19.1 and Section 19.2										
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions					
	Input Low Voltage											
	I/O ports	VIL										
D030	with TTL buffer		Vss	-	0.15Vdd	V	For entire VDD range					
D030A			Vss	-	0.8V	V	$4.5V \leq V \text{DD} \leq 5.5V$					
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V						
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1					
	Input High Voltage											
	I/O ports	Vін		-								
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$					
D040A			0.25VDD+ 0.8V	-	VDD	V	For entire VDD range					
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd		For entire VDD range					
D042	MCLR		0.8VDD	-	Vdd	V						
D042A	OSC1 (XT, HS and LP)		0.7 VDD	-	Vdd	V	Note1					
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V						
D070	PORTB weak pull-up current	I PURB	50	250	400	μA	VDD = 5V, VPIN = VSS					
	Input Leakage Current (Notes 2, 3)											
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance					
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$V_{SS} \leq V_{PIN} \leq V_{DD}$					
D063	OSC1		-	-	±5	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \ &X{\sf T}, \ &H{\sf S}, \ and \\ &L{\sf P} \ osc \ configuration \end{split}$					
1	Output Low Voltage		1									
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C					
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C					
	Output High Voltage											
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С					
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С					
D150*	Open-Drain High Voltage	VOD	-	-	14	V	RA4 pin					

These parameters are characterized but not tested.

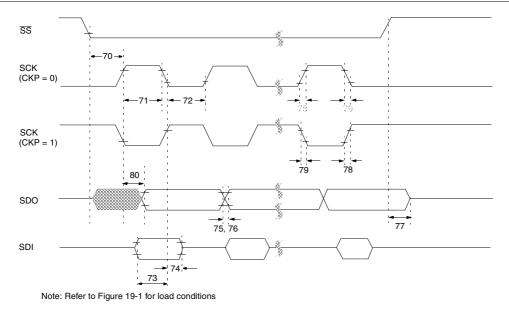
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

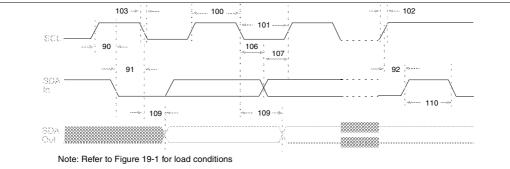
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


19.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S		;	3. Tcc:s	 (I²C specifications only)
2. TppS			4	4. Ts	(I ² C specifications only)
Т					
F	Frequency			т	Time
Lowercas	e letters (pp) and their me	anings:			
рр					
сс	CCP1			OSC	OSC1
ck	CLKOUT			rd	RD
CS	CS			rw	RD or WR
di	SDI			SC	SCK
do	SDO			SS	SS
dt	Data in			tO	TOCKI
io	I/O port			t1	T1CKI
mc	MCLR			wr	WR
Uppercas	e letters and their meanin	gs:			
S					
F	Fall			Р	Period
н	High			R	Rise
I	Invalid (Hi-impedance)			V	Valid
L	Low			Z	Hi-impedance
I ² C only					
AA	output access			High	High
BUF	Bus free			Low	Low
TCC:ST (l	² C specifications only)				
CC					
HD	Hold			SU	Setup
ST					
DAT	DATA input hold			STO	STOP condition
STA	START condition				
FIGURE 19	-1: LOAD CONDITIO	NS FOR DEV		IMING	SPECIFICATIONS
	Load conditio	<u>n 1</u>			Load condition 2
		Vdd/2			
		vuu/∠ ♀			
		J			
		\geq RL			Pin CL
		\geq			
		-• -			Vss
	Pin	CL			
			RL = 4	464Ω	
		Vss	CL = 5	50 pF	for all pins except OSC2/CLKOUT
				-	but including D and E outputs as ports
				15 pF	for OSC2 output

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


TABLE 19-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	—	ns	
75	TdoR	SDO data output rise time		10	25	ns	
76	TdoF	SDO data output fall time	-	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-10: I²C BUS DATA TIMING

TABLE 19-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Thigh	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Devce must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	— μs		Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90	TSU:STA	START condition setup time	100 kHz mode	4.7	—	μs	Only relevant for repeated
			400 kHz mode	0.6	—	μs	START condition
91	THD:STA		100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode		—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	

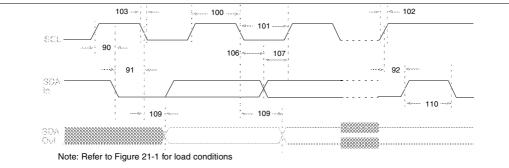
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I^2C -bus device can be used in a standard-mode (100 kHz) I^2C -bus system, but the requirement tsu;DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I^2C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS


Param No.	Sym	Characteristic			Min	Тур†	Мах	Units	Conditions	
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet	
		N N N N N N N N N N N N N N N N N N N		With Prescaler	10	-	—	ns	parameter 42	
41*	Tt0L			No Prescaler	0.5TCY + 20	—	_	ns	Must also meet	
				With Prescaler	10	—	—	ns	parameter 42	
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	-	—	ns		
				With Prescaler	Greater of: — 20 or <u>Tcy + 40</u> N		_	ns	N = prescale value (2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	-	_	ns	Must also meet	
			Synchronous,	PIC16 C 6X	15	-	—	ns	parameter 47	
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	-	ns		
			Asynchronous	PIC16 C 6X	30	—	—	ns		
				PIC16 LC 6X	50	-	_	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, F		0.5TCY + 20	—	—	ns	Must also meet	
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47	
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	-	ns		
			Asynchronous	PIC16 C 6X	30	—	—	ns		
				PIC16 LC 6X	50	—	—	ns		
47*	Tt1P	1P T1CKI input period	Synchronous	PIC16 C 6X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	_	ns	N = prescale value (1, 2, 4, 8)	
				PIC16 LC 6X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)	
			Asynchronous	PIC16 C 6X	60	-	—	ns		
				PIC16 LC 6X	100	-	—	ns		
	Ft1	Timer1 oscillator inp (oscillator enabled b	out frequency range by setting bit T1OSCEN)		DC	-	200	kHz		
48	TCKEZtmr1	Delay from external	clock edge to tir	ner increment	2Tosc	—	7Tosc	_		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-11: I²C BUS DATA TIMING

TABLE 21-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy			
102*	TR	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0		μs	After this period the first clock
		time	400 kHz mode	0.6		μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6		μs	
109*	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

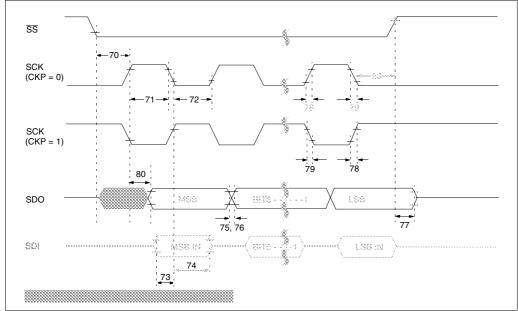
22.3 DC Characteristics: PIC16C66/67-04 (Commercial, Industrial, Extended) PIC16C66/67-10 (Commercial, Industrial, Extended) PIC16C66/67-20 (Commercial, Industrial, Extended) PIC16LC66/67-04 (Commercial, Industrial)

		Standard Operating Conditions (unless otherwise stated)								
		$\label{eq:constraint} Operating \ temperature \qquad -40^{\circ}C \qquad \leq TA \leq +125^{\circ}C \ for \ extended,$								
DC CHA	RACTERISTICS				-40°0		\leq TA \leq +85°C for industrial and			
50 01.		$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial								
			ng voltage ction 22.2	VDD	range as	describ	bed in DC spec Section 22.1			
Davama				True	Max	Linite	Conditions			
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions			
	Input Low Voltage									
	I/O ports	VIL								
D030	with TTL buffer		Vss	-	0.15VDD	v	For entire VDD range			
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$			
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V				
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	V				
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1			
	Input High Voltage									
	I/O ports	Vін		-						
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le V$ DD $\le 5.5V$			
D040A			0.25VDD	-	Vdd	V	For entire VDD range			
			+ 0.8V				Ũ			
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range			
D042	MCLR		0.8VDD	-	Vdd	V				
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1			
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V				
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS			
	Input Leakage Current (Notes 2, 3)									
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-			
							impedance			
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$			
D063	OSC1		-	-	± 5	μA	$Vss \leq VPIN \leq VDD, XT, HS and$			
							LP osc configuration			
	Output Low Voltage									
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5 V,			
							-40°C to +85°C			
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5 V,			
D 000							-40°C to +125°C			
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,			
Dooot					0.0	N N	-40°C to +85°C			
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			
			L				-40 0 10 +125 0			

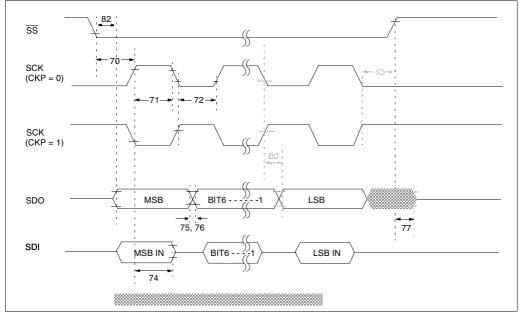
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.


 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.


*

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-11: SPI SLAVE MODE TIMING (CKE = 0)

FIGURE 22-12: SPI SLAVE MODE TIMING (CKE = 1)

PIN COMPATIBILITY

Devices that have the same package type and VDD, VSs and $\overline{\text{MCLR}}$ pin locations are said to be pin compatible. This allows these different devices to operate in the same socket. Compatible devices may only requires minor software modification to allow proper operation in the application socket (ex., PIC16C56 and PIC16C61 devices). Not all devices in the same package size are pin compatible; for example, the PIC16C62 is compatible with the PIC16C63, but not the PIC16C55.

Pin compatibility does not mean that the devices offer the same features. As an example, the PIC16C54 is pin compatible with the PIC16C71, but does not have an A/D converter, weak pull-ups on PORTB, or interrupts.

Pin Compatible Devices	Package
PIC12C508, PIC12C509, PIC12C671, PIC12C672	8-pin
PIC16C154, PIC16CR154, PIC16C156, PIC16CR156, PIC16C158, PIC16CR158, PIC16C52, PIC16C54, PIC16C54A, PIC16C56, PIC16C58A, PIC16CR58A, PIC16C554, PIC16CR58A, PIC16C554, PIC16C556, PIC16C558 PIC16C620, PIC16C621, PIC16C622 PIC16C641, PIC16C642, PIC16C661, PIC16C662 PIC16C710, PIC16C71, PIC16C711, PIC16C715 PIC16F83, PIC16CR83, PIC16F84A, PIC16CR84	18-pin, 20-pin
PIC16C55, PIC16C57, PIC16CR57B	28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63, PIC16C66, PIC16C72, PIC16C73A, PIC16C76	28-pin
PIC16CR64, PIC16C64A, PIC16C65A, PIC16CR65, PIC16C67, PIC16C74A, PIC16C77	40-pin
PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, PIC17C44	40-pin
PIC16C923, PIC16C924	64/68-pin
PIC17C756, PIC17C752	64/68-pin

TABLE F-1: PIN COMPATIBLE DEVICES