E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	$4V \sim 6V$
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c67-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C61** device has 36 bytes of RAM and 13 I/O pins. In addition a timer/counter is available.

The **PIC16C62/62A/R62** devices have 128 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPITM) or the two-wire Inter-Integrated Circuit (I²C) bus.

The **PIC16C63/R63** devices have 192 bytes of RAM, while the **PIC16C66** has 368 bytes. All three devices have 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I^2C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also know as a Serial Communications Interface or SCI.

The **PIC16C64/64A/R64** devices have 128 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. An 8-bit Parallel Slave Port is also provided.

The **PIC16C65/65A/R65** devices have 192 bytes of RAM, while the **PIC16C67** has 368 bytes. All four devices have 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmit-

ter (USART) is also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is also provided.

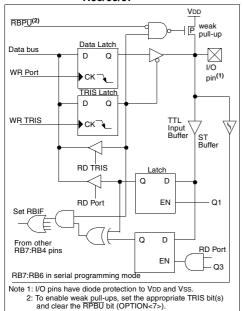
The PIC16C6X device family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers a power saving mode. The user can wake the chip from SLEEP through several external and internal interrupts, and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control to low-power remote sensors, keyboards and telecom processors. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use, and I/O flexibility make the PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions, and co-processor applications).

1.1 Family and Upward Compatibility


Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to PIC16CXX family of devices (Appendix B).

1.2 Development Support

PIC16C6X devices are supported by the complete line of Microchip Development tools.

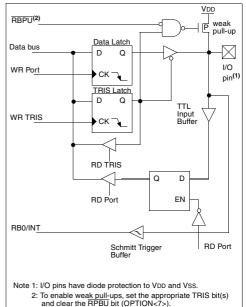

Please refer to Section 15.0 for more details about Microchip's development tools.

FIGURE 5-4: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C62A/63/R63/64A/65A/ R65/66/67

TABLE 5-3: PORTB FUNCTIONS

FIGURE 5-5: BLOCK DIAGRAM OF THE RB3:RB0 PINS

TABLE 0 0.			•
Name	Bit#	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

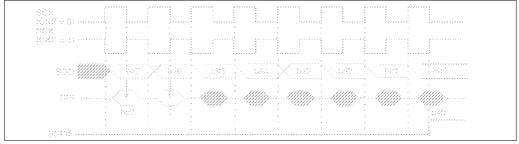
Legend: TTL = TTL input, ST = Schmitt Trigger input

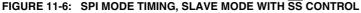
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

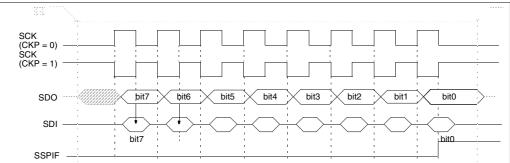
2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuuu
86h, 186h	TRISB	ISB PORTB Data Direction Register									1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
I a source of											


Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.


The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set the for synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the


point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
SSPBUF	Synchrono	ous Serial	Port Rece	ive Buffer/	Transmit	Register			xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	_		PORTA Da	ta Direction	Register				11 1111	11 1111
TRISC	PORTC D	PORTC Data Direction Register								1111 1111
SSPSTAT	—	_	D/A	Р	S	R/W	UA	BF	00 0000	00 0000
	INTCON PIR1 PIE1 SSPBUF SSPCON TRISA TRISC	INTCON GIE PIR1 PSPIF ⁽²⁾ PIE1 PSPIE ⁽²⁾ SSPBUF Synchronc SSPCON WCOL TRISA — TRISC PORTC D	INTCON GIE PEIE PIR1 PSPIF ⁽²⁾ (3) PIE1 PSPIE ⁽²⁾ (3) SSPBUF Synchronus Serial SSPCON WCOL SSPOV TRISA — — TRISC PORTC Data Direct	INTCON GIE PEIE TOIE PIR1 PSPIF ⁽²⁾ (3) RCIF ⁽¹⁾ PIE1 PSPIE ⁽²⁾ (3) RCIE ⁽¹⁾ SSPBUF Synchron-us Serial Port Rece SSPCON WCOL SSPEN TRISA — — PORTA Da PORTA Da TRISC PORTC Data Direction Regist Portal Direction Regist Portal Direction Regist	INTCON GIE PEIE TOIE INTE PIR1 PSPIF ⁽²⁾ (3) RCIF ⁽¹⁾ TXIF ⁽¹⁾ PIE1 PSPIF ⁽²⁾ (3) RCIE ⁽¹⁾ TXIF ⁽¹⁾ PIE1 PSPIE ⁽²⁾ (3) RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPBUF Synchronous Serial Port Receive Bufferr SSPCON WCOL SSPOV SSPEN CKP TRISA — — PORTA Data Direction TRISC PORTC Data Direction Register PORTA	INTCON GIE PEIE TOIE INTE RBIE PIR1 PSPIF ⁽²⁾ (3) RCIF ⁽¹⁾ TXIF ⁽¹⁾ SSPIF PIE1 PSPIE ⁽²⁾ (3) RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPIF SSPBUF Synchron-US Serial Port Receive Buffer/Transmit SSPRON SSPCON WCOL SSPOV SSPEN CKP SSPM3 TRISA — — PORTA Data Direction Register TRISC	INTCON GIE PEIE TOIE INTE RBIE TOIF PIR1 PSPIF ⁽²⁾ (3) RCIF ⁽¹⁾ TXIF ⁽¹⁾ SSPIF CCP1IF PIE1 PSPIE ⁽²⁾ (3) RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPIE CCP1IF SSPBUF Synchronus Serial Port Receive Buffer/Transmit Register SSPR0 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 TRISA — — PORTA Data Direction Register TRISC PORTC Data Direction Register	INTCONGIEPEIETOIEINTERBIETOIFINTFPIR1PSPIF ⁽²⁾ ⁽³⁾ RCIF ⁽¹⁾ TXIF ⁽¹⁾ SSPIFCCP1IFTMR2IFPIE1PSPIE ⁽²⁾ ⁽³⁾ RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPIECCP1IETMR2IFSSPBUFSynchronus Serial Port Receive Buffer/Transmit RegisterSSPCONWCOLSSPOVSSPENCKPSSPM3SSPM2SSPM1TRISA——PORTA Data Direction RegisterTRISCPORTC Data Direction Register	INTCONGIEPEIETOIEINTERBIETOIFINTFRBIFPIR1PSPIF(2)(3)RCIF(1)TXIF(1)SSPIFCCP1IFTMR2IFTMR1IFPIE1PSPIE(2)(3)RCIE(1)TXIE(1)SSPIECCP1IETMR2IETMR1IESSPBUFSynchron-usSerial Port Receive Buffer/Transmit RegisterSSPR0SSPM2SSPM1SSPM0SSPCONWCOLSSPOVSSPENCKPSSPM3SSPM2SSPM1SSPM0TRISA——PORTA Data Direction RegisterFUNCTION RegisterFUNCTION RegisterTRISCPORTC Data Direction RegisterFUNCTION RegisterFUNCTION Register	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF 0000 000x PIR1 PSPIF ⁽²⁾ ⁽³⁾ RCIF ⁽¹⁾ TXIF ⁽¹⁾ SSPIE CCP1IE TMR2IF TMR1IE 0000 0000 PIE1 PSPIE ⁽²⁾ ⁽³⁾ RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPIE CCP1IE TMR2IF TMR1IE 0000 0000 SSPBUF Synchro

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.

Note 1: These bits are associated with the USART which is implemented on the PIC16C63/R63/65/65A/R65 only.

2: PSPIF and PSPIE are reserved on the PIC16C62/62A/R62/63/R63, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

11.3.1 SSP MODULE IN SPI MODE FOR PIC16C66/67

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

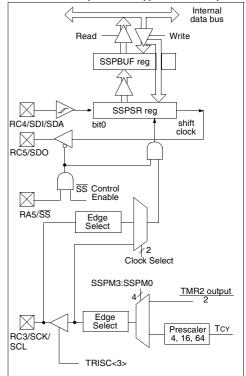
- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- · Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- · Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device. MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and interrupt flag bit SSPIF (PIR1<3>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully. When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit BF (SSPSTAT<0>) indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-2 shows the loading of the SSPBUF (SSPSR) for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-2: LOADING THE SSPBUF (SSPSR) REGISTER (PIC16C66/67)

LOOP	BCF BSF BTFSS	STATUS, STATUS, SSPSTAT,	RP0	;Specify Bank 1 ; ;Has data been ;received ;(transmit ;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents ; of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents ; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-9), shows that the SSPSR is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-9: SSP BLOCK DIAGRAM (SPI MODE)(PIC16C66/67)

11.5.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the l^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.5.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- · Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buffe	r/Transmit	Register			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C	mode) Ad	ldress Re	gister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽³⁾	CKE ⁽³⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	SC PORTC Data Direction register									1111 1111

TABLE 11-5: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16C66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

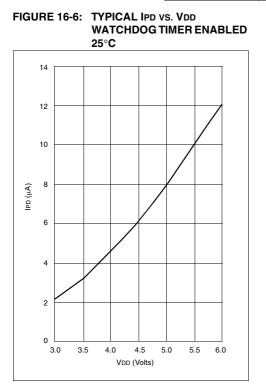
3: The SMP and CKE bits are implemented on the PIC16C66/67 only. All other PIC16C6X devices have these two bits unimplemented, read as '0'.

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.


The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

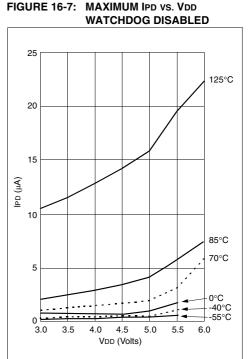
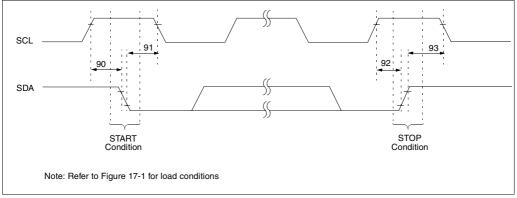

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

FIGURE 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0				
CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	R = Readable bit			
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset			
bit 7:	CSRC: Clo	ck Source	Select bit					<u>,</u>			
	Asynchron Don't care	<u>ous mode</u>									
	<u>Synchronous mode</u> 1 = Master mode (Clock generated internally from BRG) 0 = Slave mode (Clock from external source)										
bit 6:	TX9 : 9-bit 1 = Selects 0 = Selects	9-bit trans	smission								
bit 5:	TXEN : Tran 1 = Transm 0 = Transm Note: SRE	iit enabled iit disabled		EN in SYI	NC mode.						
bit 4:	SYNC : US 1 = Synchr 0 = Asynch	onous mod	le								
bit 3:	Unimplem	ented: Re	ad as '0'								
bit 2:	BRGH: Hig	h Baud Ra	ate Select b	it							
	Asynchron 1 = High sp										
	Note: For the PIC16C63/R63/65/65A/R65 the asynchronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information or use the PIC16C66/67.										
	0 = Low sp	eed									
	Synchrono Unused in										
bit 1:	TRMT : Trai 1 = TSR er 0 = TSR fu	npty	Register S	tatus bit							
bit 0:	TX9D : 9th	bit of trans	mit data. C	an be pari	ty bit.						


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Data based on matrix samples. See first page of this section for details.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-9: I²C BUS START/STOP BITS TIMING

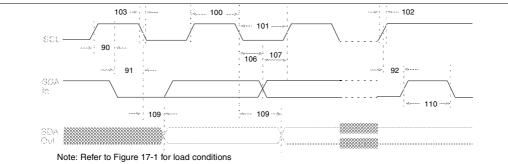


TABLE 17-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Max	Units	Conditions
90	TSU:STA	START condition	100 kHz mode	4700	—	—	-	Only relevant for repeated START
		Setup time	400 kHz mode	600	_	_	ns	condition
91	THD:STA	START condition	100 kHz mode	4000	_	_		After this period the first clock pulse is generated
		Hold time	400 kHz mode	600	_	_	ns	
92	TSU:STO	STOP condition	100 kHz mode	4700	_	_		
		Setup time	400 kHz mode	600		_	ns	
93	THD:STO	STOP condition	100 kHz mode	4000	_	_		
		Hold time	400 kHz mode	600	—	—	ns	

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-10: I²C BUS DATA TIMING

TABLE 17-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101	101 TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy			
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	103 TF SDA and SCL	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6		μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max. + tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.1 DC Characteristics: PIC16C65-04 (Commercial, Industrial) PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)									
DC CHA	ARACTERISTICS	Operatir	ng temp	perature			\leq TA \leq +85°C for industrial and			
		$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial								
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions			
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	v v	XT, RC and LP osc configuration HS osc configuration			
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V				
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			-	13.5	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V			
D020 D021 D021A	Power-down Current (Note 3, 5)	IPD		10.5 1.5 1.5	800 800 800	μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} VDD=4.0V, WDT \mbox{ enabled}, -40^\circ C \mbox{ to } +85^\circ C \\ VDD=4.0V, WDT \mbox{ disabled}, -0^\circ C \mbox{ to } +70^\circ C \\ VDD=4.0V, WDT \mbox{ disabled}, -40^\circ C \mbox{ to } +85^\circ C \end{array}$			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S		3. Tcc:s	 (I²C specifications only)
2. TppS			4. Ts	(I ² C specifications only)
Т				
F	Frequency		Т	Time
Lowercas	e letters (pp) and their me	anings:		
рр				
сс	CCP1		OSC	OSC1
ck	CLKOUT		rd	RD
CS	CS		rw	RD or WR
di	SDI		SC	SCK
do	SDO		SS	SS
dt	Data in		tO	TOCKI
io	I/O port		t1	T1CKI
mc	MCLR		wr	WR
Uppercas	e letters and their meaning	gs:		
S				
F	Fall		P	Period
Н	High		R	Rise
I	Invalid (Hi-impedance)		V	Valid
L	Low		Z	Hi-impedance
I ² C only				
AA	output access		High	High
BUF	Bus free		Low	Low
TCC:ST (l	² C specifications only)			
CC				
HD	Hold		SU	Setup
ST				
DAT	DATA input hold		STO	STOP condition
STA	START condition			
FIGURE 19	-1: LOAD CONDITIO	NS FOR DEVIC		SPECIFICATIONS
	Load condition	<u>n 1</u>		Load condition 2
		Vdd/2		
		ν DD/2 Φ		
		J		
		\geq RL		Pin CL
		\geq		
		-•		Vss
	Pin			
			= 464 Ω	
		Vss CL	= 50 pF	for all pins except OSC2/CLKOUT
				but including D and E outputs as ports
			15 pF	for OSC2 output

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Typ†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	_	—	ns	Must also meet
				With Prescaler	10	_	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	_	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	-	_	ns	
				With Prescaler	Greater of: 20 or <u>TCY + 40</u> N	_	-	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, F	Prescaler = 1	0.5TCY + 20	—	_	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	-	—	ns	parameter 47
		Prescaler = 2,4,8	PIC16 LC 6X	25	-	-	ns		
			Asynchronous	PIC16 C 6X	30	-	—	ns	
				PIC16 LC 6X	50	—	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F		0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	-	ns	
			Asynchronous	PIC16 C 6X	30	—	—	ns	
				PIC16 LC 6X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)
				PIC16 LC 6X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16 C 6X	60	—	—	ns	
				PIC16 LC 6X	100	—	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled b			DC	-	200	kHz	
48	TCKEZtmr	Delay from external	clock edge to tir	ner increment	2Tosc	—	7Tosc		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

21.2 DC Characteristics: PIC16LCR63/R65-04 (Commercial, Industrial)

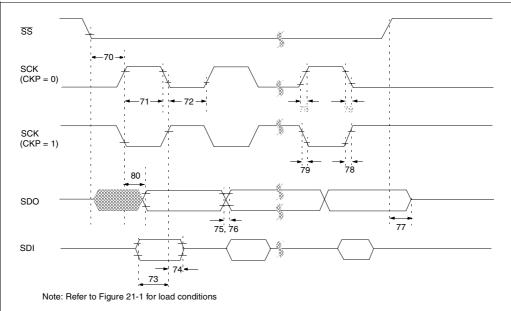
				•		•	inless otherwise stated)
DC CHA	RACTERISTICS	Operatir	ng temp	perature	e -40 0°C		TA \leq +85°C for industrial and TA \leq +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	5.5	٧	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	BVDD	3.7	4.0	4.3	٧	BODEN configuration bit is enabled
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3, 5)		-	0.9	5	μA	VDD = 3.0V, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$
D021A			-	0.9	5	μA	VDD = 3.0V, WDT disabled, -40°C to +85°C
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

- $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 21-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	—	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	—	—	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

* These parameters are characterized but not tested.

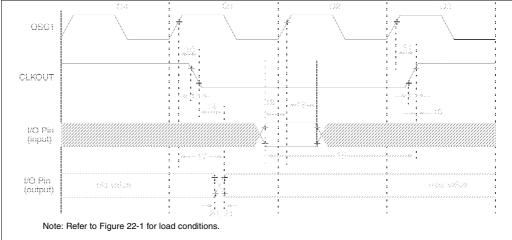
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

	Applicable Devices	61	62	62A	B62	63	B63	64	64A	R64	65	65A	B65	66	67
--	--------------------	----	----	-----	------------	----	------------	----	-----	------------	----	-----	------------	----	----

		Standa	rd Operat	ing (Condition	s (unle	ess otherwise stated)			
		Operatio	ng temper	ature	-40°	C ́≤1	$A \leq +125^{\circ}C$ for extended,			
	RACTERISTICS				-40°	C ≤1	$A \leq +85^{\circ}C$ for industrial and			
	AACTERISTICS		$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial							
		•	Depreting voltage VDD range as described in DC spec Section 22.1 and Section 22.2							
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions			
No.		-		†						
	Output High Voltage									
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C			
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C			
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С			
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С			
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin			
	Capacitive Loading Specs on Out- put Pins									
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.			
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF				
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

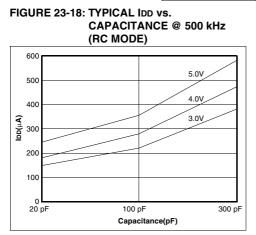
3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-3: CLKOUT AND I/O TIMING

TABLE 22-3:	CLKOUT AND I/O TIMING REQUIREMENTS

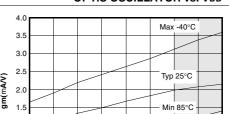
Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		-	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time	_	35	100	ns	Note 1	
13*	TckF	CLKOUT fall time	_	35	100	ns	Note 1	
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		_	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT \uparrow		Tosc + 200	_	-	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	50	150	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port input	PIC16 C 66/67	100	_	_	ns	
		invalid (I/O in hold time)	PIC16LC66/67	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in	setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16 C 66/67	_	10	40	ns	
			PIC16LC66/67	_	_	80	ns	
21*	TioF	Port output fall time	PIC16 C 66/67	-	10	40	ns	
			PIC16LC66/67	_	_	80	ns	
22††*	Tinp	INT pin high or low time	1	Тсү	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high or low	/ time	Тсү	—	_	ns	

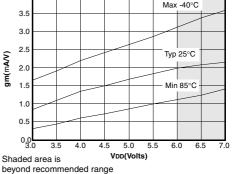

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

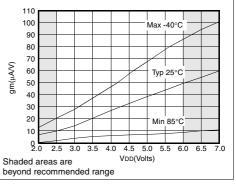
tt These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


TABLE 23-1: RC OSCILLATOR FREQUENCIES

Cext	Rext	Average				
Cext	nexi	Fosc @ 5V, 25°C				
22 pF	5k	4.12 MHz	± 1.4%			
	10k	2.35 MHz	± 1.4%			
	100k	268 kHz	± 1.1%			
100 pF	3.3k	1.80 MHz	± 1.0%			
	5k	1.27 MHz	± 1.0%			
	10k	688 kHz	± 1.2%			
	100k	77.2 kHz	± 1.0%			
300 pF	3.3k	707 kHz	± 1.4%			
	5k	501 kHz	± 1.2%			
	10k	269 kHz	± 1.6%			
	100k	28.3 kHz	± 1.1%			


The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

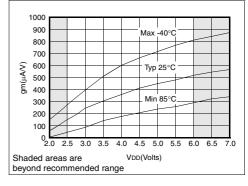

FIGURE 23-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 23-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 23-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Data based on matrix samples. See first page of this section for details.

F.3 PIC16C15X Family of Devices

		PIC16C154	PIC16CR154	PIC16C156	PIC16CR156	PIC16C158	PIC16CR158
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x12 words)	512	—	1K	—	2К	—
Memory	ROM Program Memory (x12 words)	_	512	_	1K	—	2К
	RAM Data Memory (bytes)	25	25	25	25	73	73
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	I/O Pins	12	12	12	12	12	12
	Voltage Range (Volts)	3.0-5.5	2.5-5.5	3.0-5.5	2.5-5.5	3.0-5.5	2.5-5.5
Features	Number of Instructions	33	33	33	33	33	33
	Packages	18-pin DIP, SOIC; 20-pin SSOP					

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

F.4 PIC16C5X Family of Devices

		PIC16C52	PIC16C54	PIC16C54A	PIC16CR54A	PIC16C55	PIC16C56
Clock	Maximum Frequency of Operation (MHz)	4	20	20	20	20	20
	EPROM Program Memory (x12 words)	384	512	512	—	512	1K
Memory	ROM Program Memory (x12 words)	_	—	—	512	-	—
	RAM Data Memory (bytes)	25	25	25	25	24	25
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
	I/O Pins	12	12	12	12	20	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.0-6.25	2.5-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33	33	33
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP

		PIC16C57	PIC16CR57B	PIC16C58A	PIC16CR58A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20
	EPROM Program Memory (x12 words)	2К	-	2К	_
Memory	ROM Program Memory (x12 words)	-	2К	—	2К
	RAM Data Memory (bytes)	72	72	73	73
Peripheral	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
	I/O Pins	20	20	12	12
	Voltage Range (Volts)	2.5-6.25	2.5-6.25	2.0-6.25	2.5-6.25
Features	Number of Instructions	33	33	33	33
	Packages	28-pin DIP, SOIC, SSOP	28-pin DIP, SOIC, SSOP	18-pin DIP, SOIC; 20-pin SSOP	18-pin DIP, SOIC; 20-pin SSOP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code protect and high I/O current capability.

Transfer Acknowledge	6
Transmission102	
ID Locations 142	2
IDLE MODE	4
In-circuit Serial Programming142	2
INDF	
Indirect Addressing 49	
Instruction Cycle18	
Instruction Flow/Pipelining 18	8
Instruction Format	3
Instruction Set	
ADDLW	5
ADDWF145	
ANDLW 145	5
ANDWF145	5
BCF	6
BSF	
BTFSC	
BTFSS	
CALL	
CLRF148	
CLRW 148	8
CLRWDT	8
COMF	
DECF	
DECFSZ	
GOTO	
INCF	-
INCFSZ151	
IORLW 151	
IORWF 152	2
MOVF	2
MOVLW 152	2
MOVWF 152	2
NOP	3
OPTION	3
RETFIE	3
RETLW 154	4
RETURN	4
RLF	5
RRF	5
SLEEP	
SUBLW	
SUBWF	
SWAPF	
TRIS	
XORLW	8
XORWF158	8
Section	3
Summary Table144	4
INTCON	
INTE	
INTEDG	
Interrupt Edge Select bit, INTEDG	
Interrupt on Change Feature	3
Interrupts	
Section	6
CCP	8
CCP1	8
CCP1 Flag bit41	
CCP2 Enable bit	
CCP2 Flag bit	
Context Saving	
Parallel Slave Port Flag bit	
Parallel Slave Pot Read/Write Enable bit	
Parallel Slave Prot Read/write Enable bit	
Роп нв	
1,00/111	J

Receive Flag bit 42
Timer0 65
Timer0, Timing 66
Timing Diagram, Wake-up from SLEEP 142
TMR0 138
USART Receive Enable bit 39
USART Transmit Enable bit 39
USART Transmit Flag bit 42
Wake-up 141
Wake-up from SLEEP 141
INTF
IRP
L
-
Loading the Program Counter 48
М
MPASM Assembler 159, 160
MPLAB-C 161
MPSIM Software Simulator 159, 161
0
-
OERR
One-Time-Programmable Devices7
OPCODE 143
Open-Drain
OPTION 25, 27, 29, 31, 33, 34
Oscillator Start-up Timer (OST) 123, 129
Oscillators
Block Diagram, External Parallel Resonant Crystal . 127
Capacitor Selection
Configuration 125
External Crystal Circuit 127
HS 125, 130
LP 125, 130
RC, Block Diagram 127
RC, Block Diagram
RC, Block Diagram 127 RC, Section 127 XT 125
RC, Block Diagram
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 105
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 84, 89
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 84, 89 Packaging Information 291
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 84, 89 Packaging Information 291 Parallel Slave Port 291
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 84, 89 Packaging Information 291
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 106 P 107 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF. 43
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 106 P 107 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 PCLATH 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 PORTD 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 PCLATH 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130 PD 35, 131
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 106 Packaging Information 291 Parallel Slave Port 57 Section 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 PCON 25, 27, 29, 31, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130 PD 35, 131 PEIE 37
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 106 Packaging Information 291 Parallel Slave Port 291 PORTD 57 Section 61 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE. 43 PCLATH 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130 PD 35, 131 PEIE 37 Peripheral Interrupt Enable bit, PEIE 37
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR 106 P 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130 PD 35, 131 Pelipheral Interrupt Enable bit, PEIE 37 PiCDEM-1 Low-Cost PIC16/17 Demo Board 159, 160
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130 PD 35, 131 PEIE 37 Peripheral Interrupt Enable bit, PEIE. 37 PICDEM-1 Low-Cost PIC16/17 Demo Board 159, 160 PICDEM-2 Low-Cost PIC16CXX Demo Board 159, 160
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Interrupt Flag bit, PSPIF. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 PCLATH 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130 PD 35, 131 PEIE 37 PricDEM-1 Low-Cost PIC16/17 Demo Board 159, 160 PICDEM-2 Low-Cost PIC16CXX Demo Board 159, 160 PICDEM-3 Low-Cost PIC16CXX Demo Board 159, 160
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 84, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 92 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130 PD 35, 131 PEIE 37 PICDEM-1 Low-Cost PIC16/17 Demo Board 159, 160 PICDEM-2 Low-Cost PIC16CXX Demo Board 159, 160 PICDEM-3 Low-Cost PIC16CXX Demo Board 159, 160 PICDEM-3 Low-Cost PIC16CXX Demo Board 159, 160 PICASTER In-Circuit Emulator 159 PICSTART Low-Cost Development System 159
RC, Block Diagram 127 RC, Section 127 XT 125 Overrun Error bit, OERR. 106 P 64, 89 Packaging Information 291 Parallel Slave Port 57 Section 61 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE. 43 Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39 92 PCL 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 PCLATH 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48 PCON 25, 27, 29, 31, 33, 34, 130 PD 75 Peripheral Interrupt Enable bit, PEIE 37 Peripheral Interrupt Enable bit, PEIE 37 PICDEM-1 Low-Cost PIC16/17 Demo Board 159, 160 PICDEM-3 Low-Cost PIC16CXX Demo Board 159, 160 PICDEM-3 Low-Cost PIC16CXX Demo Board 159, 160 PICDEM-3 Low-Cost PIC16CYX Demo Board 159, 160

Pin Functions

Figure 11-2:	SSPCON: Sync Serial Port
	Control Register (Address 14h) 85
Figure 11-3:	SSP Block Diagram (SPI Mode) 86
Figure 11-4:	SPI Master/Slave Connection 87
Figure 11-5:	SPI Mode Timing, Master Mode or
	Slave Mode w/o SS Control
Figure 11-6:	SPI Mode Timing, Slave Mode with
	SS Control
Figure 11-7:	SSPSTAT: Sync Serial Port Status
	Register (Address 94h)(PIC16C66/67) 89
Figure 11-8:	SSPCON: Sync Serial Port Control
Figure 11 Or	Register (Address 14h)(PIC16C66/67)90
Figure 11-9:	SSP Block Diagram (SPI Mode)
Figure 11-10:	(PIC16C66/67)91 SPI Master/Slave Connection
Figure 11-10.	(PIC16C66/67)
Figure 11-11:	SPI Mode Timing, Master Mode
rigule 11-11.	(PIC16C66/67)
Figure 11-12:	SPI Mode Timing (Slave Mode With
rigule 11-12.	CKE = 0) (PIC16C66/67)
Figure 11-13:	SPI Mode Timing (Slave Mode With
i iguio i i ioi	CKE = 1) (PIC16C66/67)
Figure 11-14:	Start and Stop Conditions
Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence97
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
	(Two Masters)98
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram (I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
	(7-bit Address) 101
Figure 11-26:	I ² C Waveforms for Transmission
	(7-bit Address)
Figure 11-27:	Operation of the I ² C Module in
	IDLE_MODE, RCV_MODE or
Figure 10.1	XMIT_MODE
Figure 12-1:	Control Register (Address 98h) 105
Figure 12-2:	RCSTA: Receive Status and
rigule 12-2.	Control Register (Address 18h)
Figure 12-3:	RX Pin Sampling Scheme (BRGH = 0)
. iguio 12 01	PIC16C63/R63/65/65A/R65)
Figure 12-4:	RX Pin Sampling Scheme (BRGH = 1)
.g	(PIC16C63/R63/65/65A/R65) 110
Figure 12-5:	
Figure 12-5:	RX Pin Sampling Scheme (BRGH = 1)
	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110
Figure 12-5: Figure 12-6:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110 RX Pin Sampling Scheme (BRGH = 0 or = 1)
	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110
Figure 12-6:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111
Figure 12-6: Figure 12-7:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113
Figure 12-6: Figure 12-7: Figure 12-8:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) USART Receive Block Diagram 113 USART Receive Block Diagram 114 Synchronous Transmission 114 Synchronous Transmission
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Transmission 114 Synchronous Transmission
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13: Figure 12-14:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) USART Receive Block Diagram 114 USART Receive Block Diagram 114 Synchronous Transmission 117 Synchronous Transmission through TXEN 117 Master Mode, SREN)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception

Figure 13-2:	Configuration Word for
	PIC16C62/64/65 124
Figure 13-3:	Configuration Word for
	PIC16C62A/R62/63/R63/64A/R64/
	65A/R65/66/67 124
Figure 13-4:	Crystal/Ceramic Resonator Operation
	(HS, XT or LP OSC Configuration)
Figure 13-5:	External Clock Input Operation
rigule 15-5.	(HS, XT or LP OSC Configuration)
Einung 10.0	
Figure 13-6:	External Parallel Resonant
	Crystal Oscillator Circuit 127
Figure 13-7:	External Series Resonant
	Crystal Oscillator Circuit 127
Figure 13-8:	RC Oscillator Mode 127
Figure 13-9:	Simplified Block Diagram of
	On-chip Reset Circuit 128
Figure 13-10:	Brown-out Situations 129
Figure 13-11:	Time-out Sequence on Power-up
•	(MCLR not Tied to VDD): Case 1
Figure 13-12:	Time-out Sequence on Power-up
. iguio 10 12.	(MCLR Not Tied To VDD): Case 2
Figure 13-13:	Time-out Sequence on Power-up
rigule 15-15.	(MCLR Tied to VDD) 134
Einung 10 14.	
Figure 13-14:	External Power-on Reset Circuit
	(For Slow VDD Power-up) 135
Figure 13-15:	External Brown-out
	Protection Circuit 1 135
Figure 13-16:	External Brown-out
	Protection Circuit 2 135
Figure 13-17:	Interrupt Logic for PIC16C61 137
Figure 13-18:	Interrupt Logic for PIC16C6X 137
Figure 13-19:	INT Pin Interrupt Timing 138
Figure 13-20:	Watchdog Timer Block Diagram 140
Figure 13-21:	Summary of Watchdog
riguie to 21.	Timer Registers 140
Figure 12 00	
Figure 13-22:	Wake-up from Sleep Through Interrupt142
Einung 10.00	
Figure 13-23:	Typical In-circuit Serial
	Programming Connection 142
Figure 14-1:	General Format for Instructions 143
Figure 16-1:	Load Conditions for Device Timing
	Specifications 168
Figure 16-2:	External Clock Timing 169
Figure 16-3:	CLKOUT and I/O Timing 170
Figure 16-4:	Reset, Watchdog Timer, Oscillator
-	Start-up Timer and Power-up Timer
	Timing 171
Figure 16-5:	Timer0 External Clock Timings 172
Figure 17-1:	Typical RC Oscillator
rigato tr ti	Frequency vs. Temperature
Eiguro 17 0	Typical RC Oscillator
Figure 17-2:	
E' 47.0	Frequency vs. VDD
Figure 17-3:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-4:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-5:	Typical IPD vs. VDD Watchdog Timer
	Disabled 25°C 174
Figure 17-6:	
i iguio i i oi	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Ū.	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Ū.	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7: Figure 17-8:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7: Figure 17-8:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C