

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c67-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

		PIC16C61	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
	EPROM Program Memory (x14 words)	1K	2K	_	4K	_
Memory	ROM Program Memory (x14 words)			2K		4K
	Data Memory (bytes)	36	128	128	192	192
	Timer Module(s)	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)		1	1	2	2
	Serial Port(s) (SPI/I ² C, USART)		SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port				_	_
	Interrupt Sources	3	7	7	10	10
	I/O Pins	13	22	22	22	22
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SO	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC

		PIC16C64A	PIC16CR64	PIC16C65A	PIC16CR65	PIC16C66	PIC16C67
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2K		4K		8K	8K
Memory	ROM Program Memory (x14 words)	—	2K		4K	_	
	Data Memory (bytes)	128	128	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	1	1	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	_	Yes
	Interrupt Sources	8	8	11	11	10	11
	I/O Pins	33	33	33	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
Features	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages	40-pin DIP; 44-pin PLCC, MQFP, TQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

FIGURE 4-4: PIC16C66/67 PROGRAM MEMORY MAP AND STACK

4.2 Data Memory Organization

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 The data memory is partitioned into multiple banks

which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1:RP0 (STATUS<6:5>)

- = 00 \rightarrow Bank0
- = 01 \rightarrow Bank1
- = 10 \rightarrow Bank2
- = 11 \rightarrow Bank3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some "high use" special function registers from one bank may be mirrored in another bank for code reduction and quicker access.

4.2.1 GENERAL PURPOSE REGISTERS

These registers are accessed either directly or indirectly through the File Select Register (FSR) (Section 4.5). For the PIC16C61, general purpose register locations 8Ch-AFh of Bank 1 are not physically implemented. These locations are mapped into 0Ch-2Fh of Bank 0.

FIGURE 4-5: PIC16C61 REGISTER FILE MAP

Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that the PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

ORG 0x5	00	
BSF	PCLATH, 3	;Select page 1 (800h-FFFh)
BCF	PCLATH,4	;Only on >4K devices
CALL	SUB1_P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	:	
ORG 0x9	00	
SUB1_P1	:	;called subroutine
	:	;page 1 (800h-FFFh)
	:	
RETURN		;return to Call subroutine ;in page 0 (000h-7FFh)

4.5 Indirect Addressing, INDF and FSR Registers

Applicable	e Devices

61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67
----	----	-----	-----	----	-----	----	-----	-----	----	-----	-----	----	----

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-25.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-2.

EXAMPLE 4-2: INDIRECT ADDRESSING

NEXT	movlw movwf clrf incf btfss	0x20 FSR INDF FSR,F FSR,4	;initialize pointer ; to RAM ;clear INDF register ;inc pointer ;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

FIGURE 4-25: DIRECT/INDIRECT ADDRESSING

NOTES:

-

NOTES:

-

TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2 FIGURE 7-3:

FIGURE 7-4: **TMR0 INTERRUPT TIMING**

8.0 TIMER1 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- · As a timer
- · As a counter

The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/R63/64A/R64/65A/R65/ R66/67, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

Г

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

SPEN RX9 SREN CREN — FERR OERR RX9D R = Readable bit bit7 bit0 If = Readable bit If = Writable bit If =	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
bit7 bit8 bit0 W = Writable bit W = Writable bit U = Uunimplemented bit, read as '0' - n = 'value at POR reset x = unknown bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7.6> are set) 1 = Serial port disabled bit 6: RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous receive 0 = Disables continuous receive 1 = Enables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERF: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 0: RX9D: 9th bit of received data (Can be parity bit)	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	R	= Readable bit
bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set) 1 = Serial port enabled 0 = Serial port disabled bit 6: RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit 1 = Enables single receive 0 = Don't care Synchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode Dunts of this mode Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode Disables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive Synchronous mode bit 3: Unimplemented: Read as '0' bit 4: CREN: Continuous receive Synchronous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No traming error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)	bit7							bit0	W	= Writable bit
-n = Value at POR reset x = unknown bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set) 1 = Serial port enabled 0 = Serial port enabled 0 = Selects 8-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive 0 = Disables single receive Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 4: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>bit. read as '0'</td>									0	bit. read as '0'
k = unknown bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set) 1 = Serial port disabled bit 6: RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 0 = Disables continuous receive bit 4: CREN: Continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error bit 1 = Framing error bit 1 = Overrun error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 1: OERR: Overrun Error bit 1 = Overrun error									- n	= Value at POR reset
bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set) 1 = Serial port enabled 0 = Serial port disabled bit 6: RX9: 9-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit <u>Asynchronous mode</u> Don't care <u>Synchronous mode - master</u> 1 = Enables single receive Don't care <u>Synchronous mode - master</u> 1 = Enables single receive This bit is cleared after reception is complete. <u>Synchronous mode - slave</u> Unused in this mode bit 4: CREN: Continuous Receive Enable bit <u>Asynchronous mode</u> 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive 1 = Enables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)									х	= unknown
bit 6: RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 0 = Selects 8-bit reception 0 bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 1 = Enables single receive 0 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode Unused in this mode Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Framing Error bit 1 = Framing Error bit 1 = Framing error (Can be updated by reading RCREG reg	bit 7:	SPEN: Ser (Configure 1 = Serial 0 = Serial	rial Port En s RC7/RX/I port enable port disable	able bit DT and RC d ed	6/TX/CK	oins as ser	ial port pin	s when bits	TRIS	C<7:6> are set)
1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 3: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 1: OERR: Overrun Error bit 1 = Overrun error 1 = No overrun error Deared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)	bit 6:	RX9 : 9-bit	Receive Er	nable bit						
 bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 1 = Enables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		1 = Selects	s 9-bit rece	ption						
 bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 4: FERR: Framing Error bit 1 = Framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		0 = Selects	s 8-bit rece	ption						
Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 4: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)	bit 5:	SREN: Sin	gle Receiv	e Enable bi	t					
Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive bit 3: Unimplemented: Read as '0' bit 4: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error Icared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) <td></td> <td>Asynchron Don't care</td> <td><u>ous mode</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Asynchron Don't care	<u>ous mode</u>							
 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		Synchrono	ous mode -	master						
 bit di is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		1 = Enable	s single real	ceive						
Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error 0 bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)		0 = Disable	es single re	ceive er recention	is comple	ote				
bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 0 bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error 1 = Framing error bit 1: OERR: Overrun Error bit 1 = Overrun error 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)		Synchrono	us mode -	slave	lo compi					
bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)		Unused in	this mode							
Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)	bit 4:	CREN: Co	ntinuous R	eceive Ena	ble bit					
 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		Asynchron	ous mode							
 bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		1 = Enable	s continuo	us receive						
Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)		0 = Disable	es continuo	us receive						
 bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		Synchronc	ous mode		ntil on ohl		lia alaarad			
 bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit = Framing error (Can be updated by reading RCREG register and receive next valid byte) = No framing error bit 1: OERR: Overrun Error bit = Overrun error (Can be cleared by clearing bit CREN) = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		0 = Disable	es continuo	us receive t			NIS Cleared		ennue	S SHEN)
 bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 	bit 3:	Unimplem	ented: Rea	ad as '0'						
 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 	bit 2:	FERR: Fra	ming Error	bit						
 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		1 = Framin	g error (Ca	n be updat	ed by read	ding RCRE	G register	and receive	next	valid byte)
 bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		0 = No frar	ning error							
 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 	bit 1:	OERR: Ov	errun Error	bit						
bit 0: RX9D : 9th bit of received data (Can be parity bit)		1 = Overru 0 = No over	m error (Ca errun error	n pe cleare	u by clear	ning bit CR	EN)			
bit 0. The strok of received data (Call be party bit)	hit 0.		hit of rocoi	vod data (C	an ha na	rity hit)				
	DIE U.	11730. 901	DIL UI IECEI	veu uaia (C	an be pa					

13.8 Power-down Mode (SLEEP)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, status bit \overline{PD} (STATUS<3>) is cleared, status bit \overline{TO} (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, and disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC).

13.8.1 WAKE-UP FROM SLEEP

The device can wake from SLEEP through one of the following events:

- 1. External reset input on MCLR/VPP pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or some peripheral interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/I²C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. USART TX or RX (synchronous slave mode).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the subset of the new provide the instruction after the subset (on address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

13.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the $\overline{\text{PD}}$ bit. If the $\overline{\text{PD}}$ bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

GOTO	Uncondi	tional Br	anch			INCF	Increme	nt f		
Syntax:	[label]	GOTO	k			Syntax:	[label]	INCF f	,d	
Operands:	$0 \le k \le 20$	047				Operands:	$0 \le f \le 12$	27		
Operation:	$k \rightarrow PC < PCLATH$	10:0> <4:3> → I	PC<12:11	>		Operation:	$a \in [0,1]$ (f) + 1 \rightarrow	(destina	tion)	
Status Affected:	None					Status Affected:	Z			
Encoding:	10	1kkk	kkkk	kkkk		Encoding:	00	1010	dfff	ffff
Description:	GOTO is ar eleven bit into PC bit PC are loa GOTO is a	n unconditi immediate ts <10:0>. aded from two cycle i	onal branc value is lo The upper PCLATH<4 nstruction.	h. The baded bits of 4:3>.		Description:	The conte mented. If the W reg placed ba	nts of regi 'd' is 0 the ister. If 'd' ck in regis	ister 'f' are e result is is 1 the re ster 'f'.	e incre- placed in esult is
Words:	1					Words:	1			
Cycles:	2					Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4		Q Cycle Activity:	Q1	Q2	Q3	Q4
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			Decode	Read register	Process data	Write to destination
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation						
		ļ		ļ	1	Example	INCF	CNT,	1	
Example	GOTO T	HERE					Before In	struction	l i	
	After Inst	ruction						CNT	= 0xF	F
		PC =	Address	THERE			After Inst	∠ truction	= 0	
								CNT	= 0x0	0
								Z	= 1	

-

IORWF	Inclusive	e OR W	with f	
Syntax:	[label]	IORWF	f,d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27		
Operation:	(W) .OR.	$(f) \rightarrow (d)$	estinatio	on)
Status Affected:	Z			
Encoding:	00	0100	dfff	ffff
Description:	Inclusive (ter 'f'. If 'd' W register back in re	OR the W is 0 the re r. If 'd' is 1 gister 'f'.	register esult is pl the resu	with regis- aced in the It is placed
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example	IORWF		RESULT	, 0
	Before In	struction	1	
		RESULT	= 0x	13
	After Inst	ruction	= 0x	91
		RESULT	= 0x	13
		W	= 0x	93
		Z	= 1	

MOVLW	Move Lit	eral to V	v	
Syntax:	[label]	MOVLW	/ k	
Operands:	$0 \le k \le 25$	55		
Operation:	$k \to (W)$			
Status Affected:	None			
Encoding:	11	00xx	kkkk	kkkk
Description:	The eight l register. T as 0's.	bit literal 'l he don't c	k' is loaded ares will as	d into W ssemble
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example	MOVLW After Inst	0x5A		
		W =	0x5A	

-

MOVF	Move f						
Syntax:	[label]	MOVF	f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7					
Operation:	$(f) \rightarrow (des$	stination)				
Status Affected:	Z						
Encoding:	00	1000	dfff	ffff			
Description:	The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register f ar since status flag Z is affected						
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write to destination			
Example	MOVF	FSR,	0				
	After Inst	ruction W = valu Z = 1	ie in FSR r	egister			

MOVWF	Move W to f							
Syntax:	[label]	MOVW	F f					
Operands:	$0 \leq f \leq 127$							
Operation:	$(W) \rightarrow (f)$							
Status Affected:	None							
Encoding:	00	0000	lfff	ffff				
Description:	Move data from W register to register							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process data	Write register 'f'				
Example	MOVWF	OPTIC	ON_REG					
	Before Instruction OPTION = 0xFF							
	After Inst	W ruction OPTION	= 0x4F = 0x4F	-				
		W	= 0x4F	=				

RLF	Rotate L	eft f thro	ough Car	ry	RRF	Rotate F	light f th	rough C	arry
Syntax:	[label] RLF f,d			Syntax:	[label]	[label] RRF f,d			
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27			Operands:	$0 \le f \le 12$ $d \in [0,1]$	27		
Operation:	See description below			Operation:	See dese	See description below			
Status Affected:	С				Status Affected:	С			
Encoding:	0 0	1101	dfff	ffff	Encoding:	00	1100	dfff	ffff
Description:	The conte one bit to Flag. If 'd' W register back in reg	nts of reg the left the is 0 the re f. If 'd' is 1 gister 'f'.	ister 'f' are rough the sult is plac the result Register f	e rotated Carry ced in the is stored	Description:	The conte one bit to Flag. If 'd' W register back in re	ents of reg the right t is 0 the re r. If 'd' is 1 gister 'f'. $C \rightarrow$	ister 'f' are hrough the esult is pla the result Register f	e rotated e Carry ced in the is placed
Words:	1				Words:	1			
Cycles:	1				Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination		Decode	Read register 'f'	Process data	Write to destination
Example	RLF	REC	G1,0		Example	RRF		REG1,0	
	Before In	struction REG1 C ruction REG1 W C	= 111 = 0 = 111 = 110 = 1	0 0110 0 0110 0 1100		Before In	estruction REG1 C truction REG1 W C	= 111 = 0 = 111 = 011 = 0	0 0110 0 0110 1 0011

FREQUENCY vs. VDD

FIGURE 16-5: TYPICAL IPD VS. VDD WATCHDOG TIMER **DISABLED 25°C**

Data based on matrix samples. See first page of this section for details.

17.5 <u>Timing Diagrams and Specifications</u>

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	_	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	1,000	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	100	—	_	ns	XT oscillator
	TosH	or Low Time	2.5	—	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	—	25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2	opS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S		_	
F	Fall	P	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st	(I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE	18-1: LOAD CONDITIONS FOR DEVI	CE TIMING S	SPECIFICATIONS
	Load condition 1		Load condition 2
	N/ /0		
	VDD/2		
	J		
	\leq RL		
	\leq		• · · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • • • •		Vss
	+		
	Vss	BI - 4640	
			for all pipe execut OSC2/CL/CUT
		GF = 20 bF	ior all plns except OSO2/OLKOUT
Note 1:	PORTD and PORTE are not	15-5	for OCC2 autout
	implemented on the	15 pF	
	PIC16C62A/R62.		

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

20.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	ppS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:	1	
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st	(I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 2	20-1: LOAD CONDITIONS FOR DEVICE	TIMING SP	ECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		7
	J	\succ	
	\leq RL	Pi	
	$ \leq $		+
	★		Vss
	↓ RL	= 464Ω	
	Vss Cl	= 50 pF fo	or all pins except OSC2/CLKOUT
Note 1:	PORTD and PORTE are not imple-	b	ut including D and E outputs as ports
	mented on the PIC16C63.	15 pF fo	or OSC2 output

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 21-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5TCY + 20	_		ns	Must also meet
				With Prescaler	10	_		ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	-	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	-	—	ns	
				With Prescaler	Greater of:	-	—	ns	N = prescale value
					20 or <u>ICY + 40</u>				(2, 4,, 256)
<i>4</i> 5*	Tt1H	T1CKI High Time	Synchronous P	rescaler – 1	$0.5T_{CV} \pm 20$			ne	Must also meet
		r roki nigir nine	Synchronous	PIC16C6X	15	_		ns	parameter 47
			Prescaler =	PIC16LC6X	25			ns	
			2,4,8		20				
			Asynchronous	PIC16 C 6X	30	_		ns	
				PIC16 LC 6X	50	_		ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler = 1	0.5TCY + 20	—		ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	_	_	ns	
			Asynchronous	PIC16 C 6X	30	—		ns	
				PIC16 LC 6X	50	-	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	Greater of:	—	—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N Creater of				
				PICTOLCOX	50 or Tev + 40				$(1 \ 2 \ 4 \ 8)$
					N				(1, 2, 1, 0)
			Asynchronous	PIC16 C 6X	60	_	_	ns	
				PIC16 LC 6X	100	—	—	ns	
	Ft1	Timer1 oscillator inp	out frequency rar	ige	DC	—	200	kHz	
		(oscillator enabled b	by setting bit T1C	SCEN)					
48	TCKEZtmr1	Delay from external	clock edge to tin	ner increment	2Tosc	-	7Tosc	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR: PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16C64, PIC16C64A, PIC16CR64, PIC16C65A, PIC16C66, PIC16C67

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

FIGURE 23-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

FIGURE 23-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

TABLE 23-1: RC OSCILLATOR FREQUENCIES

Coxt	Povt	Average			
CEAL	HEAL	Fosc @ 5V, 25°C			
22 pF	5k	4.12 MHz	± 1.4%		
	10k	2.35 MHz	± 1.4%		
	100k	268 kHz	± 1.1%		
100 pF	3.3k	1.80 MHz	± 1.0%		
	5k	1.27 MHz	± 1.0%		
	10k	688 kHz	± 1.2%		
	100k	77.2 kHz	± 1.0%		
300 pF	3.3k	707 kHz	± 1.4%		
	5k	501 kHz	± 1.2%		
	10k	269 kHz	± 1.6%		
	100k	28.3 kHz	± 1.1%		

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 23-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 23-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 23-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Data based on matrix samples. See first page of this section for details.

24.9 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic Side Brazed Dual In-Line (CER)								
0h.al	Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
А	3.937	5.030		0.155	0.198			
A1	1.016	1.524		0.040	0.060			
A2	2.921	3.506		0.115	0.138			
A3	1.930	2.388		0.076	0.094			
В	0.406	0.508		0.016	0.020			
B1	1.219	1.321	Typical	0.048	0.052			
С	0.228	0.305	Typical	0.009	0.012			
D	35.204	35.916		1.386	1.414			
D1	32.893	33.147	Reference	1.295	1.305			
E	7.620	8.128		0.300	0.320			
E1	7.366	7.620		0.290	0.300			
e1	2.413	2.667	Typical	0.095	0.105			
eA	7.366	7.874	Reference	0.290	0.310			
eB	7.594	8.179		0.299	0.322			
L	3.302	4.064		0.130	0.160			
Ν	28	28		28	28			
S	1.143	1.397		0.045	0.055			
S1	0.533	0.737		0.021	0.029			