

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
	A 11
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	10MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c67-10-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C6X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C6X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC16C64. These devices have EPROM type memory and operate over the standard voltage range.
- LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range.
- CR, as in PIC16CR64. These devices have ROM program memory and operate over the standard voltage range.
- LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART® Plus and PRO MATE® II programmers both support programming of the PIC16C6X.

2.2 <u>One-Time-Programmable (OTP)</u> Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

ROM devices do not allow serialization information in the program memory space. The user may have this information programmed in the data memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0	•	•	•			•	•	•	•		
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect dat	a memory ac	Idress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PO	ORTC pins w	nen read				xxxx xxxx	uuuu uuuu
08h	— Unimplemented								_	_	
09h	_	— Unimplemented							_	_	
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(6)	(6)	-	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	_	Unimpleme	nted			•				_	_
0Eh	TMR1L	Holding reg	ister for the I	_east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	e 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r	•					0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	ıs Serial Por	t Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	_	Unimpleme	nted							_	_

 $\begin{tabular}{ll} Legend: & $x=$ unknown, $u=$ unchanged, $q=$ value depends on condition, $-=$ unimplemented location read as '0'. \end{tabular}$

- Note 1: These registers can be addressed from either bank.
 - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)
 - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
 - 4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.
 - 5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear.
 - $\hbox{6:} \quad \hbox{PIE1}<7:6> \hbox{ and PIR1}<7:6> \hbox{ are reserved on the PIC16C62}/62A/R62, always maintain these bits clear. } \\$

Shaded locations are unimplemented, read as '0'.

10.0 CAPTURE/COMPARE/PWM (CCP) MODULE(s)

Applicable Devices														
61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	CCP1
61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM master/slave duty cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP modules(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the *Embedded Control Handbook*, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource				
Capture	Timer1				
Compare	Timer1				
PWM	Timer2				

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

11.3 SPI Mode for PIC16C66/67

This section contains register definitions and operational characterisitics of the SPI module on the PIC16C66 and PIC16C67 only.

FIGURE 11-7: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)(PIC16C66/67)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit7							bit0

R = Readable bit W = Writable bit

U = Unimplemented bit, read as '0'- n = Value at POR reset

bit 7: SMP: SPI data input sample phase

SPI Master Mode

- 1 = Input data sampled at end of data output time
- 0 = Input data sampled at middle of data output time

SPI Slave Mode

SMP must be cleared when SPI is used in slave mode

bit 6: CKE: SPI Clock Edge Select (Figure 11-11, Figure 11-12, and Figure 11-13)

CKP = 0

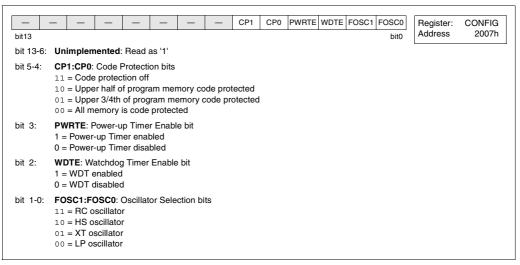
- 1 = Data transmitted on rising edge of SCK
- 0 = Data transmitted on falling edge of SCK

CKP = 1

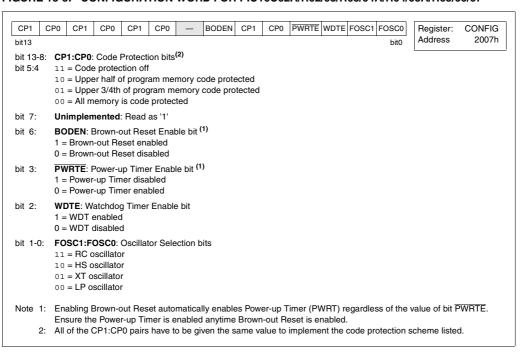
- 1 = Data transmitted on falling edge of SCK
- 0 = Data transmitted on rising edge of SCK
- bit 5: D/A: Data/Address bit (I²C mode only)
 - 1 = Indicates that the last byte received or transmitted was data
 - 0 = Indicates that the last byte received or transmitted was address
- bit 4: **P**: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled, or when the Start bit is detected last, SSPEN is cleared)
 - 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET)
 - 0 = Stop bit was not detected last
- bit 3: Start bit (I²C mode only. This bit is cleared when the SSP module is disabled, or when the Stop bit is detected last, SSPEN is cleared)
 - 1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)
 - 0 = Start bit was not detected last
- bit 2: **R/W**: Read/Write bit information (I²C mode only)

This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next start bit, stop bit, or \overline{ACK} bit.

- 1 = Read
- 0 = Write
- bit 1: **UA**: Update Address (10-bit I²C mode only)
 - 1 = Indicates that the user needs to update the address in the SSPADD register
 - 0 = Address does not need to be updated
- bit 0: **BF**: Buffer Full Status bit


Receive (SPI and I²C modes)

- 1 = Receive complete, SSPBUF is full
- 0 = Receive not complete. SSPBUF is empty


Transmit (I²C mode only)

- 1 = Transmit in progress, SSPBUF is full
- 0 = Transmit complete, SSPBUF is empty

FIGURE 13-2: CONFIGURATION WORD FOR PIC16C62/64/65

FIGURE 13-3: CONFIGURATION WORD FOR PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67

13.3 Reset

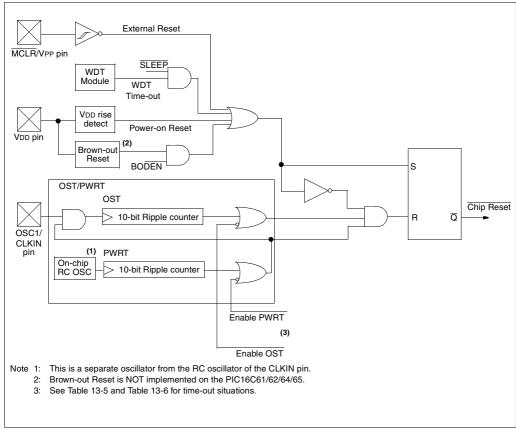
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The PIC16CXX differentiates between various kinds of reset:

- · Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) Not on PIC16C61/62/ 64/65

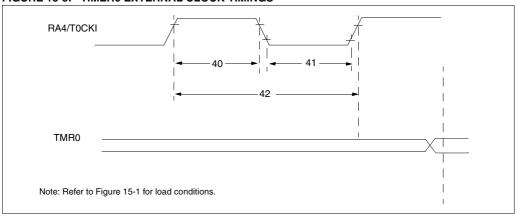
Some registers are not affected in any reset condition, their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on MCLR or WDT Reset, on MCLR reset during SLEEP, and on Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation.


The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 13-7, Table 13-8, and Table 13-9. These bits are used in software to determine the nature of the reset. See Table 13-12 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 13-9.

On the PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67, the MCLR reset path has a noise filter to detect and ignore small pulses. See parameter #34 for pulse width specifications.

It should be noted that a WDT Reset does not drive the MCLR pin low.


FIGURE 13-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Cuntou	[lobol]	DETLIM	L.					
Syntax:	[label]	RETLW	К					
perands:	$0 \le k \le 25$	55						
Operation:	$k \rightarrow (W);$ TOS $\rightarrow F$	C						
Status Affected:	None E							
Encoding:	11	01xx	kkkk	kkkk				
Description:	The W reg bit literal 'k loaded from return add instruction	t'. The proof m the top ress). This	gram coun of the stac	ter is k (the				
Words:	1							
Cycles:	2							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
1st Cycle	Decode	Read literal 'k'	No- Operation	Write to W, Pop from the Stack				
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation				
Example	CALL TABLE	;offse	tains tabl t value has table					
TABLE	ADDWF PC RETLW k1 RETLW k2	;W = 0. ;Begin ;						
	RETLW kn	; End	of table					
	Before In							
	After Inst		0x07					
			value of k8					

RETURN	Return from Subroutine							
Syntax:	[label]	RETURI	V					
Operands:	None							
Operation:	$TOS \to F$	C						
Status Affected:	None							
Encoding:	0.0	0000	0000	1000				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.							
Words:	1							
Cycles:	2							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
1st Cycle	Decode	No- Operation	No- Operation	Pop from the Stack				
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation				
Example	RETURN After Inte	•	тоѕ					

FIGURE 15-5: TIMERO EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMERO EXTERNAL CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet	
			With Prescaler	10	_	_	ns	parameter 42	
41*	* Tt0L T0CKI Low Pulse Width		No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet	
			With Prescaler	10	_	_	ns	parameter 42	
42*	Tt0P	T0CKI Period	No Prescaler	Tcy + 40	_	_	ns	N = prescale value	
			With Prescaler	Greater of: 20 ns or TCY + 40 N	_	_	ns	(2, 4,, 256)	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

| Applicable Devices | 61 | 62 | 62A | R62 | 63 | R63 | 64 | 64A | R64 | 65 | 65A | R65 | 66 | 67 | NOTES:

 Applicable Devices
 61
 62
 62A
 R62
 63
 R63
 64
 64A
 R64
 65
 65A
 R65
 66
 67

NOTES:

18.3 DC Characteristics:

DC CHARACTERISTICS

PIC16C62A/R62/64A/R64-04 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-10 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-20 (Commercial, Industrial, Extended) PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for extended,

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

Operating voltage VDD range as described in DC spec Section 18.1 and Section 18.2

D	01	Section		-		11-14-	0
Param No.	Characteristic	Sym	Min	Typ †	Max	Units	Conditions
NO.				-			
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15VDD		For entire VDD range
D030A			Vss	-	0.8V	V	$4.5V \le V_{DD} \le 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	VDD	V	$4.5V \le V_{DD} \le 5.5V$
D040A			0.25VDD	-	VDD	V	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8VDD	-	VDD	V	For entire VDD range
D042	MCLR		0.8VDD	-	VDD	V	
D042A	OSC1 (XT, HS and LP)		0.7VDD	-	VDD	V	Note1
D043	OSC1 (in RC mode)		0.9VDD	-	VDD	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
1	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μА	Vss ≤ VPIN ≤ VDD, Pin at hi-imped-
	•						ance
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μA	Vss ≤ VPIN ≤ VDD, XT, HS and LP
						-	osc configuration
	Output Low Voltage						
D080	I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
							-40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V,
							-40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V,
							-40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V,
							-40°C to +125°C

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as current sourced by the pin.

DC CHARACTERISTICS

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.3 DC Characteristics: PIC16C65-04 (Commercial, Industrial)

PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial) PIC16LC65-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)

Operating temperature -40°C ≤ TA ≤ +85°C for industrial and

0°C ≤ TA ≤ +70°C for commercial

Operating voltage VDD range as described in DC spec Section 19.1 and

		Section		V DD	range as c	lescribe	ed in DC spec Section 19.1 and
Param No.	Characteristic	Sym	Min	Typ †	Max	Units	Conditions
NO.	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer	V	Vss	_	0.15Vpp	V	For entire VDD range
D030A			Vss	_	0.8V	٧	4.5V ≤ VDD ≤ 5.5V
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	٧	
D032	MCLR, OSC1(in RC mode)		Vss	-	0.2VDD	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	٧	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	VDD	V	$4.5V \leq V_{DD} \leq 5.5V$
D040A			0.25VDD+ 0.8V	-	VDD	V	For entire VDD range
D041	with Schmitt Trigger buffer		0.8Vpp	_	Vpp		For entire VDD range
D042	MCLR		0.8VDD	_	VDD	V	To online VEE range
D042A	OSC1 (XT, HS and LP)		0.7 VDD	_	VDD	٧	Note1
D043	OSC1 (in RC mode)		0.9VDD	_	VDD	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μА	VDD = 5V, VPIN = VSS
	Input Leakage Current						
	(Notes 2, 3)						
D060	I/O ports	Iı∟	-	-	±1	μΑ	$Vss \leq VPIN \leq VDD, \ Pin \ at \ hiimpedance$
D061	MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \leq VPIN \leq VDD$
D063	OSC1		-	-	±5	μА	$Vss \leq VPIN \leq VDD, \ XT, \ HS, \ and \ LP \ osc \ configuration$
	Output Low Voltage						
D080	I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5 V, -40 °C to $+85$ °C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = $4.5V$, -40° C to $+85^{\circ}$ C
D150*	Open-Drain High Voltage	VOD	-	-	14	V	RA4 pin

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.4 **Timing Parameter Symbology**

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
T			
F	Frequency	Т	Time
Lowerd	case letters (pp) and their meanings:		
pp			
СС	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	t0	T0CKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperd	case letters and their meanings:	•	
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			

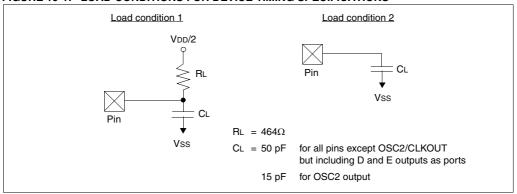
Bus free Tcc:st (I²C specifications only)

output access

AA

BUF

CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		


High

Low

High

Low

FIGURE 19-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

19.5 Timing Diagrams and Specifications

FIGURE 19-2: EXTERNAL CLOCK TIMING

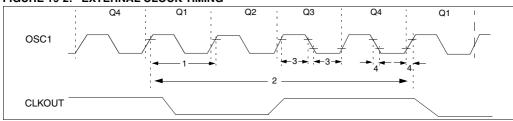


TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μS	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	_	250	ns	HS osc mode (-20)
			5	_	_	μS	LP osc mode
2	Tcy	Instruction Cycle Time (Note 1)	200	Tcy	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	_	_	ns	XT oscillator
	TosH	Low Time	2.5	_	_	μS	LP oscillator
			15	_	_	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	_	_	50	ns	LP oscillator
			_		15	ns	HS oscillator

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

20.2 DC Characteristics: PIC16LC63/65A-04 (Commercial, Industrial)

DC CHA		Standa Operatir		•		°C ≤	Inless otherwise stated) TA ≤ +85°C for industrial and TA ≤ +70°C for commercial
Param No.	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
D001	Supply Voltage	VDD	2.5		6.0	٧	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	٧	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	BVDD	3.7	4.0	4.3	٧	BODEN configuration bit is enabled
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μΑ	LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	ΔIBOR	-	350	425	μΑ	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3, 5)		-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C
D023*	Brown-out Reset Current (Note 6)	$\Delta IBOR$	-	350	425	μΑ	BOR enabled, VDD = 5.0V

- These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

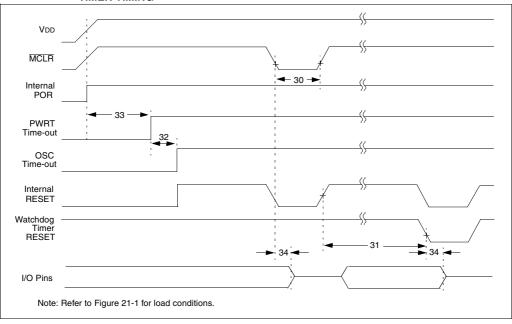


FIGURE 21-5: BROWN-OUT RESET TIMING

TABLE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc		_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset	_	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	VDD ≤ BVDD (D005)

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

DC CHARACTERISTICS

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

22.3 DC Characteristics: PIC16C66/67-04 (Commercial, Industrial, Extended)

PIC16C66/67-10 (Commercial, Industrial, Extended)

PIC16C66/67-20 (Commercial, Industrial, Extended)

PIC16LC66/67-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)

 \leq TA \leq +125°C for extended, Operating temperature -40°C

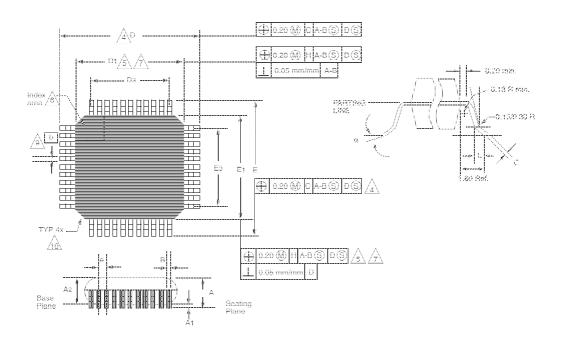
-40°C \leq TA \leq +85°C for industrial and 0°C < TA < +70°C for commercial

Operating voltage VDD range as described in DC spec Section 22.1

and Section 22.2						
Characteristic	Sym	Min		Max	Units	Conditions
			†			
•	VIL					
with TTL buffer			-		-	For entire VDD range
			-		-	$4.5V \le VDD \le 5.5V$
			-	_		
· · · · · · · · · · · · · · · · · · ·			-	-	-	
,		Vss	-	0.3Vdd	V	Note1
•	VIH		-			
with TTL buffer			-		-	$4.5V \le V_{DD} \le 5.5V$
		-	-	VDD	V	For entire VDD range
		+ 0.8V				
with Calcusta Triannan buffer		0.01/00		1/00	.,	For outing Van yours
					-	For entire VDD range
					-	Natad
, ,		_	-		-	Note1
			-			V
	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
I/O ports	IIL	-	-	±1	μΑ	Vss ≤ VPIN ≤ VDD, Pin at hi- impedance
MCLR, RA4/T0CKI		-	-	±5	μΑ	$Vss \leq VPIN \leq VDD$
OSC1		-	-	±5	μΑ	Vss ≤ VPIN ≤ VDD, XT, HS and
						LP osc configuration
Output Low Voltage						
I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
						-40°C to +85°C
		-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V,
						-40°C to +125°C
OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
		-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C
	Input Low Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR, OSC1 (in RC mode) OSC1 (in XT, HS and LP) Input High Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR OSC1 (XT, HS and LP) OSC1 (in RC mode) PORTB weak pull-up current Input Leakage Current (Notes 2, 3) I/O ports MCLR, RA4/T0CKI OSC1 Output Low Voltage I/O ports	Characteristic Sym	Characteristic Sym Min Input Low Voltage I/O ports With TTL buffer Vss Vss with Schmitt Trigger buffer Wss Vss OSC1 (in RC mode) Vss Vss Input High Voltage I/O ports With TTL buffer Vih with TTL buffer 2.0 0.25VDD	Characteristic Sym Min Typ † Input Low Voltage I/O ports With TTL buffer Vss - Vs	Characteristic Sym Min Typ Max	Characteristic Sym Min Typ Max Units

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input volt-

^{3:} Negative current is defined as current sourced by the pin.

24.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)

Mote: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Plastic MQFP							
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	7°		0°	7°		
Α	2.000	2.350		0.078	0.093		
A1	0.050	0.250		0.002	0.010		
A2	1.950	2.100		0.768	0.083		
b	0.300	0.450	Typical	0.011	0.018	Typical	
С	0.150	0.180		0.006	0.007		
D	12.950	13.450		0.510	0.530		
D1	9.900	10.100		0.390	0.398		
D3	8.000	8.000	Reference	0.315	0.315	Reference	
E	12.950	13.450		0.510	0.530		
E1	9.900	10.100		0.390	0.398		
E3	8.000	8.000	Reference	0.315	0.315	Reference	
е	0.800	0.800		0.031	0.032		
L	0.730	1.030		0.028	0.041		
N	44	44		44	44		
CP	0.102	-		0.004	_		

TMR024, 26, 28, 30, 32, TMR0 Clock Source Select bit, T0CS	
TMR0 Interrupt	
TMR0 Overflow Interrupt Enable bit, T0IE	
TMR0 Overflow Interrupt Flag bit, T0IF	
TMR0 Prescale Selection Table	
TMR0 Source Edge Select bit, T0SE	
TMR1 Overflow Interrupt Enable bit, TMR1IE	
TMR1 Overflow Interrupt Flag bit, TMR1IF	
TMR1CS	
TMR1H24, 26, 28, 30, 32,	
TMR1IE	
TMR1IF	41
TMR1L24, 26, 28, 30, 32,	34
TMR10N	71
TMR224, 26, 28, 30, 32,	34
TMR2 Register	75
TMR2 to PR2 Match Interrupt Enable bit, TMR2IE	
TMR2 to PR2 Match Interrupt Flag bit, TMR2IF	41
TMR2IE	38
TMR2IF	41
TMR2ON	
TO	
TOUTPS3:TOUTPS0	
Transmit Enable bit, TXEN	
Transmit Shift Register Status bit, TRMT 1	
Transmit Status and Control Register1	
TRISA	
TRISB	
TRISC25, 27, 29, 31, 33, 34, 55,	
TRISD	
TRISE	
TRMT1	
TV6	
TX9	05
TX9D1	05 05
TX9D	05 05 05
TX9D	05 05 05 39
TX9D	05 05 05 39 42
TX9D	05 05 05 39 42 34
TX9D	05 05 05 39 42 34
TX9D	05 05 05 39 42 34 05
TX9D	05 05 39 42 34 05 89 ter
TX9D	05 05 05 39 42 34 05 89 ter
TX9D	05 05 05 39 42 34 05 89 ter 13 12
TX9D	05 05 05 39 42 34 05 89 ter 13 12
TX9D	05 05 39 42 34 05 89 ter 13 12 15
TX9D	05 05 39 42 34 05 89 ter 13 12 15 14
TX9D	05 05 39 42 34 05 89 ter 13 12 15 14
TX9D	05 05 39 42 34 05 89 ter 13 12 15 14
TX9D	05 05 39 42 34 05 89 ter 13 12 15 14 14 05
TX9D	05 05 39 42 34 05 89 ter 13 12 15 14 14 14 15 18
TX9D	05 05 05 39 42 34 05 89 ter 13 12 15 14 14 14 05 18 16
TX9D 1 TXEN 1 TXIE TXIE TXREG 24, 26, 28, 30, 32, TXSTA TXSTA 25, 27, 29, 31, 33, 34, 1 U UA UA 84, Universal Synchronous Asynchronous Receiver Transmit (USART) Asynchronous Mode Setting Up Transmission Setting Up Transmission 1 Transmitter 1 Asynchronous Receiver 1 Setting Up Reception 1 Timing Diagram 1 Asynchronous Receiver Mode 1 Block Diagram 1 Section 1	05 05 05 39 42 34 05 89 ter 13 13 12 15 14 14 15 18 16 18
TX9D	05 05 05 39 42 34 05 89 tter 13 12 15 14 14 15 16 18 16
TX9D 1 TXEN 1 TXIE 1 TXREG 24, 26, 28, 30, 32, 7XSTA TXSTA 25, 27, 29, 31, 33, 34, 1 U UA UA 84, Universal Synchronous Asynchronous Receiver Transmit (USART) Asynchronous Mode Setting Up Transmission Setting Up Transmission 1 Timing Diagram, Master Transmission 1 Transmitter 1 Asynchronous Receiver 1 Setting Up Reception 1 Timing Diagram 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Setting Up Reception 1 Setting Up Transmission 1 Timing Diagram, Reception 1	05 05 39 42 34 05 89 ter 13 12 15 14 14 15 16 18 16 19
TX9D	05 05 39 42 34 05 89 ter 13 13 12 15 14 14 15 16 18 16 19 17

Synchronous Slave Mode	
Reception	120
Section	120
Setting Up Reception	120
Setting Up Transmission	120
Transmit	120
Transmit Block Diagram	112
Jpdate Address bit, UA	84, 89
JSART Receive Interrupt Enable bit, RCIE	39
JSART Receive Interrupt Flag bit, RCIF	42
JSART Transmit Interrupt Enable bit, TXIE	39
JSART Transmit Interrupt Flag bit, TXIF	42
JV Erasable Devices	7
W	
••	
Wake-up from Sleep	
Wake-up on Key Depression	
Wake-up Using Interrupts	141
Watchdog Timer (WDT)	
Block Diagram	140
Period	
Programming Considerations	
Section	
WCOL	
Weak Internal Pull-ups	
Write Collision Detect bit, WCOL	85, 90
x	
XMIT MODE	104
XT	
z	
Z	35
Zero bit	
	5, 00

Figure 23-12:	SPI Slave Mode Timing (CKE = 1) 276
Figure 23-13:	I ² C Bus Start/Stop Bits Timing278
Figure 23-14:	I ² C Bus Data Timing279
Figure 23-15:	USART Synchronous Transmission
	(Master/Slave) Timing280
Figure 23-16:	USART Synchronous Receive
	(Master/Slave) Timing280
Figure 24-1:	Typical IPD vs. VDD
	(WDT Disabled, RC Mode)281
Figure 24-2:	Maximum IPD vs. VDD
	(WDT Disabled, RC Mode)281
Figure 24-3:	Typical IPD vs. VDD @ 25°C
	(WDT Enabled, RC Mode)282
Figure 24-4:	Maximum IPD vs. VDD
	(WDT Enabled, RC Mode)282
Figure 24-5:	Typical RC Oscillator
	Frequency vs. VDD282
Figure 24-6:	Typical RC Oscillator
	Frequency vs. VDD282
Figure 24-7:	Typical RC Oscillator
	Frequency vs. VDD282
Figure 24-8:	Typical IPD vs. VDD Brown-out
	Detect Enabled (RC Mode)283
Figure 24-9:	Maximum IPD vs. VDD Brown-out
	Detect Enabled
	(85°C to -40°C, RC Mode)283
Figure 24-10:	Typical IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1 = 33 pF/33 pF,
	RC Mode)283
Figure 24-11:	Maximum IPD vs. Timer1 Enabled
	(32 kHz, RC0/RC1 = 33 pF/33 pF,
	85°C to -40°C, RC Mode)
Figure 24-12:	Typical IDD vs. Frequency
	(RC Mode @ 22 pF, 25°C)284
Figure 24-13:	Maximum IDD vs. Frequency
E: 04.44	(RC Mode @ 22 pF, -40°C to 85°C)284
Figure 24-14:	Typical IDD vs. Frequency
Fig 04 45.	(RC Mode @ 100 pF, 25°C)
Figure 24-15:	Maximum IDD vs. Frequency
Fig 04 40:	(RC Mode @ 100 pF, -40°C to 85°C) 285
Figure 24-16:	Typical IDD vs. Frequency
Fig 04 17:	(RC Mode @ 300 pF, 25°C)
Figure 24-17:	Maximum IDD vs. Frequency
Eiguro 24 10:	(RC Mode @ 300 pF, -40°C to 85°C)286 Typical IDD vs. Capacitance @ 500 kHz
Figure 24-18:	
Figure 24-19:	(RC Mode)
Figure 24-19.	Oscillator vs. VDD287
Eiguro 24 20:	Transconductance(gm) of LP
Figure 24-20:	Oscillator vs. VDD287
Figure 24-21:	Transconductance(gm) of XT
rigule 24-21.	Oscillator vs. VDD287
Figure 24-22:	Typical XTAL Startup Time vs. VDD
1 igule 24-22.	(LP Mode, 25°C)288
Figure 24-23:	Typical XTAL Startup Time vs. VDD
1 iguit 24 20.	(HS Mode, 25°C)288
Figure 24-24:	Typical XTAL Startup Time vs. VDD
guio 27 24.	(XT Mode, 25°C)288
Figure 24-25:	Typical Idd vs. Frequency
guio 27 20.	(LP Mode, 25°C)289
Figure 24-26:	Maximum IDD vs. Frequency
g	(LP Mode, 85°C to -40°C)289
Figure 24-27:	Typical IDD vs. Frequency
·9	(XT Mode, 25°C)289
Figure 24-28:	Maximum IDD vs. Frequency
3	(XT Mode, -40°C to 85°C)289

Figure 24-29:	Typical IDD vs. Frequency
	(HS Mode, 25°C)
Figure 24-30:	Maximum IDD vs. Frequency
	(HS Mode, -40°C to 85°C)