

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c67-20-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C61** device has 36 bytes of RAM and 13 I/O pins. In addition a timer/counter is available.

The **PIC16C62/62A/R62** devices have 128 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPITM) or the two-wire Inter-Integrated Circuit (I²C) bus.

The **PIC16C63/R63** devices have 192 bytes of RAM, while the **PIC16C66** has 368 bytes. All three devices have 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I^2C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also know as a Serial Communications Interface or SCI.

The **PIC16C64/64A/R64** devices have 128 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. An 8-bit Parallel Slave Port is also provided.

The **PIC16C65/65A/R65** devices have 192 bytes of RAM, while the **PIC16C67** has 368 bytes. All four devices have 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmit-

ter (USART) is also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is also provided.

The PIC16C6X device family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers a power saving mode. The user can wake the chip from SLEEP through several external and internal interrupts, and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control to low-power remote sensors, keyboards and telecom processors. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use, and I/O flexibility make the PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions, and co-processor applications).

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to PIC16CXX family of devices (Appendix B).

1.2 Development Support

PIC16C6X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 15.0 for more details about Microchip's development tools.

5.5 PORTE and TRISE Register

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTE has three pins, RE2/CS, RE1/WR, and RE0/RD which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which controls the parallel slave port operation and also controls the direction of the PORTE pins.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1		
IBF	OBF	IBOV	PSPMODE	_	bit2	bit1	bit0	R = Readable bit	
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7 :	IBF: Input 1 = A word 0 = No wor	Buffer Full has been d has beer	Status bit received and n received	is waiting t	o be read by	the CPU			
bit 6:	OBF : Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read								
bit 5:	IBOV : Input 1 = A write 0 = No over	t Buffer Ov occurred v rflow occu	verflow Detect when a previo rred	bit (in mic) usly input v	roprocessor i word has not	node) been read	(must be cle	ared in software)	
bit 4:	PSPMODE 1 = Paralle 0 = Genera	E: Parallel S I slave por al purpose	Slave Port Mo t mode I/O mode	de Select k	bit				
bit 3:	Unimplem	ented: Re	ad as '0'						
	PORTE D	ata Direc	ction Bits						
bit 2:	Bit2 : Direct 1 = Input 0 = Output	tion Contro	ol bit for pin R	E2/CS					
bit 1:	Bit1: Direc 1 = Input 0 = Output	tion Contro	ol bit for pin R	E1/WR					
bit 0:	Bit0 : Direc 1 = Input 0 = Output	tion Contro	ol bit for pin R	E0/RD					

10.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 10-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	mode value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
: this	value		

10.2 Compare Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven High
- Driven Low
- · Remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time interrupt flag bit CCP1IF is set.

FIGURE 10-3: COMPARE MODE OPERATION BLOCK DIAGRAM

10.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

10.2.1 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

10.2.2 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

10.2.3 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 and CCP2 resets the TMR1 register pair. This allows the CCPR1H:CCPR1L and CCPR2H:CCPR2L registers to effectively be 16-bit programmable period register(s) for Timer1.

For compatibility issues, the special event trigger output of CCP1 (<u>PIC16C72</u>) and CCP2 (all other <u>PIC16C7X</u> devices) also starts an A/D conversion.

Note: The "special event trigger" from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

11.5 <u>SSP I²C Operation</u>

The SSP module in I^2C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>).

FIGURE 11-24: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I^2C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C Firmware controlled Master Mode, slave is idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user first needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

FIGURE 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	CSRC: Clo	ck Source	Select bit					<u>,</u>
	Asynchron Don't care	<u>ous mode</u>						
	Synchrono 1 = Master 0 = Slave n	<u>us mode</u> mode (Clo node (Cloo	ock generat k from exte	ed interna rnal sourc	lly from BR æ)	G)		
bit 6:	TX9 : 9-bit 1 = Selects 0 = Selects	Transmit Ei 9-bit trans 8-bit trans	nable bit smission smission					
bit 5:	TXEN : Tran 1 = Transm 0 = Transm Note: SRE	nsmit Enab iit enabled iit disabled N/CREN o	le bit verrides Τλ	EN in SYI	NC mode.			
bit 4:	SYNC: US 1 = Synchr 0 = Asynch	ART Mode onous moo ironous mo	Select bit de ode					
bit 3:	Unimplem	ented: Re	ad as '0'					
bit 2:	BRGH: Hig	h Baud Ra	ate Select b	it				
	Asynchron 1 = High sp	<u>ous mode</u> beed						
	Note:	For the P experienc higher ba mation or	IC16C63/F e a high ra ud rate tha use the PI	63/65/65/ te of recein BRGH = C16C66/6	VR65 the a ive errors. I = 0 can sup 7.	synchrond t is recom port, refer	ous high spe mended that to the devic	ed mode (BRGH = 1) may BRGH = 0. If you desire a e errata for additional infor-
	0 = Low sp	eed						
	Synchrono Unused in	<u>us mode</u> this mode						
bit 1:	TRMT : Trai 1 = TSR er 0 = TSR fu	nsmit Shift npty II	Register S	tatus bit				
bit 0:	TX9D : 9th	bit of trans	mit data. C	an be pari	ty bit.			

12.2 USART Asynchronous Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In this mode, the USART uses standard nonreturn-tozero (NRZ) format (one start bit, eight or nine data bits and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

12.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 12-7. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TcY) the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt is enabled/dis-

abled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data
	memory so it is not available to the user.

Note 2: Flag bit TXIF is set when enable bit TXEN is set.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 12-7). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register resulting in an empty TXREG register. A back-to-back transfer is thus possible (Figure 12-9). Clearing enable bit TXEN during a transmission will cause the transmistion to be aborted and will reset the transmitter. As a result the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit maybe loaded in the TSR register.

FIGURE 12-7: USART TRANSMIT BLOCK DIAGRAM

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, then set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 12-9: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	REG USART Transmit Register								0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	ТХ9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register								0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

TABLE 13-9:	STATUS BITS AND THEIR SIGNIFICANCE FOR
	PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67

POR	BOR	то	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on a Power-on Reset
0	x	x	0	Illegal, PD is set on a Power-on Reset
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR reset during normal operation
1	1	1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

Legend: x = unknown, u = unchanged

TABLE 13-10: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C61/62/64/65

	Program Counter	STATUS	PCON ⁽²⁾
Power-on Reset	000h	0001 1xxx	0 -
MCLR reset during normal operation	000h	000u uuuu	u-
MCLR reset during SLEEP	000h	0001 0uuu	u-
WDT Reset	000h	0000 luuu	u-
WDT Wake-up	PC + 1	uuu0 0uuu	u-
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

2: The PCON register is not implemented on the PIC16C61.

TABLE 13-11: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67

	Program Counter	STATUS	PCON
Power-on Reset	000h	0001 1xxx	0x
MCLR reset during normal operation	000h	000u uuuu	uu
MCLR reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
Brown-out Reset	000h	0001 luuu	u0
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

FIGURE 16-20: IOH VS. VOH, VDD = 5V

FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 18-5: BROWN-OUT RESET TIMING

TABLE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter	Sym	Characteristic		Тур†	Max	Units	Conditions
NO.							
30	TmcL	MCLR Pulse Width (low)	2	—	-	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc		-	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT Reset	—	—	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—	_	μs	$VDD \le BVDD$ (param. D005)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-8: PARALLEL SLAVE PORT TIMING (PIC16C64A/R64)

TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64A/R64)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup time)		20		—	ns	
				25	_	_	ns	Extended Range Only
63*	TwrH2dtl	$\overline{\text{WR}}^{\uparrow}$ or $\overline{\text{CS}}^{\uparrow}$ to data–in invalid (hold	PIC16 C 64A/R64	20	I	_	ns	
		time)	PIC16 LC 64A.R64	35	_	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid			I	80	ns	
				—	_	90	ns	Extended Range Only
65*	TrdH2dtl	\overline{RD} or \overline{CS} to data-out invalid		10	-	30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

FIGURE 19-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 19-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
No.								
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16 C 65		_	80	ns	
		Clock high to data out valid	PIC16LC65		_	100	ns	
121	121 Tckrf Clock out rise time and fall time (Master Mode)	Clock out rise time and fall time	PIC16 C 65		-	45	ns	
		(Master Mode)	PIC16LC65		-	50	ns	
122	122 Tdtrf Data out rise time and fall time	PIC16 C 65		-	45	ns		
			PIC16LC65	_	_	50	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK \downarrow (DT setup time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	—	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

21.3 DC Characteristics: PIC16CR63/R65-04 (Commercial, Industrial) PIC16CR63/R65-10 (Commercial, Industrial) PIC16CR63/R65-20 (Commercial, Industrial) PIC16LCR63/R65-04 (Commercial, Industrial)

		Standa	rd Operat	ing (Conditions	s (unle	ss otherwise stated)
		Operatir	ng temper	ature	-40°C	C ≤ T.	$A \leq +85^{\circ}C$ for industrial and
DC CHA	RACTERISTICS				0°C	≤ T.	$A \leq +70^{\circ}C$ for commercial
		Operatin	ng voltage	VDD	range as o	describ	ed in DC spec Section 21.1 and
Danama	Oberresterietie	Section	21.2	True	Max	Linite	Oanditiana
Param	Characteristic	Sym	MIN	iyp +	Max	Units	Conditions
110.	Innut I an Valtana			-			
D000		VIL	Vee		0.151/00		
D030	with IIL buffer		VSS	-	0.15VDD	V	For entire VDD range $4.5\% < 5.5\%$
D030A	with Cohmitt Trigger buffer		VSS Voo	-		v	$4.5V \leq VDD \leq 5.5V$
D031			V55	-		v	
D032	MCLR, USC1 (In RC mode)		VSS	-	0.2VDD	V	Neted
D033	USC1 (In XT, HS and LP)		VSS	-	0.3VDD	V	Note 1
5040		VIH		-	N/		
D040	with IIL buffer		2.0	-	VDD	V	$4.5V \le VDD \le 5.5V$
D040A			0.25VDD	-	VDD	v	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9VDD	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$V_{SS} \leq V_{PIN} \leq V_{DD}$
D063	OSC1		-	-	±5	μ Α	Vss \leq VPIN \leq VDD, XT, HS and
							LP osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5 V,
							-40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,
							-40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V,
							-40°C to +85°C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V,
							-40°C to +85°C
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-3: CLKOUT AND I/O TIMING

TABLE 21-3: CLKOUT AND I/O TIMING REQUIREMENT

Param	Sym	Characteristic	<	Min	Typt	Max	Units	Conditions
No.				$\langle - \rangle \langle$	\sum			
10*	TosH2ckL	OSC1↑ to CLKOUT↓		$\langle \mathcal{F} \rangle$	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑			75	200	ns	Note 1
12*	TckR	CLKOUT rise time	$\sim V $	\searrow	35	100	ns	Note 1
13*	TckF	CLKOUT fall time	\sum	> -	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid	$ _{A} _{\wedge}$	[_		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	$///\sim$	Tosc + 200	-	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑	$\overline{\langle \langle \rangle}$	0	I	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out val	id 🔪	—	50	150	ns	
18*	TosH2ioI	OSC11 (Q2 cycle) to Port input	P1C16CR63/R65	100		_	ns	
		invalid (I/O in hold time)	PIC16LCR63/R65	200		_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/Q in	setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16CR63/R65	—	10	40	ns	
		\frown	PIC16LCR63/R65	_	-	80	ns	
21*	TioF	Port output fall time	PIC16CR63/R65	_	10	40	ns	
	\langle	$\langle \rangle \rangle$	PIC16LCR63/R65	—		80	ns	
22††*	Tinp	INT pin high or low time		Тсү	-	_	ns	
23††*	Trbp	RB7:RB2 change INT high or low	time	Тсү	_	—	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t† These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-11: I²C BUS DATA TIMING

TABLE 21-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	-		
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μS	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μS	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	_	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs	
		time	400 kHz mode	0.6	_	μs	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	-	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-13: I²C BUS START/STOP BITS TIMING

TABLE 22-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Мах	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	—	—	ne	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	—	113	condition
91*	THD:STA	START condition	100 kHz mode	4000	—	—	20	After this period the first clock
		Hold time	400 kHz mode	600	_	_	115	pulse is generated
92*	TSU:STO	STOP condition	100 kHz mode	4700	_	_	ne	
		Setup time	400 kHz mode	600	_	_	115	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ne	
		Hold time	400 kHz mode	600	—	—	115	

These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-14: I²C BUS DATA TIMING

TABLE 22-10: I²C BUS DATA REQUIREMENTS

Parameter	Sym	Characteristic		Min	Max	Units	Conditions
No.							
100*	THIGH	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	_	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	_
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μS	_
		time	400 kHz mode	0.6	_	μs	
109*	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	—	μs	betore a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

TABLE 23-1: RC OSCILLATOR FREQUENCIES

Coxt	Povt	Average					
CEAL	HEAL	Fosc @ 5V, 25°C					
22 pF	5k	4.12 MHz	± 1.4%				
	10k	2.35 MHz	± 1.4%				
	100k	268 kHz	± 1.1%				
100 pF	3.3k	1.80 MHz	± 1.0%				
	5k	1.27 MHz	± 1.0%				
	10k	688 kHz	± 1.2%				
	100k	77.2 kHz	± 1.0%				
300 pF	3.3k	707 kHz	± 1.4%				
	5k	501 kHz	± 1.2%				
	10k	269 kHz	± 1.6%				
	100k	28.3 kHz	± 1.1%				

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 23-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 23-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD

FIGURE 23-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Data based on matrix samples. See first page of this section for details.

I ² C Bus Start/Stop Bits	244
Oscillator Start-up Timer	239
Parallel Slave Port	242
Power-up Timer	239
Reset	239
SPI Mode	243
Timer0	
Timer1	240
USABT Synchronous Beceive	
(Master/Slave)	246
Watchdog Timer	230
	209
Brown out Boost	071
Conture/Compare/DW/M	271
	273
	270
I ² C Bus Data	279
I ² C Bus Start/Stop Bits	278
Oscillator Start-up Timer	271
Power-up Timer	271
Reset	271
Timer0	272
Timer1	272
USART Synchronous Receive	
(Master/Slave)	280
Watchdog Timer	271
PIC16C67	
Brown-out Reset	271
Capture/Compare/PWM	273
CLKOUT and I/O	
External Clock	269
l ² C Bus Data	279
I ² C Bus Start/Ston Bits	278
Oscillator Start-up Timer	271
Parallel Slave Port	274
Power up Timer	071
Power-up Timer	271
TimorO	271
	212
	272
(Master/Claus)	000
(Master/Slave)	
watchdog Timer	271
PIC16CR62	
Capture/Compare/PWM	209
CLKOUT and I/O	206
External Clock	205
I ⁻ C Bus Data	213
I ² C Bus Start/Stop Bits	212
Oscillator Start-up Timer	207
Power-up Timer	207
Reset	207
SPI Mode	211
Timer0	
	208
Timer1	208 208

PIC16CR63	
Brown-out Reset	. 255
Capture/Compare/PWM	. 257
CLKOUT and I/O	. 254
External Clock	. 253
I ² C Bus Data	. 261
I ² C Bus Start/Stop Bits	. 260
Oscillator Start-up Timer	. 255
Power-up Timer	. 255
Reset	. 255
SPI Mode	. 259
Timero	256
	. 200
(Master/Slave)	262
Watchdog Timer	255
PIC16CR64	. 200
Capture/Compare/PWM	. 209
CLKOUT and I/O	. 206
External Clock	. 205
I ² C Bus Data	. 213
I ² C Bus Start/Stop Bits	. 212
Oscillator Start-up Timer	. 207
Parallel Slave Port	. 210
Power-up Timer	. 207
Reset	. 207
SPI Mode	. 211
Timer0	. 208
Timer1	. 208
Watchdog Timer	. 207
PICIBURDS Brown out Poset	255
Capture/Compare/PWM	255
CLKOUT and I/O	254
External Clock	253
I ² C Bus Data	261
I ² C Bus Start/Stop Bits	. 260
Oscillator Start-up Timer	. 255
Parallel Slave Port	. 258
Power-up Timer	. 255
Reset	. 255
SPI Mode	. 259
Timer0	. 256
Timer1	. 256
USART Synchronous Receive	
(Master/Slave)	. 262
Watchdog Timer	. 255
Power-up Timer	. 223
PWM Output	80
RB0/INT Interrupt	. 138
RX PIn Sampling ITU	, 111
SPI Master Mode	93
No SS Control	88
SPI Mode Slave Mode With SS Control	88
SPI Slave Mode (CKE = 1)	94
SPI Slave Mode Timing (CKE = 0)	93
Timer0 with External Clock	67
TMR0 Interrupt Timing	66
USART Asynchronous Master Transmission	. 113
USART Asynchronous Master Transmission	
(Back to Back)	. 113
USART Asynchronous Reception	. 114
USART Synchronous Reception in	
Master Mode	. 119
USART Synchronous Tranmission	. 117
Wake-up from SLEEP Through Interrupts	. 142

-

-