

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c67-20-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

		PIC16C61	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63	
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	
	EPROM Program Memory (x14 words)	1K	2К	—	4K	_	
Memory	ROM Program Memory (x14 words)		_	2К	—	4K	
	Data Memory (bytes)	36	128	128	192	192	
	Timer Module(s)	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	
Peripherals	Capture/Compare/ PWM Module(s)	_	1	1	2	2	
	Serial Port(s) (SPI/I ² C, USART)	_	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART	
	Parallel Slave Port	_	_	—	_	_	
	Interrupt Sources	3	7	7	10	10	
	I/O Pins	13	22	22	22	22	
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	
	Brown-out Reset	_	Yes	Yes	Yes	Yes	
	Packages	18-pin DIP, SO	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC	

		PIC16C64A	PIC16CR64	PIC16C65A	PIC16CR65	PIC16C66	PIC16C67
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2К	_	4K	_	8K	8K
Memory	ROM Program Memory (x14 words)	—	2К	_	4K	_	_
	Data Memory (bytes)	128	128	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	1	1	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	_	Yes
	Interrupt Sources	8	8	11	11	10	11
	I/O Pins	33	33	33	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
Features	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages		40-pin DIP; 44-pin PLCC, MQFP, TQFP		40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

NOTES:

-

TABLE 5-11: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD	bit0	ST/TTL ⁽¹⁾	Input/output port pin or Read control input in parallel slave port mode. RD 1 = Not a read operation 0 = Read operation. The system reads the PORTD register (if chip selected)
RE1/WR	bit1	ST/TTL ⁽¹⁾	Input/output port pin or Write control input in parallel slave port mode. WR 1 = Not a write operation 0 = Write operation. The system writes to the PORTD register (if chip selected)
RE2/CS	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Chip select control input in parallel slave port mode. CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port (PSP) mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
09h	PORTE		—	_	—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Data Direction Bits			0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells not used by PORTE.

FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

TABLE 5-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1		Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	—			_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	PORTE Data Direction Bits		0000 -111	0000 -111
0Ch	PIR1	PSPIF	(1)	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TRM1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	(1)	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved, always maintain these bits clear.

2: These bits are implemented on the PIC16C65/65A/R65/67 only.

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

All PIC16C6X devices have three timer modules except for the PIC16C61, which has one timer module. Each module can generate an interrupt to indicate that an event has occurred (i.e., timer overflow). Each of these modules are detailed in the following sections. The timer modules are:

- Timer0 module (Section 7.0)
- Timer1 module (Section 8.0)
- Timer2 module (Section 9.0)

6.1 <u>Timer0 Overview</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. TMR0 can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u>

Ap	plicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

TImer1 also has a prescaler option which allows TMR1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. TMR1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit compare and must be synchronized to the device.

6.3 <u>Timer2 Overview</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer2 is an 8-bit timer with a programmable prescaler and a programmable postscaler, as well as an 8-bit Period Register (PR2). Timer2 can be used with the CCP module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16.

The postscaler allows TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 <u>CCP Overview</u>

e Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The CCP module(s) can operate in one of three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs, an interrupt can be generated and the output pin CCPx can be forced to a given state (High or Low) and Timer1 can be reset. This depends on control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.

SWITCHING PRESCALER ASSIGNMENT 7.3.1

The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note:	To avoid an unintended device RESET, the							
	following instruction sequence (shown in							
	Example 7-1) must be executed when							
	changing the prescaler assignment from							
	Timer0 to the WDT. This precaution must							
	be followed even if the WDT is disabled.							

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0→WDT)

	1)	BSF	STATUS, RPO	;Bank 1
Lines 2 and 3 do NOT have to	2)	MOVLW	b'xx0x0xxx'	;Select clock source and prescale value of
be included if the final desired	3)	MOVWF	OPTION_REG	;other than 1:1
prescale value is other than 1:1.	4)	BCF	STATUS, RPO	;Bank 0
If 1:1 is final desired value, then a temporary prescale value is	5)	CLRF	TMR0	;Clear TMR0 and prescaler
set in lines 2 and 3 and the final	6)	BSF	STATUS, RP1	;Bank 1
prescale value will be set in lines	7)	MOVLW	b'xxxx1xxx'	;Select WDT, do not change prescale value
10 and 11.	8)	MOVWF	OPTION_REG	;
	9)	CLRWDT		;Clears WDT and prescaler
	10)	MOVLW	b'xxxx1xxx'	;Select new prescale value and WDT
	11)	MOVWF	OPTION_REG	;
	12)	BCF	STATUS, RPO	;Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2.

EXAMPLE 7-2: CHANGING PRESCALER (WDT → TIMER0)

CLRWDT ;Clear WDT and prescaler BSF STATUS, RP0 ;Bank 1 MOVLW b'xxxx0xxx' ;Select TMR0, new prescale value and clock source MOVWF OPTION REG ; BCF STATUS, RPO ;Bank 0

TABLE 7-1: **REGISTERS ASSOCIATED WITH TIMER0**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h, 101h	TMR0	Timer0	module's r	egister						xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE ⁽¹⁾	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h, 181h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	—	_	PORTA Data Direction Register ⁽¹⁾						11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000
0Dh ⁽⁴⁾	PIR2	—	_	_	_	_	_	_	CCP2IF		 0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000
8Dh ⁽⁴⁾	PIE2	—	_	-	_	-	_	-	CCP2IE		 0
87h	TRISC	PORTC Data Direction register							1111 1111	1111 1111	
11h	TMR2	Timer2 m	iodule's regi	ster						0000	0000
92h	PR2	Timer2 m	iodule's Per	iod register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/0	Compare/P	VM1 (LSB)	1					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/0	Compare/P	VM1 (MSB)					xxxx xxxx	นนนน นนนน
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽⁴⁾	CCPR2L	Capture/Compare/PWM2 (LSB)								xxxx xxxx	นนนน นนนน
1Ch ⁽⁴⁾	CCPR2H	Capture/0	Compare/P\	VM2 (MSB)					xxxx xxxx	นนนน นนนน
1Dh ⁽⁴⁾	CCP2CON	-	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

 Legend:
 x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

 Note
 1:
 These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

- Note: When the SPI is in Slave Mode with SS pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the SS pin is set to VDD.
- Note: If the SPI is used in Slave Mode with CKE = '1', then the SS pin control must be enabled.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C66/67)

FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C66/67)

11.5.1.3 TRANSMISSION

When the $R\overline{W}$ bit of the incoming address byte is set and an address match occurs, the $R\overline{W}$ bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-26). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 11-26: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

12.3 USART Synchronous Master Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Synchronous Master mode the data is transmitted in a half-duplex manner i.e., transmission and reception do not occur at the same time. When transmitting data the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6 and RC7 I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

12.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 12-7. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR register is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG register is empty and interrupt flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the status of enable bit TXIE and cannot be cleared in software. It will clear only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR register is not mapped in data memory so it is not available to the user.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 12-12). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN (Figure 12-13). This is advantageous when slow baud rates are selected, since the BRG is kept in reset when bits TXEN. CREN, and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG register. Back-to-back transfers are possible.

Clearing enable bit TXEN, during a transmission, will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hi-impedance. If, during a transmission, either bit CREN or bit SREN is set the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic however, is not reset although it is disconnected from the pins. In order to reset the transmitter, the user has to clear enable bit TXEN. If enable bit SREN is set (to interrupt an on going transmission and receive a single word), then after the single word is received, enable bit SREN will be cleared, and the serial port will revert back to transmitting since enable bit TXEN is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, enable bit TXEN should be cleared.

In order to select 9-bit transmission, bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR register was empty and the TXREG register was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{TXIE}}$.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	x00- 0000
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Regist	er					0000 0000	0000 0000

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

FIGURE 12-12: SYNCHRONOUS TRANSMISSION

FIGURE 12-13: SYNCHRONOUS TRANSMISSION THROUGH TXEN

Unconui	tional Br	anch		INCF	Incremer	nt f		
[label]	GOTO	k		Syntax:	[label]	INCF f	f,d	
$0 \le k \le 20$	047			Operands:	$0 \le f \le 12$	7		
$k \rightarrow PC <$	10:0>				d ∈ [0,1]			
PCLATH	<4:3> →	PC<12:11	>	Operation:	(f) + 1 →	(destina	tion)	
None				Status Affected:	Z			
10	1kkk	kkkk	kkkk	Encoding:	00	1010	dfff	ffff
eleven bit into PC bit PC are loa	immediate ts <10:0>. aded from	value is lo The upper PCLATH<4	bits of 1:3>.	Description:	mented. If the W regi	'd' is 0 th ster. If 'd'	e result is is 1 the re	placed in
1				Words:	1			
2				Cycles:	1			
Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process data	Write to PC		Decode	Read register	Process data	Write to destination
No- Operation	No- Operation	No- Operation	No- Operation	Fuerrale	INCE		-	
GOTO T	HERE			Example				
		Address	THERE		After Inst	Z ruction	= 0xF $= 0$ $= 0x00$	-
	$0 \le k \le 20$ $k \rightarrow PC \le PCLATH$ None 10 GOTO is ar eleven bit into PC bit PC are loc GOTO is a 1 2 Q1 Decode No- Operation GOTO T: After Inst	$0 \le k \le 2047$ $k \rightarrow PC<10:0>$ $PCLATH<4:3> \rightarrow I$ None $10 \qquad 1 kkk$ GOTO is an unconditi eleven bit immediate into PC bits <10:0>. PC are loaded from GOTO is a two cycle i 1 2 $Q1 \qquad Q2$ $Decode \qquad Readliteral 'k'No-Operation Operation GOTO THERE After Instruction$	$\begin{array}{c} k \rightarrow PC < 10:0 \\ PCLATH < 4:3 \\ > \rightarrow PC < 12:11 \\ \hline None \\ \hline 10 & 1kkk & kkkk \\ \hline GOTO is an unconditional brance eleven bit immediate value is lc into PC bits < 10:0 \\ OTO is a two cycle instruction. \\ 1 \\ 2 \\ \hline Q1 & Q2 & Q3 \\ \hline Decode & Read & Process \\ \hline Operation & Operation & Operation \\ \hline Operation & Operation & Operation \\ \hline GOTO & THERE \\ \hline After Instruction \\ \hline \end{array}$	$0 \le k \le 2047$ $k \rightarrow PC<10:0>$ $PCLATH<4:3> \rightarrow PC<12:11>$ None $\hline 10 1kkk kkkk kkkk$ GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction. 1 2 $\hline Q1 Q2 Q3 Q4$ $\hline \hline Decode Read Process Write to \\ eleven & $	$0 \le k \le 2047$ $0 \le k \le 2047$ $k \rightarrow PC < 10:0 >$ $PCLATH < 4:3 > \rightarrow PC < 12:11 >$ None $10 1kkk kkkk kkkk$ $10 0 0 0 0 0 0 0 0 0 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FREQUENCY vs. VDD

FIGURE 16-5: TYPICAL IPD VS. VDD WATCHDOG TIMER **DISABLED 25°C**

Data based on matrix samples. See first page of this section for details.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.0 ELECTRICAL CHARACTERISTICS FOR PIC16C62A/R62/64A/R64

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +14V
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of VSS pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1. Power dissipation is calculated as follows: $Pdis = Vpp \times (Ipp - \sum Ipu) + \sum (Vpp - \sum Ipu)$	$(V_{OU}) \times (OU) + \Sigma(V_{OU} \times (OU))$

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 18-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62A-04 PIC16CR62-04 PIC16C64A-04 PIC16CR64-04	PIC16C62A-10 PIC16CR62-10 PIC16C64A-10 PIC16CR64-10	PIC16C62A-20 PIC16CR62-20 PIC16C64A-20 PIC16CR64-20	PIC16LC62A-04 PIC16LCR62-04 PIC16LC64A-04 PIC16LCR64-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq:4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 µA max. at 3.0V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VpD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.		VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

^{© 1997-2013} Microchip Technology Inc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16 C 63/65A	10	—		ns	
				PIC16LC63/65A	20	—		ns	
51*	TccH	TccH CCP1 and CCP2 No Prescaler			0.5TCY + 20	-		ns	
		input high time	With Prescaler	PIC16 C 63/65A	10	—		ns	
				PIC16 LC 63/65A	20	-		ns	
52*	TccP	CCP1 and CCP2 ir	nput period		<u>3Tcy + 40</u> N			ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 of	utput rise time	PIC16 C 63/65A	_	10	25	ns	
			PIC16 LC 63/65A		_	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16 C 63/65A	—	10	25	ns	
				PIC16 LC 63/65A	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

21.3 DC Characteristics: PIC16CR63/R65-04 (Commercial, Industrial) PIC16CR63/R65-10 (Commercial, Industrial) PIC16CR63/R65-20 (Commercial, Industrial) PIC16LCR63/R65-04 (Commercial, Industrial)

			rd Operat				ss otherwise stated) $A \le +85^{\circ}C$ for industrial and
DC CHA	RACTERISTICS	Operatir Section		Vdd	0°C range as o		$A \le +70^{\circ}C$ for commercial ed in DC spec Section 21.1 and
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15VDD	v	For entire VDD range
D030A			Vss	-	0.8V	v	$4.5V \le VDD \le 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	v	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1
	Input High Voltage						
	I/O ports	VIH		-			
D040	with TTL buffer		2.0	-	Vdd	v	$4.5V \le V$ DD $\le 5.5V$
D040A			0.25VDD	-	Vdd	v	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$
D063	OSC1		-	-	±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and
							LP osc configuration
	Output Low Voltage						-
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	v	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	v	IOH = -1.3 mA, VDD = 4.5 V, -40°C to +85°C
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions	
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns		
		input low time	With Prescaler	PIC16CR63/R65	10	—	—	ns		
				PIC16LCR63/R65	20	-	_	ns		
51*	51* TccH CCP1 and CCP2 No Prescal		No Prescaler		0.5TCY + 20	—	—	ns		
	input high ti		input high time	With Prescaler	PIC16CR63/R65	10	_	_	ns	
				PIC16LCR63/R65	20	-	_	ns		
52*	TccP	CCP1 and CCP2 ir	put period		<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)	
53*	TccR	CCP1 and CCP2 o	utput rise time	PIC16CR63/R65	—	10	25	ns		
				PIC16LCR63/R65	_	25	45	ns		
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16 CR 63/R65	—	10	25	ns		
				PIC16LCR63/R65	—	25	45	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-14: I²C BUS DATA TIMING

TABLE 22-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
102*	TR	SDA and SCL rise	100 kHz mode	-	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109*	TAA	Output valid from	100 kHz mode	_	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Clearing Interrupts53
Clock Polarity Select bit, CKP 85, 90
Clock Polarity, SPI Mode87
Clock Source Select bit, CSRC 105
Clocking Scheme
Code Examples
Changing Between Capture Prescalers
Ensuring Interrupts are Globally Disabled
Indirect Addressing
Initializing PORTA51
Initializing PORTB
Initializing PORTC55
Loading the SSPBUF Register
Loading the SSPBUF register
Reading a 16-bit Free-running Timer
Read-Modify-Write on an I/O Port
Saving Status, W, and PCLATH Registers
Subroutine Call, Page0 to Page1
Code Protection
Compare
Block Diagram79
Mode
Pin Configuration79
Software Interrupt
Special Event Trigger79
Computed GOTO
Configuration Bits
Configuration Word, Diagram
Connecting Two Microcontrollers
Continuous Receive Enable bit, CREN
CREN
CSRC

D

Data/Address bit, D/A84, 89
Data Memory
Organization20
Section
Data Sheet
Compatibility
Modifications
What's New
DC
DC CHARACTERISTICS 164, 184, 200, 216, 232, 248, 264
Development Support159
Development Tools159
Device Drawings
18-Lead Ceramic CERDIP Dual In-line
with Window (300 mil)296
18-Lead Plastic Dual In-line (300 mil)
18-Lead Plastic Surface Mount
(SOIC - Wide, 300 mil Body)294
28-Lead Ceramic CERDIP Dual In-line with
Window (300 mil))
28-Lead Ceramic Side Brazed Dual In-Line
with Window (300 mil)299
28-Lead Plastic Dual In-line (300 mil)
28-Lead Plastic Surface Mount
(SOIC - Wide, 300 mil Body)295
28-Lead Plastic Surface Mount
(SSOP - 209 mil Body 5.30 mm)
40-Lead Ceramic CERDIP Dual In-line
with Window (600 mil)298
40-Lead Plastic Dual In-line (600 mil)
44-Lead Plastic Leaded Chip Carrier (Square) 301

44-Lead Plastic Surface Mount (MQFP
10x10 mm Body 1.6/0.15 mm Lead Form) 302, 303
Device Varieties7
Digit Carry9
Digit Carry bit
Direct Addressing 49
-

Е

F

Family of Devices
PIC12CXXX
PIC14C000
PIC16C15X
PIC16C55X
PIC16C5X
PIC16C62X and PIC16C64X
PIC16C6X6
PIC16C7XX
PIC16C8X
PIC16C9XX 313
PIC17CXX
FERR
Framing Error bit, FERR 106
FSR
Fuzzy Logic Dev. System (fuzzyTECH®-MP) 159, 161

G

General Description	5
General Purpose Registers	
GIE	
Global Interrupt Enable bit, GIE	37
Graphs	
PIC16C6X	
PIC16C61	
н	
High Baud Rate Select bit, BRGH	105
I	
I/O Ports, Section	51
I ² C	
Addressing	
Addressing I ² C Devices	
Arbitration	
Block Diagram	
Clock Synchronization	
Combined Format	
I ² C Operation	
I ² C Overview	
Initiating and Terminating Data Transfer	
Master Mode Master-Receiver Sequence	
Master-Transmitter Sequence	
Mode	
Mode Selection	
Multi-master	
Multi-Master Mode	
Reception	
Reception Timing Diagram	
SCL and SDA pins	
Slave Mode	
START	
STOP	

Registers	•				
CCF	P1CON				
	Diagram				
	Section				
CCF	2CON		20, 20	, 00,	52
	Diagram				78
	Section				78
	Summary			, 30,	32
CCF	PR1H	04	00.00	~~	~~
CCE	Summary PR1L		26, 28	, 30,	32
001	Summary		26. 28	. 30.	32
CCF	°R2H	,	-, -	, ,	
	Summary			, 30,	32
CCF	PR2L				
FSR	Summary			, 30,	32
FSH	Indirect Addressing				<u>1</u> 0
	Summary				
IND		,,	,	,,	
	Indirect Addressing				
	Summary	. 24, 26,	28, 30	, 32,	34
INTO					07
	Diagram				
	Summary				
OPT			20, 00	, 02,	• •
	Diagram				36
	Section				
	Summary	. 25, 27,	29, 31	, 33,	34
PCL					40
	Section				48
	Cummon.				
PCI	Summary				
PCL	ATH	. 24, 26,	28, 30	, 32,	34
PCL	,	24, 26,	28, 30	, 32,	34 48
PCL	ATH Section Summary	24, 26,	28, 30	, 32,	34 48
	ATH Section Summary NN Diagram	24, 26, 24, 26,	28, 30 28, 30	, 32, , 32,	34 48 34 47
	ATH Section Summary NN Diagram Section	24, 26, 24, 26,	28, 30 28, 30	, 32, , 32,	34 48 34 47 47
PCC	ATH Section Summary N Diagram Section Summary	24, 26, 24, 26,	28, 30 28, 30	, 32, , 32,	34 48 34 47 47
	ATH Section Summary Diagram Section Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29	, 32, , 32, , 31,	34 48 34 47 47 33
PCC	ATH Section Summary N Diagram Section Summary	. 24, 26, 24, 26, 	28, 30 28, 30 27, 29	, 32, , 32, , 31,	34 48 34 47 47 33 40
PCC	ATH Section Summary Diagram Section Summary Diagram	24, 26, 24, 26, 	28, 30 28, 30 27, 29	, 32, , 32, , 31,	34 48 34 47 47 33 40 38
PCC	ATH Section Summary Diagram Section Summary Diagram Summary Section Summary	. 24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29	, 32, , 32, , 31, , 31,	34 48 34 47 33 40 38 33
PCC	ATH Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary	. 24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29	, 32, , 32, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45
PCC	ATH Section Diagram Section Summary Diagram Summary Diagram Diagram Diagram	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29	, 32, , 32, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 45
PCC PIE ⁻ PIE2	ATH Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29	, 32, , 32, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 45
PCC	ATH Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29	, 32, , 32, , 31, , 31, , 31,	 34 48 34 47 33 40 38 33 45 45 33
PCC PIE ⁻ PIE2	ATH Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29	, 32, , 32, , 31, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 45 33 45 33 44
PCC PIE ⁻ PIE2	ATH SectionSummary DiagramSectionSummary DiagramSummary Summary Summary Diagram Summary Summary Diagram	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 27, 29	, 32, , 32, , 31, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 45 33 45 33 45 44 41
PCC PIE ⁻ PIE2	ATH Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 27, 29 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 33 45 33 44 41 32
PCC PIE PIE PIR	ATH Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30,	 34 48 34 47 47 33 40 38 33 45 45 33 44 41 32 46
PCC PIE PIE PIR	ATH Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30,	 34 48 34 47 47 33 40 38 33 45 33 45 33 45 33 44 41 32 46 46 46
PIE PIE PIR	ATH Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30,	 34 48 34 47 47 33 40 38 33 45 33 45 33 45 33 44 41 32 46 46 46
PCC PIE PIE PIR	ATH Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30,	 34 48 34 47 47 33 40 38 33 45 45 33 45 45 33 45 45 33 45 46 46 32
PIE PIE PIR	ATH Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 30,	 34 48 34 47 47 33 40 38 33 45 45 33 45 45 33 45 46 32 51
PIE PIE PIR	ATH SectionSummary DiagramSectionSummary SummarySectionSummary SectionSummary DiagramSectionSummary DiagramSectionSummary DiagramSectionSummary Summary SectionSummary Summary ATA SectionSummary Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30,	34 48 34 47 33 40 38 33 45 45 33 45 45 33 44 41 32 46 46 32 51 32
PIE PIE PIR PIR	ATH Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Comparent Section Summary Comparent Section Summary Comparent Section Summary Comparent Section Summary Comparent Summary Comparent Summary Comparent Summary Comparent Summary Comparent Summary Comparent Summary Comparent Summary Comparent Summary Comparent Summary Section Summary Comparent Summary Summary Summary Comparent Summary Summar	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30,	 34 48 34 47 47 33 40 33 45 433 45 33 45 33 45 33 44 41 32 46 46 32 51 32 53
PIE PIE PIR PIR POF	ATH Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30,	 34 48 34 47 47 33 40 33 45 433 45 33 45 33 45 33 44 41 32 46 46 32 51 32 53
PIE PIE PIR PIR	ATH Section Summary N Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Diagram Section Summary Section Summary Summary Comparison Summary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sumary Section Sect	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28 26, 28 28, 30	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30, , 30,	34 48 34 47 33 40 38 33 45 45 33 44 45 33 44 45 33 45 45 33 45 51 32 53 34
PIE PIE PIR PIR POF	ATH Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28 26, 28 28, 30	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30, , 30, , 30,	 34 48 34 47 47 33 40 38 33 45 45 33 45 46 32 51 32 53 34 55

	PODID
	PORTD
	Section
	Summary 28, 30, 32
F	PORTE
	Section
	Summary
F	PR2
	Summary
1	RCREG
	Summary 26, 30, 32
F	RCSTA
	Diagram 106
	Summary
6	SPBRG
`	Summary
	•
	SSPBUF
	Section 86
	Summary
5	SSPCON
	Diagram
	Summary
	· · · · · · · · · · · · · · · · · · ·
	SSPSR
	Section 86
5	SSPSTAT 89
	Diagram
	Section
	Summary
	· · · · · · · · · · · · · · · · · · ·
	STATUS
	Diagram
	Section
	Summary
٦	F1CON
	Diagram
	Section
	Summary 24, 26, 28, 30, 32
1	F2CON
	Diagram75
	Section
	Summary
-	FMR0
_	Summary 24, 26, 28, 30, 32, 34
	ſMR1H
	Summary 24, 26, 28, 30, 32
1	rmr1L
	Summary 24, 26, 28, 30, 32
٦	۲MR2
	Summary
_	· · · · · · · · · · · · · · · · · · ·
	FRISA
	Section5
	Summary 25, 27, 29, 31, 33
٦	FRISB
	Section
	Summary
-	· · · · · ·
	TRISC
	Section
	Summary 25, 27, 29, 31, 33
٦	FRISD
	Section
	Summary
-	rRISE
	Diagram
	Section
	Summary
1	TXREG
	Summary