

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c67-20i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	Program Counter's (PC) Least Significant Byte								0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	direct data memory address pointer								uuuu uuuu
85h	TRISA	—	_	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	ORTB Data Direction Register 1								1111 1111
87h	TRISC	PORTC Da	PORTC Data Direction Register								1111 1111
88h	TRISD	PORTD Da	PORTD Data Direction Register 111								1111 1111
89h	TRISE	IBF OBF IBOV PSPMODE — PORTE Data Direction Bits							Bits	0000 -111	0000 -111
8Ah ^(1,2)	PCLATH	—	-	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE	(6)	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	_	Unimpleme	nted							—	-
8Eh	PCON	_	—	—	—		—	POR	BOR ⁽⁴⁾	dd	uu
8Fh	_	Unimpleme	nted							—	-
90h	_	Unimpleme	nted							—	
91h	—	Unimpleme	nted							—	-
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	ister				0000 0000	0000 0000
94h	SSPSTAT	—	—	D/A	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	-	Unimpleme	nted							-	_

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit				
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 				
bit 7-6:	Reserved: Always maintain these bits clear.											
bit 5:	RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt											
bit 4:	TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt											
bit 3:	SSPIE: Syn 1 = Enable 0 = Disable	nchronous s the SSP i es the SSP	Serial Port interrupt interrupt	Interrupt Er	nable bit							
bit 2:	CCP1IE : C 1 = Enable 0 = Disable	CP1 Interrus the CCP1	upt Enable i interrupt 1 interrupt	bit								
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt											
bit 0:	TMR1IE : T 1 = Enable 0 = Disable	MR1 Overfi s the TMR1 es the TMR	low Interruj I overflow i 1 overflow i	ot Enable bi nterrupt interrupt	t							

FIGURE 4-13: PIE1 REGISTER FOR PIC16C63/R63/66 (ADDRESS 8Ch)

FIGURE 4-14: PIE1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 8Ch)

г

FIGURE 4-19: PIR1 REGISTER FOR PIC16C65/65A/R65/67 (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
PSPIF	—	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit				
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 				
bit 7:	PSPIF: Par 1 = A read 0 = No rea	rallel Slave or a write o d or write o	Port Interro operation h peration ha	upt Flag bit as taken pla as taken pla	ice (must be ce	cleared in s	oftware)					
bit 6:	Reserved: Always maintain this bit clear.											
bit 5:	RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full (cleared by reading RCREG) 0 = The USART receive buffer is empty											
bit 4:	TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full											
bit 3:	SSPIF : Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive											
bit 2:	CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode											
bit 1:	TMR2IF : T 1 = TMR2 0 = No TM	MR2 to PR to PR2 mat R2 to PR2	2 Match In ch occurre match occu	terrupt Flag d (must be o urred	bit cleared in so	ftware)						
bit 0:	TMR1IF : T 1 = TMR1 0 = No TM	MR1 Overf register ove R1 register	low Interrup erflow occu overflow o	pt Flag bit rred (must b ccurred	be cleared in	software)						
Interr globa enabl	upt flag bits I enable bit, ing an interr	get set whe GIE (INTC) upt.	n an intern ON<7>). U	upt conditior ser software	n occurs rega e should ens	ardless of th ure the appr	e state of its ropriate inter	corresponding enable bit or the rupt flag bits are clear prior to				

4.2.2.6 PIE2 REGISTER

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

This register contains the CCP2 interrupt enable bit.

FIGURE 4-20: PIE2 REGISTER (ADDRESS 8Dh)

5.6 I/O Programming Considerations

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

5.6.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stavs in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;					PORT	latch	PORT	pins
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp	pppp
	BCF	PORTB,	6	;	10pp	pppp	11pp	pppp
	BSF	STATUS,	RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp	pppp
	BCF	TRISB,	6	;	10pp	pppp	10pp	pppp

;Note that the user may have expected the ;pin values to be 00pp pppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

PC	X PC	(PC + 1	X	PC + 2	PC + 3	This example shows a write to PORT
fetched	MOVWF PORTB write to PORTB	MOVF PORTB,W		NOP	NOP	followed by a read from PORTB. Note that:
RB7:RB0		;;	<u>x :</u>			data setup time = (0.25Tcy - TPD)
		1 1 1 1 1 1 1 1	Î	Port pin sampled here		where Tcy = instruction cycle TPD = propagation delay
Instruction executed		MOVWF PORTB	TPD MO	VF PORTB,W	NOP	Therefore, at higher clock frequencie a write followed by a read may be pro lematic.
		PORTB				1

FIGURE 5-10: SUCCESSIVE I/O OPERATION

NOTES:

-

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)

			DAMO				DAMO					
0-0	0-0	R/W-U	R/W-U	R/W-U	R/W-U	H/W-U	R/W-U					
	—	CCPXX	CCPXY	CCPXM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit				
bit7							bit0	VV = VVIIIable bit				
								as '0'				
	- n =Value at POR reset											
bit 7-6:	6: Unimplemented: Read as '0'											
bit 5-4:	CCP	X:CCPxY	: PWM Le	ast Signific	ant bits							
	<u>Captu</u>	ure Mode										
	Unus	ed										
	Comp	pare Mode										
	Unus	ed										
	Theory	<u>IVIOCIE</u> o bito oro t	ha two I S	be of the D		olo. Tho oig	ht MCha ara	found in CCPPyl				
	111656					cie. The eig						
bit 3-0:	CCP	(M3:CCPx	MO: CCP	K Mode Sel	ect bits							
	0000	= Capture	Compare	PVVIVI OTT (resets CCP	x module)						
	0100	- Capture	mode ev	ory rising e	euge adae							
	0110	= Capture	mode, ev	erv 4th risi	na edae							
	0111	= Capture	e mode, ev	ery 16th ris	sing edge							
	1000	= Compai	re mode, s	set output o	n match (bit	CCPxIF is	set)					
	1001	= Compar	re mode, o	lear output	on match (I	oit CCPxIF i	is set)					
	1010	= Compar	re mode, g	enerate so	tware interr	upt on matc	h (bit CCPxIF	is set, CCPx pin is unaffected)				
	1011	= Compar	e mode, tr	igger speci	al event (CC	PxIF bit is s	et; CCP1 res	ets TMR1; CCP2 resets TMR1)				
	11xx	= PWM m	lode									

10.1 Capture Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1 (Figure 10-2). An event is defined as:

- · Every falling edge
- · Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an
	output, a write to PORTC can cause a cap-
	ture condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work consistently.

10.1.3 SOFTWARE INTERRUPT

When the Capture event is changed, a false capture interrupt may be generated. The user should clear enable bit CCP1IE (PIE1<2>) to avoid false interrupts and should clear flag bit CCP1IF following any such change in operating mode.

11.4.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/W bit (Figure 11-15). The more complex is the 10-bit address with a R/W bit (Figure 11-16). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

FIGURE 11-15: 7-BIT ADDRESS FORMAT

FIGURE 11-16: I²C 10-BIT ADDRESS FORMAT

11.4.3 TRANSFER ACKNOWLEDGE

All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (\overline{ACK}) (Figure 11-17). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave SDA high so that the master can generate the STOP condition (Figure 11-14).

FIGURE 11-17: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-18. The slave will inherently stretch the clock, when it is a transmitter, but will not when it is a receiver. The slave will have to clear the SSPCON<4> bit to enable clock stretching when it is a receiver.

FIGURE 11-18: DATA TRANSFER WAIT STATE

Г

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

SPEN RX9 SREN CREN — FERR OERR RX9D R = Readable bit bit7 bit0 If = Readable bit If = Writable bit If =	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
bit7 bit8 bit0 W = Writable bit W = Writable bit U = Uunimplemented bit, read as '0' - n = 'value at POR reset x = unknown bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7.6> are set) 1 = Serial port disabled bit 6: RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERF: Framing Error bit 1 = Framing error 1 = Framing error 1 = Coverrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	R	= Readable bit
bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set) 1 = Serial port enabled 0 = Serial port disabled bit 6: RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit 1 = Enables single receive 0 = Don't care Synchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode Dunts of this mode Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode Disables continuous receive 0 = Disables continuous receive bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 4: CREN: Continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 4: CREN: Craning Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No traming error bit 1: OERF: Overrun Error bit 1 = Overrun error bit 1: CREN: Overrun error bit 1: Overrun error bit 1: Received data (Can be parity bit)	bit7							bit0	W	= Writable bit
-n = Value at POR reset x = unknown bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set) 1 = Serial port enabled 0 = Serial port enabled 0 = Selects 8-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive 0 = Disables single receive Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 4: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>bit. read as '0'</td>									0	bit. read as '0'
k = unknown bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set) 1 = Serial port disabled bit 6: RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 0 = Disables continuous receive bit 4: CREN: Continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error bit 1 = Framing error bit 1 = Overrun error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 1: OERR: Overrun Error bit 1 = Overrun error									- n	= Value at POR reset
bit 7: SPEN: Serial Port Enable bit (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set) 1 = Serial port enabled 0 = Serial port disabled bit 6: RX9: 9-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit <u>Asynchronous mode</u> Don't care <u>Synchronous mode - master</u> 1 = Enables single receive Don't care <u>Synchronous mode - master</u> 1 = Enables single receive This bit is cleared after reception is complete. <u>Synchronous mode - slave</u> Unused in this mode bit 4: CREN: Continuous Receive Enable bit <u>Asynchronous mode</u> 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive 1 = Enables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)									х	= unknown
bit 6: RX9: 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 0 = Selects 8-bit reception 0 bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 1 = Enables single receive 0 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode Unused in this mode Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Framing Error bit 1 = Framing Error bit 1 = Framing error (Can be updated by reading RCREG reg	bit 7:	SPEN: Ser (Configure 1 = Serial 0 = Serial	rial Port En s RC7/RX/I port enable port disable	able bit DT and RC d ed	6/TX/CK	oins as ser	ial port pin	s when bits	TRIS	C<7:6> are set)
1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 3: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 1: OERR: Overrun Error bit 1 = Overrun error 1 = No overrun error Deared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)	bit 6:	RX9 : 9-bit	Receive Er	nable bit						
 bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 1 = Enables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		1 = Selects	s 9-bit rece	ption						
 bit 5: SREN: Single Receive Enable bit Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 4: FERR: Framing Error bit 1 = Framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		0 = Selects	s 8-bit rece	ption						
Asynchronous mode Don't care Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 4: FERR: Framing Error bit 1 = Framing error 1 bit 1: OERR: Overrun Error bit 1 = Overrun error 1 bit 1: OERR: Overrun Error bit 1 = Overrun error 1 bit 0: RX9D: 9th bit of received data (Can be parity bit)	bit 5:	SREN: Sin	gle Receiv	e Enable bi	t					
Synchronous mode - master 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive bit 3: Unimplemented: Read as '0' bit 4: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error Icared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) <td></td> <td>Asynchron Don't care</td> <td><u>ous mode</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Asynchron Don't care	<u>ous mode</u>							
 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		Synchrono	ous mode -	master						
 bit di is cleared after reception is complete. Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		1 = Enable	s single real	ceive						
Synchronous mode - slave Unused in this mode bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error 0 bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)		0 = Disable	es single re	ceive er recention	is comple	ote				
bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 0 bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error 1 = Framing error bit 1: OERR: Overrun Error bit 1 = Overrun error 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)		Synchrono	us mode -	slave	lo compi					
bit 4: CREN: Continuous Receive Enable bit Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)		Unused in	this mode							
Asynchronous mode 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)	bit 4:	CREN: Co	ntinuous R	eceive Ena	ble bit					
 1 = Enables continuous receive 0 = Disables continuous receive Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		Asynchron	ous mode							
 bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		1 = Enable	s continuo	us receive						
Synchronous mode 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit)		0 = Disable	es continuo	us receive						
 bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		Synchronc	ous mode		ntil on ohl		lia alaarad			
 bit 3: Unimplemented: Read as '0' bit 2: FERR: Framing Error bit = Framing error (Can be updated by reading RCREG register and receive next valid byte) = No framing error bit 1: OERR: Overrun Error bit = Overrun error (Can be cleared by clearing bit CREN) = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		0 = Disable	es continuo	us receive t			NIS Cleared		ennue	S SHEN)
 bit 2: FERR: Framing Error bit 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 	bit 3:	Unimplem	ented: Rea	ad as '0'						
 1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 	bit 2:	FERR: Fra	ming Error	bit						
 0 = No framing error bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		1 = Framin	g error (Ca	n be updat	ed by read	ding RCRE	G register	and receive	next	valid byte)
 bit 1: OERR: Overrun Error bit 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 		0 = No fran	ning error							
 0 = No overrun error bit 0: RX9D: 9th bit of received data (Can be parity bit) 	bit 1:	OERR: Ov	errun Error	bit						
bit 0: RX9D : 9th bit of received data (Can be parity bit)		1 = Overru 0 = No over	m error (Ca errun error	n pe cleare	u by clear	ning bit CR	EN)			
bit 0. The strok of received data (Call be party bit)	hit 0.		hit of rocoi	vod data (C	an ha na	rity hit)				
	DIE U.	11730. 901	DIL UI IECEI	veu uaia (C	an be pa					

13.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

Applicable Devices 61|62|62A|R62|63|R63|64|64A|R64|65|65A|R65|66|67

13.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

13.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

13.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

13.4.4 BROWN-OUT RESET (BOR)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (parameter D005 in Electrical Specification section) for greater than parameter #34 (see Electrical Specification section), the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #34. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 13-10 shows typical brown-out situations.

FIGURE 13-10: BROWN-OUT SITUATIONS

13.5 Interrupts

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The PIC16C6X family has up to 11 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or global enable bit, GIE.

Global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register. GIE is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enable interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flag bits are contained in the INTCON register.

The peripheral interrupt flag bits are contained in special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2 and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, bit GIE is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the RB0/INT pin or RB port change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 13-19). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

- Note: For the PIC16C61/62/64/65, if an interrupt occurs while the Global Interrupt Enable bit, GIE is being cleared, bit GIE may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:
 - 1. An instruction clears the GIE bit while an interrupt is acknowledged
 - 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
 - The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.
 - 4. Perform the following to ensure that interrupts are globally disabled.

LOOP	BCF IN	NTCON,GIE	;Disable Global						
			;Interrupt bit						
	BTFSC	INTCON,GIE	;Global Interrupt						
			;Disabled?						
	GOTO	LOOP	;NO, try again						
	:		;Yes, continue						
			;with program flow						

TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcod	e	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS						1	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AI	ND CO	NTROL OPERATIONS						1	
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

GOTO	Uncondi	tional Br	anch			INCF	Increme	nt f		
Syntax:	[label]	GOTO	k			Syntax:	[label]	INCF f	,d	
Operands:	$0 \le k \le 20$	047				Operands:	$0 \le f \le 12$	27		
Operation:	$k \rightarrow PC < PCLATH$	10:0> <4:3> → I	PC<12:11	>		Operation:	$a \in [0,1]$ (f) + 1 \rightarrow	(destina	tion)	
Status Affected:	None					Status Affected:	Z			
Encoding:	10	1kkk	kkkk	kkkk		Encoding:	00	1010	dfff	ffff
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10.0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.				Description:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed the W register. If 'd' is 1 the result is placed back in register 'f'.			e incre- placed in esult is	
Words:	1					Words:	1			
Cycles:	2					Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4		Q Cycle Activity:	Q1	Q2	Q3	Q4
1st Cycle	Decode	Read literal 'k'	Process data	Write to PC			Decode	Read register	Process data	Write to destination
2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation						
		ļ		ļ	1	Example	INCF	CNT,	1	
Example	GOTO T	HERE					Before In	struction	l .	
	After Inst	ruction						CNT	= 0xF	F
		PC =	Address	THERE			After Inst	∠ truction	= 0	
								CNT	= 0x0	0
								Z	= 1	

-

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.3 DC Characteristics: PIC16C61-04 (Commercial, Industrial, Extended) PIC16C61-20 (Commercial, Industrial, Extended) PIC16LC61-04 (Commercial, Industrial)

		Standa	rd Operat	ing Co	onditions	(unles	ss otherwise stated)
		Operation	ng tempera	ature	-40°C	≤ 1/ ∠ T/	$A \le +125^{\circ}$ C for industrial and
DC CH	ARACTERISTICS				-40 C	≥ 1/ < T/	$A \le +60$ C for commercial
		Operati	na voltaae	VDD r	ange as c	lescrib	ed in DC spec Section 15.1 and
		Section	15.2.				
Param	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
No.							
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15VDD	V	For entire VDD range
D030A			Vss	-	0.8V	V	$4.5V \leq V \text{dd} \leq 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	V	Note1
	Input High Voltage						
	I/O ports	Vін		-			
D040	with TTL buffer		2.0	-	VDD	v	$4.5V \le VDD \le 5.5V$
D040A			0.25VDD	-	VDD	v	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd	V	For entire VDD range
D042	MCLR		0.85VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	† 400	μA	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-
							impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq V PIN \leq V DD$
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and
							LP osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
							-40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V,
							-40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,
							-40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C

The parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-9: I²C BUS START/STOP BITS TIMING

TABLE 17-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter	Sym	Characteristic		Min	Тур	Max	Units	Conditions	
No.									
90	TSU:STA	START condition	100 kHz mode	4700			ne	Only relevant for repeated START	
		Setup time	400 kHz mode	600	_	_	115	condition	
91	THD:STA	START condition	100 kHz mode	4000	_	_	ne	After this period the first clock pulse is generated	
		Hold time	400 kHz mode	600	_	_	115		
92	Tsu:sto	STOP condition	100 kHz mode	4700	—	—	20		
		Setup time	400 kHz mode	600	—	—	115		
93	THD:STO	STOP condition	100 kHz mode	4000	_	_	ne		
		Hold time	400 kHz mode	600	_	_	115		

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-10: I²C BUS START/STOP BITS TIMING

TABLE 20-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Мах	Units	Conditions	
90*	TSU:STA	START condition	100 kHz mode	4700	—	—	ne	Only relevant for repeated START	
		Setup time	400 kHz mode	600	—	—	113	condition	
91*	THD:STA	START condition	100 kHz mode	4000	—	_	ne	After this period the first clock	
		Hold time	400 kHz mode	600	_	_	115	pulse is generated	
92*	TSU:STO	STOP condition	100 kHz mode	4700	—	_	ne		
		Setup time	400 kHz mode	600	-	—	113		
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ne		
		Hold time	400 kHz mode	600	—		115		

These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 21-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
110.								
120*	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16CR63/R65	_		80	ns	
		Clock high to data out valid	PIC16LCR63/R65	_	Ι	100	ns	
121*	Tckrf	Clock out rise time and fall time	PIC16CR63/R65	_	_	45	ns	
		(Master Mode)	PIC16LCR63/R65	_	Ι	50	ns	
122*	Tdtrf	Data out rise time and fall time	PIC16CR63/R65	_	Ι	45	ns	
			PIC16LCR63/R65	_	_	50	ns	

* These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 21-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 21-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125*	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK \downarrow (DT setup time)	15		_	ns	
126*	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15			ns	

These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

24.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Package Group: Plastic MQFP								
		Millimeters		Inches					
Symbol	Min	Max	Notes	Min	Max	Notes			
α	0°	7 °		0°	7 °				
А	2.000	2.350		0.078	0.093				
A1	0.050	0.250		0.002	0.010				
A2	1.950	2.100		0.768	0.083				
b	0.300	0.450	Typical	0.011	0.018	Typical			
С	0.150	0.180		0.006	0.007				
D	12.950	13.450		0.510	0.530				
D1	9.900	10.100		0.390	0.398				
D3	8.000	8.000	Reference	0.315	0.315	Reference			
E	12.950	13.450		0.510	0.530				
E1	9.900	10.100		0.390	0.398				
E3	8.000	8.000	Reference	0.315	0.315	Reference			
е	0.800	0.800		0.031	0.032				
L	0.730	1.030		0.028	0.041				
N	44	44		44	44				
CP	0.102	_		0.004	-				

negisiers	•				
CCF	P1CON				
	Diagram				78
	Section	24	26 28	30	78
CCF	2CON		20, 20	, 00,	52
	Diagram				78
	Section				78
	Summary			, 30,	32
CCF	'R1H	04	00.00	~~	~~
CCE	Summary PB1I		26, 28	, 30,	32
001	Summary		26. 28	. 30.	32
CCF	°R2H	,	-, -	, ,	
	Summary			, 30,	32
CCF	PR2L				
E0D	Summary			, 30,	32
FSH	Indirect Addressing				<u>1</u> 0
	Summary	.24.26.	28.30	. 32.	34
IND	F	,,	,	,,	
	Indirect Addressing				49
	Summary	. 24, 26,	28, 30	, 32,	34
INTO	CON				07
	Section				37
	Summary	24 26	28 30	32	34
OPT	TION		20, 00	, 02,	• •
	Diagram				36
	Section				36
	Summary	. 25, 27,	29, 31	, 33,	34
PCL	Castian				40
	Section				48
	Cummon.	04 06	00 00		04
PCI	Summary	. 24, 26,	28, 30	, 32,	34
PCL	Summary ATH Section	24, 26,	28, 30	, 32,	34 48
PCL	Summary ATH Section Summary	24, 26, 24, 26,	28, 30 28, 30	, 32, , 32,	34 48 34
PCL	Summary ATH Section Summary DN	24, 26, 24, 26,	28, 30 28, 30	, 32, , 32,	34 48 34
PCL PCC	Summary ATH Section Summary N Diagram	24, 26, 24, 26,	28, 30 28, 30	, 32, , 32,	34 48 34 47
PCL PCC	Summary ATH Section Summary N Diagram Section	24, 26, 24, 26,	28, 30 28, 30	, 32, , 32,	 34 48 34 47 47 47 20
PCL	Summary ATH Section Summary N Diagram Section Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29	, 32, , 32, , 32,	34 48 34 47 47 33
PCL PCC PIE ⁻	Summary ATH Section Summary N Diagram Summary Diagram	24, 26, 24, 26, 	28, 30 28, 30 27, 29	, 32, , 32, , 31,	 34 48 34 47 47 33 40
PCL PCC PIE ⁻	Summary ATH Section Summary N Diagram Summary Diagram Section	. 24, 26, 24, 26, 	28, 30 28, 30 27, 29	, 32, , 32, , 31,	 34 48 34 47 47 33 40 38
PCL PCC PIE ⁻	Summary ATH Section Summary N Diagram Section Diagram Section Section Summary	. 24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29	, 32, , 32, , 31, , 31,	 34 48 34 47 47 33 40 38 33
PCL PCC PIE ⁻ PIE2	Summary ATH Section Summary N Diagram Section Summary Section Section Section Section Summary	. 24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29	, 32, , 32, , 31, , 31,	34 48 34 47 47 33 40 38 33
PCL PCC PIE ⁻ PIE2	SummaryATH Section Summary Diagram Section Summary Section Section Section Section Section Section Section Summary 2 Diagram 2 Diagram 2 Diagram	. 24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29	, 32, , 32, , 31, , 31,	34 48 34 47 47 33 40 38 33 45
PCL PCC PIE	Summary ATH Section Summary Diagram Section Summary Diagram Summary Diagram 2 Diagram Section Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29	, 32, , 32, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 45 45 22
PCL PCC PIE	SummaryATH SectionSummary DiagramSectionSummary DiagramSummary DiagramSummary DiagramSectionSummary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29	, 32, , 32, , 31, , 31, , 31,	34 48 34 47 47 33 40 38 33 45 45 33
PCL PCC PIE PIE	Summary ATH Section Summary Diagram Summary Diagram Diagram Diagram Summary Diagram Diagram Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 27, 29	, 32, , 32, , 31, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 45 33 45 45 33 44
PCL PCC PIE PIE	Summary ATH Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29	, 32, , 32, , 31, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 45 33 45 33 45 45 33 44 41
PCL PCC PIE PIE	SummaryATH SectionSummary Summary DiagramSectionSummary DiagramSectionSummary DiagramSectionSummary DiagramSectionSummary Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 27, 29 26, 28	, 32, , 32, , 31, , 31, , 31, , 31,	 34 48 34 47 47 33 40 38 33 45 45 33 45 45 33 44 41 32
PCL PCC PIE PIE	Summary ATH Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 27, 29 26, 28	, 32, , 32, , 31, , 31, , 31, , 31,	34 48 34 47 33 40 38 33 45 45 33 45 33 44 41 32
PCC PIE PIE PIR	SummaryATH SectionSummary DiagramSectionSummary DiagramSectionSummary DiagramSectionSummary SectionSummary SectionSummary Summary DiagramSectionSummary Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28	, 32, , 32, , 31, , 31, , 31, , 31,	 34 48 34 47 33 40 38 33 45 45 33 45 45 33 44 41 32 46
PCC PIE PIE PIR	SummaryATH SectionSummarySectionSectionSummarySectionSec	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 33,	34 48 34 47 47 33 40 38 33 45 45 33 44 41 32 46 46 20
PCC PIE PIE PIR	SummaryATH SectionSummarySection	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30,	34 48 34 47 47 33 40 38 33 45 45 33 44 41 32 46 46 32
PCL PCC PIE PIE PIR PIR	Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30,	34 48 34 47 47 33 40 38 33 45 45 33 44 41 32 46 46 32 51
PCC PIE PIE PIR PIR	Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30,	 34 48 34 47 47 33 40 38 33 45 45 33 45 45 33 45 46 46 32 51 32
PCL PCC PIE PIE PIR PIR POF	Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 30, , 30,	34 48 34 47 33 40 38 33 45 45 33 45 45 33 44 41 32 46 46 32 51 32
PCL PCC PIE PIE PIR PIR	SummaryATH SectionSummary DiagramSectionSummary Summary DiagramSectionSummary DiagramSectionSummary DiagramSectionSummary DiagramSectionSummary SectionSummary SectionSummary SectionSummary TA SectionSummary Summary Summary Summary Summary TB Section	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 30, , 30,	 34 48 34 47 47 33 40 33 45 33 45 33 45 33 45 33 45 33 46 46 32 51 32 53
PCL PCC PIE PIE PIR PIR	Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28 26, 28 28, 30	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30, , 30,	34 48 34 47 47 33 40 38 33 45 45 33 45 45 33 44 41 32 46 46 32 51 32 53 34
PCL PCC PIE PIE PIR PIR POF	Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28 26, 28 28, 30	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30, , 30,	34 48 34 47 33 40 33 40 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 44 32 53 34 53 54 53 54 55
PCL PCC PIE PIE PIR PIR POF POF	Summary	24, 26, 24, 26, 	28, 30 28, 30 27, 29 27, 29 27, 29 26, 28 26, 28 26, 28 26, 28 26, 28 26, 28 26, 28 26, 28	, 32, , 32, , 31, , 31, , 31, , 31, , 30, , 30, , 30, , 30,	34 48 34 47 33 40 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 45 33 46 32 53 34 55 32 53 53 53 53 53 53 53 53 53 53 53 53 53 54

DODTD
PORID
Section57
Summary
PORTE
Section
Summary
PB2
Summany 25 27 20 31 33
Summary 25, 27, 29, 31, 30
RUREG
Summary 26, 30, 32
RCSTA
Diagram 106
Summary
SPBBG
Summary
SSPBUF
Section 86
Summary 24, 26, 28, 30, 32
SSPCON
Diagram 85
Summany 24 26 28 30 30
Summary 24, 20, 20, 30, 32
SSPSR
Section 86
SSPSTAT 89
Diagram
Section 84
Summary 05 07 00 21 23
OTATIO
STATUS
Diagram 35
Section 35
Summary
T1CON
Diagram 71
Diagram
Section
Summary
T2CON
Diagram 75
Section
Summary 24 26 28 30 32
TMP0
Summary 24, 26, 28, 30, 32, 34
TMR1H
Summary 24, 26, 28, 30, 32
TMR1L
Summary
TMB2 7F
Summony 04 06 09 20 20
Summary 24, 20, 20, 30, 32
IRISA
Section51
Summary 25, 27, 29, 31, 33
TRISB
Section 53
Summany 05 07 00 31 33 3/
TDICO
TRISC
Section
Summary 25, 27, 29, 31, 33
TRISD
Section
Summary 20 31 33
TRISE
Diagram
Diagram
Section
Summary 00.01.00
Summary 29, 31, 33
TXREG