

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c67-20i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

-

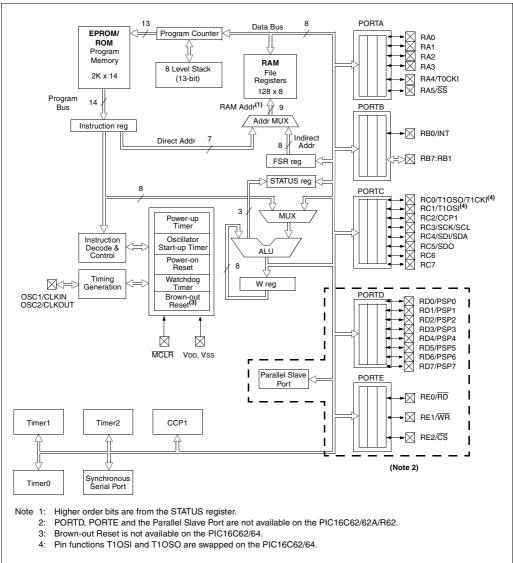


FIGURE 3-2: PIC16C62/62A/R62/64/64A/R64 BLOCK DIAGRAM

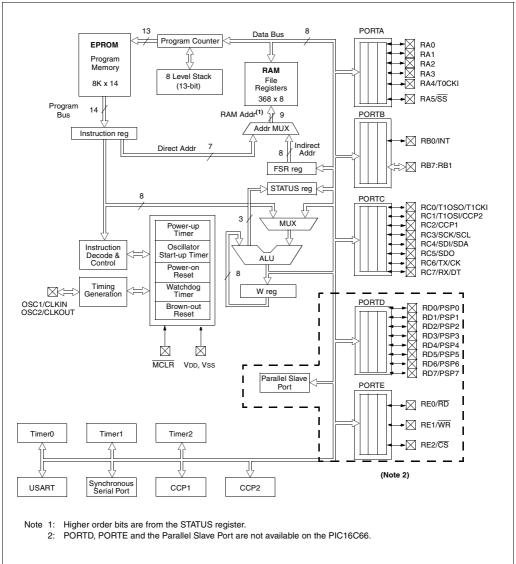


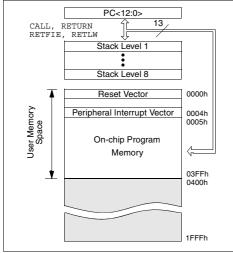
FIGURE 3-4: PIC16C66/67 BLOCK DIAGRAM

4.0 MEMORY ORGANIZATION

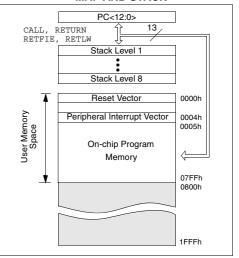
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

4.1 Program Memory Organization


The PIC16C6X family has a 13-bit program counter capable of addressing an $8K \times 14$ program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range			
PIC16C61	1K x 14	0000h-03FFh			
PIC16C62	2K x 14	0000h-07FFh			
PIC16C62A	2K x 14	0000h-07FFh			
PIC16CR62	2K x 14	0000h-07FFh			
PIC16C63	4K x 14	0000h-0FFFh			
PIC16CR63	4K x 14	0000h-0FFFh			
PIC16C64	2K x 14	0000h-07FFh			
PIC16C64A	2K x 14	0000h-07FFh			
PIC16CR64	2K x 14	0000h-07FFh			
PIC16C65	4K x 14	0000h-0FFFh			
PIC16C65A	4K x 14	0000h-0FFFh			
PIC16CR65	4K x 14	0000h-0FFFh			
PIC16C66	8K x 14	0000h-1FFFh			
PIC16C67	8K x 14	0000h-1FFFh			


For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

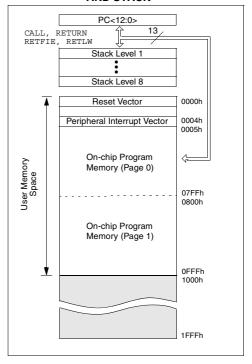

FIGURE 4-1: PIC16C61 PROGRAM MEMORY MAP AND STACK

FIGURE 4-2: PIC16C62/62A/R62/64/64A/ R64 PROGRAM MEMORY MAP AND STACK

FIGURE 4-3: PIC16C63/R63/65/65A/R65 PROGRAM MEMORY MAP AND STACK

IABLE	4-4:	SPECIA	LFUNC		GISTERS	FOR II		0004/04/	4/H04 ((cont.a)	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conte	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL Program Counter's (PC) Least Significant Byte										0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect dat		xxxx xxxx	uuuu uuuu						
85h	TRISA	_	—		11 1111	11 1111					
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC PORTC Data Direction Register									1111 1111	1111 1111
88h	TRISD PORTD Data Direction Register									1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ta Direction I	Bits	0000 -111	0000 -111
8Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE	(6)	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	-	Unimpleme	nted							-	—
8Eh	PCON	—	—	—	—	—	—	POR	BOR ⁽⁴⁾	qq	uu
8Fh	_	Unimpleme	nted							-	_
90h	-	Unimpleme	nted							_	—
91h	-	Unimpleme	nted							-	—
92h	PR2	Timer2 Peri	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	jister				0000 0000	0000 0000
94h	SSPSTAT	_	—	D/Ā	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	_	Unimpleme	nted							_	—

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

4.2.2.3 INTCON REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-11: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh 18Bh)

R/W-0 GIE	R/W-0 PEIE	R/W-0 T0IE	R/W-0 INTE	R/W-0 RBIE	R/W-0 T0IF	R/W-0 INTF	R/W-x RBIF	R = Readable bit
bit7	1 212	TOLE	INTE	TIDIL	1011		bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset x = unknown
bit 7:	GIE: ⁽¹⁾ Glo 1 = Enable 0 = Disable	s all un-ma	sked interro					
bit 6:	PEIE: ⁽²⁾ Pe 1 = Enable 0 = Disable	s all un-ma	sked peripl	neral interru	ipts			
bit 5:		s the TMR	Interrupt E 0 overflow ii 0 overflow i	nterrupt				
bit 4:	1 = Enable	s the RB0/	nal Interrup INT externa INT externa					
bit 3:		s the RB p	e Interrupt ort change ort change	interrupt				
bit 2:	TOIF: TMR 1 = TMR0 0 = TMR0	register ove	erflowed (m	ust be clea	red in softwa	re)		
bit 1:		30/INT exte	rnal interru		(must be cle ccur	ared in soft	ware)	
bit 0:		t one of the	RB7:RB4		ed state (see d state	Section 5.2	to clear the	interrupt)
	be re-enab description	led by the 1 1.	RETFIE ins	truction in t	he user's Inte	errupt Servi		red, the GIE bit may unintentionally Refer to Section 13.5 for a detailed
	The PEIE I	bit (bit6) is			PIC16C61, r			
globa		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to

9.0 TIMER2 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer2 is an 8-bit timer with a prescaler and a postscaler. It is especially suitable as PWM time-base for PWM mode of CCP module(s). TMR2 is a readable and writable register, and is cleared on any device reset.

The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

The match output of the TMR2 register goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling, inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF (PIR1<1>)).

The Timer2 module can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 9-2 shows the Timer2 control register. T2CON is cleared upon reset which initializes Timer2 as shut off with the prescaler and postscaler at a 1:1 value.

9.1 Timer2 Prescaler and Postscaler

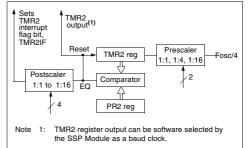
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- · a write to the T2CON register
- any device reset (POR, BOR, MCLR Reset, or WDT Reset).

TMR2 is not cleared when T2CON is written.


9.2 Output of TMR2

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

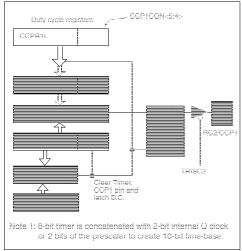
FIGURE 9-1: TIMER2 BLOCK DIAGRAM

FIGURE 9-2: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R = Readable bit
bit7 bit 7:	Unimplem	ented : Rea	ud as '0'				bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 6-3:		TOUTPS0: postscale postscale	Timer2 Ou	itput Postsc	ale Select bi	ts		
bit 2:	TMR2ON : 1 = Timer2 0 = Timer2	is on	bit					
bit 1-0:	T2CKPS1: 00 = 1:1 pr 01 = 1:4 pr 1x = 1:16 p	escale rescale	Timer2 Clo	ock Prescale	e Select bits			

10.3 PWM Mode

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note: Clearing the CCP1CON register will force the CCP1 PWM output latch to the default low level. This is not the PORTC I/O data latch.

Figure 10-4 shows a simplified block diagram of the CCP module in PWM mode.

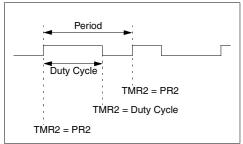

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 10.3.3.

FIGURE 10-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 10-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 10-5: PWM OUTPUT

10.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = [(PR2) + 1] • 4 • TOSC • (TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWM duty cycle is latched from CCPR1L into CCPR1H
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)

Note:	The Timer2 postscaler (see Section 9.1) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

10.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)} \quad \text{bits}$$

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be forced to the low level.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000
0Dh ⁽⁴⁾	PIR2	—	_	_	_	_	_	_	CCP2IF		 0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000
8Dh ⁽⁴⁾	PIE2	—	_	-	_	-	_	-	CCP2IE		 0
87h TRISC PORTC Data Direction register											1111 1111
11h	TMR2 Timer2 module's register										0000
92h	PR2	Timer2 m	iodule's Per	iod register						1111 1111	1111 1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/0	Compare/P	VM1 (LSB)	1					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/0	Compare/P	VM1 (MSB)					xxxx xxxx	นนนน นนนน
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽⁴⁾	CCPR2L	Capture/0	Compare/P\	VM2 (LSB)	1		1			xxxx xxxx	นนนน นนนน
1Ch ⁽⁴⁾	CCPR2H	Capture/0	Compare/P\	VM2 (MSB)					xxxx xxxx	นนนน นนนน
1Dh ⁽⁴⁾	CCP2CON	-	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

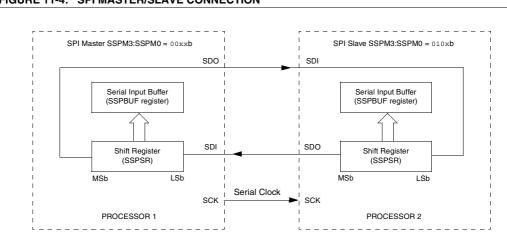
 Legend:
 x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

 Note
 1:
 These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.


To enable the serial port, SSP enable bit SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear enable bit SSPEN, re-initialize SSPCON register, and then set enable bit SSPEN. This configures the SDI, SDO, SCK, and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if implemented)

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and SS could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-4 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

FIGURE 11-4: SPI MASTER/SLAVE CONNECTION

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the software protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched interrupt flag bit SSPIF (PIR1<3>) is set.

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-5 and Figure 11-6 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or TCY)
- Fosc/16 (or 4 TCY)
- Fosc/64 (or 16 TCY)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

11.3.1 SSP MODULE IN SPI MODE FOR PIC16C66/67

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

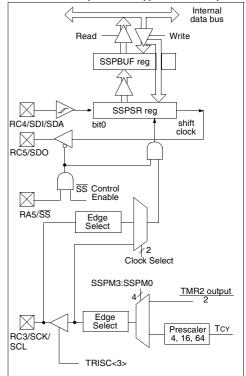
- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

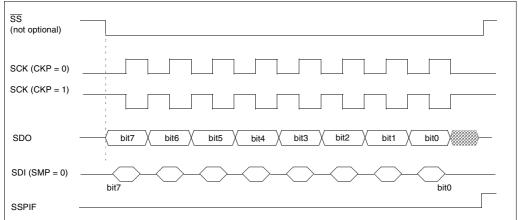
Slave Select (SS) RA5/SS

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- · Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- · Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device. MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and interrupt flag bit SSPIF (PIR1<3>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully. When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit BF (SSPSTAT<0>) indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-2 shows the loading of the SSPBUF (SSPSR) for data transmission. The shaded instruction is only required if the received data is meaningful.

EXAMPLE 11-2: LOADING THE SSPBUF (SSPSR) REGISTER (PIC16C66/67)


LOOP	BCF BSF BTFSS	STATUS, STATUS, SSPSTAT,	RP0	;Specify Bank 1 ; ;Has data been ;received ;(transmit ;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents ; of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents ; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-9), shows that the SSPSR is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.

FIGURE 11-9: SSP BLOCK DIAGRAM (SPI MODE)(PIC16C66/67)

FIGURE 11-13: SPI MODE TIMING (SLAVE MODE WITH CKE = 1) (PIC16C66/67)

TABLE 11-2:	REGISTERS ASSOCIATED WITH SPI OPERATION (PIC16C66/67)	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Pow	e on er-on set		on all resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
13h	SSPBUF	Synchrono	ous Serial	Port Rece	eive Buffe	r/Transmit	Register			xxxx	xxxx	uuuu	uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
85h	TRISA	_	— — PORTA Data Direction register									11	1111
87h	TRISC	SC PORTC Data Direction register								1111	1111	1111	1111
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000	0000	0000	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16C66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

11.5.1 SLAVE MODE

PIC16C6X

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-4 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.5.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The

address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-16). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT-<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 11-4: DATA TRANSFER RECEIVED BYTE ACTIONS

	ts as Data s Received			Set bit SSPIF
BF	SSPOV	$SSPSR \to SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	No	No	Yes

Г

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	R	= Readable bit
bit7							bitO	W U - n x	 Writable bit Unimplemented bit, read as '0' Value at POR rese unknown
bit 7:	SPEN: Ser (Configures 1 = Serial p 0 = Serial p	s RC7/RX/l	DT and RC d	6/TX/CK	pins as seri	al port pins	s when bits	TRIS	C<7:6> are set)
bit 6:	RX9 : 9-bit I 1 = Selects 0 = Selects	9-bit rece	otion						
bit 5:	SREN: Sing	gle Receiv	e Enable bi	t					
	Asynchrone Don't care	ous mode							
	$\frac{Synchronof}{1 = Enables}$ $0 = Disables$ This bit is c	s single ree s single re	ceive ceive	is comple	ete.				
	Synchrono Unused in t		<u>slave</u>						
bit 4:	CREN: Cor	ntinuous R	eceive Ena	ble bit					
	$\frac{\text{Asynchrono}}{1 = \text{Enable}}$ $0 = \text{Disable}$	s continuo							
	$\frac{\text{Synchronor}}{1 = \text{Enables}}$ $0 = \text{Disables}$	s continuo		until enabl	le bit CREN	l is cleared	(CREN ov	erride	s SREN)
bit 3:	Unimplem	ented: Rea	ad as '0'						
bit 2:	FERR: Fran 1 = Framing 0 = No fran	g error (Ca		ed by rea	ding RCRE	G register	and receive	e next	valid byte)
bit 1:	OERR : Ove 1 = Overrun 0 = No ove	n error (Ca		d by clea	ring bit CRI	EN)			
bit 0:	RX9D : 9th								

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{RCIE}}$.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Receive Register							0000 0000	0000 0000	
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: PSPIE and PSPIF are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Transmit Register						0000 0000	0000 0000		
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register						0000 0000	0000 0000		

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

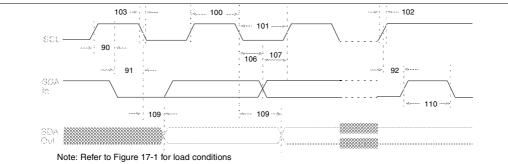
Note 1: PSPIF and PSPIE are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

Value on Value on Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR. all other BOR Resets PSPIF⁽¹⁾ 0Ch PIR1 RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000 (2) 18h RCSTA SPEN RX9 SREN CREN FFRR OFBB 0000 -00x 0000 -00x RX9D 0000 0000 0000 0000 1Ah RCREG USART Receive Register PSPIE⁽¹⁾ CCP1IE 0000 0000 0000 0000 8Ch PIE1 RCIE TXIE SSPIE TMR2IE TMR1IE (2) 0000 -010 0000 -010 98h TXSTA CSRC BRGH TRMT TX9D TX9 TXEN SYNC _ 0000 0000 0000 0000 SPBRG 99h Baud Rate Generator Register

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Reception.


Note 1: PSPIF and PSPIE are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

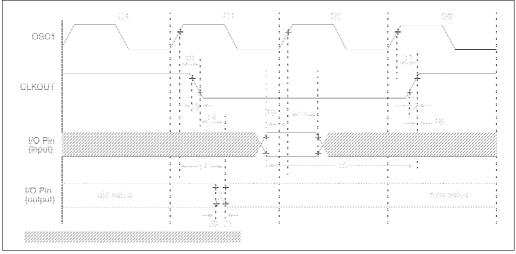
PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-10: I²C BUS DATA TIMING

TABLE 17-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy			
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10 to 400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6		μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max. + tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-3: CLKOUT AND I/O TIMING

CLKOUT AND I/O TIMING REQUIREMENTS TABLE 18-3:

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		-	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑	_	75	200	ns	Note 1	
12*	TckR	CLKOUT rise time	_	35	100	ns	Note 1	
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT \uparrow		Tosc + 200	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT \uparrow		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out va	lid	—	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	PIC16 C 62A/ R62/64A/R64	100	_	—	ns	
			PIC16 LC 62A/ R62/64A/R64	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in	setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16 C 62A/ R62/64A/R64	—	10	40	ns	
			PIC16 LC 62A/ R62/64A/R64	_	_	80	ns	
21*	TioF	Port output fall time	PIC16 C 62A/ R62/64A/R64	—	10	40	ns	
			PIC16 LC 62A/ R62/64A/R64	_	-	80	ns	
22††*	Tinp	RB0/INT pin high or low time		Тсү	_	_	ns	
23††*	Trbp	RB7:RB4 change int high or low	Тсү	—	—	ns		

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

22.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр			
CC	CCP1	OSC	OSC1
ck		rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	se letters and their meanings:		
S		_	
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 2	2-1: LOAD CONDITIONS FOR D	EVICE TIMING S	PECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		
	J		
	\gtrsim RL	F	
	\sim		*
	•		Vss
		RL = 464Ω	
	+		
	Vss		for all pins except OSC2/CLKOUT but including D and E outputs as ports
Note 1:	PORTD and PORTE are not imple-		• • •
	mented on the PIC16C66.	15 pF	for OSC2 output
		-	

-