

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc62a-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-2: PIC16C62/62A/R62/64/64A/R64 BLOCK DIAGRAM

FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

TABLE 5-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	_	—	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Direction	n Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	(1)	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TRM1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	(1)	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved, always maintain these bits clear.

2: These bits are implemented on the PIC16C65/65A/R65/67 only.

FIGURE 11-2: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	VV = VV f(able b)(able b)(ab
								as '0'
		_						- n =Value at POR reset
bit 7:	MCOL: W	rite Collisio	on Detect	bit ritten while	, it is still tr	anemitting	the previou	is word
	(must be c	cleared in s	oftware)	intern white		anonnang		
	0 = No col	lision						
bit 6:	SSPOV: R	leceive Ove	erflow Det	ect bit				
	In SPI mod	de						
	1 = A new	byte is rece	eived while eaister is l	e the SSPE	BUF registe	er is still ho lv occur in	lding the pre	The user must read the SSP-
	BUF, even	if only trai	nsmitting	data, to av	oid setting	g overflow.	In master n	node the overflow bit is not set
	since each	n new rece	ption (and	l transmiss	sion) is init	iated by w	riting to the	SSPBUF register.
	U = 100 000	wome						
	1 = A byte	is received	while the	SSPBUF	register is	still holding	g the previou	is byte. SSPOV is a "don't care"
	in transmit	mode. SS	POV mus	t be cleare	ed in softw	are in eith	er mode.	
	0 = No ove	erflow						
bit 5:	SSPEN: S	ynchronou	is Serial P	ort Enable	bit			
	1 = Enable	<u>de</u> es serial po	ort and co	nfigures S	CK SDO	and SDI a	s serial port	pins
	0 = Disable	es serial p	ort and co	nfigures th	nese pins a	as I/O port	pins	P
	In I ² C mod	<u>de</u>						
	1 = Enable 0 = Disable	es the seria es serial n	al port and co	l configure	es the SDA	and SCL	pins as seri nins	al port pins
	In both mo	odes, when	enabled,	these pins	s must be	properly co	onfigured as	input or output.
bit 4:	CKP: Cloc	k Polarity	Select bit					
	In SPI mod	<u>de</u>						
	1 = Idle sta	ate for cloc	k is a high	i level. Tra	nsmit hap	pens on fa	lling edge, r	eceive on rising edge.
	$ln l^2 C mod$		K 15 A 10W	level. Ital	ыни парр		ing euge, re	ceive on failing edge.
	SCK relea	se control						
	1 = Enable	e clock	ماممار ماسم					
hit 2.0.			CIOCK SIFE	Coriol Do	to ensure	data setu	p ume)	
Dit 3-0.	0000 = SF	PI master n	node, cloc	k = Fosc/4	1	elect bits		
	0001 = SF	PI master n	node, cloc	k = Fosc/1	6			
	0010 = SF	PI master n	node, cloc	k = Fosc/6 k = TMB2	64 output/2			
	0100 = SF	PI slave mo	de, clock	= SCK pir	. SS pin c	ontrol ena	bled.	
	0101 = SF	PI slave mo	de, clock	= SCK pir	n. <mark>SS</mark> pin c	ontrol disa	bled. SS ca	n be used as I/O pin.
	$0110 = I^2(0)$ $0111 = I^2(0)$	5 slave mo C slave mo	de, 7-bit a de, 10-bit	address				
	$1011 = I^2$	C firmware	controlled	d Master M	lode (slave	e idle)		
	$1110 = ^{2}($	C slave mo	de, 7-bit a	ddress wi	th start an	d stop bit i	interrupts en	abled
	TTTT = I (5 SIAVE 1110	ue, iu-bil	auu1855 V	mii stait a		i interrupts e	a ladigu

BAUD RATE (K)	Fosc = 2 KBAUD	0 MHz % ERROR	SPBRG value (decimal)	16 MHz KBAUD	% ERROR	SPBRG value (decimal)	10 MHz KBAUD	% ERROR	SPBRG value (decimal)	7.16 MH: KBAUD	z RROR	SPBRG value (decimal)
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	+0.16	64	9.520	-0.83	46
19.2	19.230	+0.16	64	19.230	+0.16	51	18.939	-1.36	32	19.454	+1.32	22
38.4	37.878	-1.36	32	38.461	+0.16	25	39.062	+1.7	15	37.286	-2.90	11
57.6	56.818	-1.36	21	58.823	+2.12	16	56.818	-1.36	10	55.930	-2.90	7
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.51	4	111.860	-2.90	3
250	250	0	4	250	0	3	NA	-	-	NA	-	-
625	625	0	1	NA	-	-	625	0	0	NA	-	-
1250	1250	0	0	NA	-		NA	-	-	NA	-	-

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 5	5.068 MHz	SPBRG	4 MHz		SPBRG	3.579 Mł	Ηz	SPBRG	1 MHz		SPBRG	32.768 k	kHz	SPBRG
RATE		%	value		%	value		%	value		%	value		%	value
(K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
9.6	9.6	0	32	NA	-	-	9.727	+1.32	22	8.928	-6.99	6	NA	-	-
19.2	18.645	-2.94	16	1.202	+0.17	207	18.643	-2.90	11	20.833	+8.51	2	NA	-	-
38.4	39.6	+3.12	7	2.403	+0.13	103	37.286	-2.90	5	31.25	-18.61	1	NA	-	-
57.6	52.8	-8.33	5	9.615	+0.16	25	55.930	-2.90	3	62.5	+8.51	0	NA	-	-
115.2	105.6	-8.33	2	19.231	+0.16	12	111.860	-2.90	1	NA	-	-	NA	-	-
250	NA	-	-	NA	-	-	223.721	-10.51	0	NA	-	-	NA	-	-
625	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1250	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-

Note: For the PIC16C63/R63/65/65A/R65 the asynchronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information or use the PIC16C66/67.

TABLE 12-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	IG Baud Rate Generator Register									0000 0000

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

FIGURE 12-12: SYNCHRONOUS TRANSMISSION

FIGURE 12-13: SYNCHRONOUS TRANSMISSION THROUGH TXEN

13.3 <u>Reset</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The PIC16CXX differentiates between various kinds of reset:

- · Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) Not on PIC16C61/62/ 64/65

Some registers are not affected in any reset condition, their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on MCLR or WDT Reset, on MCLR reset during SLEEP, and on Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation.

The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 13-7, Table 13-8, and Table 13-9. These bits are used in software to determine the nature of the reset. See Table 13-12 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 13-9.

On the PIC16C62A/R62/63/R63/64A/R64/65A/R65/ 66/67, the MCLR reset path has a noise filter to detect and ignore small pulses. See parameter #34 for pulse width specifications.

It should be noted that a WDT Reset does not drive the $\overline{\text{MCLR}}$ pin low.

FIGURE 13-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

FIGURE 13-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 13-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 13-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

13.5 Interrupts

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The PIC16C6X family has up to 11 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or global enable bit, GIE.

Global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register. GIE is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enable interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flag bits are contained in the INTCON register.

The peripheral interrupt flag bits are contained in special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2 and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, bit GIE is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the RB0/INT pin or RB port change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 13-19). The latency is the same for one or two cycle instructions. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

- Note: For the PIC16C61/62/64/65, if an interrupt occurs while the Global Interrupt Enable bit, GIE is being cleared, bit GIE may unintentionally be re-enabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:
 - 1. An instruction clears the GIE bit while an interrupt is acknowledged
 - 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
 - The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GIE bit to be set (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.
 - 4. Perform the following to ensure that interrupts are globally disabled.

LOOP	BCF IN	NTCON,GIE	;Disable Global				
			;Interrupt bit				
	BTFSC	INTCON,GIE	;Global Interrupt				
			;Disabled?				
	GOTO	LOOP	;NO, try again				
	:		;Yes, continue				
			;with program flow				

14.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 14-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 14-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location $(= 0 \text{ or } 1)$ The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 14-2 lists the instructions recognized by the MPASM assembler.

Figure 14-1 shows the general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC16CXX products, do not use the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

BTFSS	Bit Test	Bit Test f, Skip if Set			CALL	Call Subroutine					
Syntax:	[<i>label</i>] B	FSS f,b			Syntax:	[label]	CALL k	[
Operands:	$0 \le f \le 12$	27			Operands:	$0 \le k \le 2$	047				
	0 ≤ b < 7				Operation:	(PC)+ 1-	→ TOS.				
Operation:	skip if (f<	:b>) = 1				$\dot{k} \rightarrow PC <$:10:0>,				
Status Affected:	None					(PCLATH	1<4:3>) -	→ PC<12:	11>		
Encoding:	01	11bb	bfff	ffff	Status Affected:	None					
Description:	If bit 'b' in	register 'f' i	s '0' then t	he next	Encoding:	10	0kkk	kkkk	kkkk		
Words:	instructior If bit 'b' is discarded instead, m 1	is execute '1', then the and a NOF naking this	d. e next instr is execut a 2Tcy ins	uction is ed truction.	Description:	Description: Call Subroutine (PC+1) is pushe eleven bit imme into PC bits <10 the PC are load					
Cycles:	1(2)					is a two cy	cle instruc	ction.			
O Cuelo Activitur	·(<u></u>)	00	02	04	Words:	1					
Q Cycle Activity.		Q2	03	Q4	Cycles:	2					
	Decode	register 'f'	data	No- Operation	Q Cycle Activity:	Q1	Q2	Q3	Q4		
If Skip:	(2nd Cyc	le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC		
	Q1	Q2	Q3	Q4			Push PC to Stack				
	No- Operation	No- Operation	No- Operation	No- Operation	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation		
Example	HERE	BTFSC	FLAG,1	CODE	Example	HERE	CALL	THERE			
	TRUE	•	1100200	_0022		Before Ir	struction				
		•					PC = A	ddress HE	RE		
		•				After Ins	truction	ddroee TU	TOT		
	Before Ir	Istruction	addroco T				TOS = A	ddress HE	RE+1		
	After Inst	ruction	address i	IERE							
	/	if FLAG<1:	> = 0,								
		PC =	address F	ALSE							
		it FLAG<1: PC =	> = 1, address ™	RIIR							

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2	opS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	P	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st	(I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE	18-1: LOAD CONDITIONS FOR DEVI	CE TIMING S	SPECIFICATIONS
	Load condition 1		Load condition 2
	N/ /0		
	VDD/2		
	J		
	\leq RL		
	\leq		• · · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • • • •		Vss
	+		
	Vss	$B_1 = 4640$	
		$C_{1} = F_{0} = F_{0}$	for all pipe execut OSC2/CL/CUT
		OL = 50 pF	ior all plns except OSO2/OLKOUT
Note 1:	PORTD and PORTE are not	15-5	for OCC2 autout
	implemented on the	15 pF	
	PIC16C62A/R62.		

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 18-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	-	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	-	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	-	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μS	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	-	μS	After this period the first clock
		time	400 kHz mode	0.6	—	μS	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	_
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	-	ns	Note 2
			400 kHz mode	100	-	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	-	μS	_
		time	400 kHz mode	0.6	-	μS	
109*	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading			400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 19-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—		ns	
		input low time	With Prescaler	PIC16 C 65	10	—	_	ns	
				PIC16 LC 65	20	—	—	ns	
51*	51* TccH CCP1 and CCP2		No Prescaler	0.5TCY + 20	—	—	ns		
		input high time	With Prescaler	PIC16 C 65	10	_	_	ns	
				PIC16 LC 65	20	—	—	ns	
52*	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)
53	TccR	CCP1 and CCP2 output rise time		PIC16 C 65	—	10	25	ns	
		PIC16 LC 65			_	25	45	ns	
54	TccF	CCP1 and CCP2 c	CP1 and CCP2 output fall time PIC16		_	10	25	ns	
				PIC16 LC 65	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

20.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	ppS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:	1	
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st	(I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 2	20-1: LOAD CONDITIONS FOR DEVICE	TIMING SP	ECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		7
	J	\succ	
	\leq RL	Pi	
	$ \leq $		+
	★		Vss
	↓ RL	= 464Ω	
	Vss Cl	= 50 pF fo	or all pins except OSC2/CLKOUT
Note 1:	PORTD and PORTE are not imple-	b	ut including D and E outputs as ports
	mented on the PIC16C63.	15 pF fo	or OSC2 output

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

21.2 DC Characteristics: PIC16LCR63/R65-04 (Commercial, Industrial)

DC CHA	RACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial						
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001	Supply Voltage	Vdd	3.0	-	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details	
D005	Brown-out Reset Voltage	BVDD	3.7	4.0	4.3	٧	BODEN configuration bit is enabled	
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled	
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V	
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$	
D021	(Note 3, 5)		-	0.9	5	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$	
D021A			-	0.9	5	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$	
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

- $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-11: I²C BUS DATA TIMING

TABLE 21-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	-		
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	_		
102*	TR	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μS	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	_
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	_	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs	_
		time	400 kHz mode	0.6	_	μs	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

22.1 DC Characteristics: PIC16C66/67-04 (Commercial, Industrial, Extended) PIC16C66/67-10 (Commercial, Industrial, Extended) PIC16C66/67-20 (Commercial, Industrial, Extended)

рс сн	DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated) Operating temperature -40° C $\leq TA \leq +125^{\circ}$ C for extended, -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C0°C $\leq TA \leq +20^{\circ}$ C for commercial										
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions				
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration				
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V					
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details				
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details				
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN configuration bit is enabled				
			3.7	4.0	4.4	V	Extended Range Only				
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC, osc config FOSC = 4 MHz, VDD = 5.5V (Note 4)				
D013			-	10	20	mA	HS osc config Fosc = 20 MHz, VDD = 5.5V				
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V				
D020 D021 D021A D021B	Power-down Current (Note 3, 5)	IPD	- - -	10.5 1.5 1.5 2.5	42 16 19 19	μΑ μΑ μΑ μΑ	$\label{eq:VDD} \begin{array}{l} V\text{DD} = 4.0\text{V}, \text{WDT enabled}, -40^{\circ}\text{C to} +85^{\circ}\text{C} \\ \text{VDD} = 4.0\text{V}, \text{WDT disabled}, -0^{\circ}\text{C to} +70^{\circ}\text{C} \\ \text{VDD} = 4.0\text{V}, \text{WDT disabled}, -40^{\circ}\text{C to} +85^{\circ}\text{C} \\ \text{VDD} = 4.0\text{V}, \text{WDT disabled}, -40^{\circ}\text{C to} +125^{\circ}\text{C} \end{array}$				
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 22-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
NO.									
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	_	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	_	—	ns	
				With Prescaler	Greater of:	_	—	ns	N = prescale value
					20 or <u>TCY + 40</u>				(2, 4,, 256)
					N				
45*	Tt1H	T1CKI High Time	Synchronous, P	rescaler = 1	0.5TCY + 20		—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47
			Prescaler =	PIC16 LC 6X	25	_	—	ns	
			2,4,8						
			Asynchronous	PIC16 C 6X	30		—	ns	
				PIC16 LC 6X	50	-	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler = 1	0.5TCY + 20		—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15		—	ns	parameter 47
			Prescaler =	PIC16 LC 6X	25	-	—	ns	
			2,4,8						
			Asynchronous	PIC16 C 6X	30	—	—	ns	
				PIC16 LC 6X	50		—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	Greater of:	_	—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16 LC 6X	Greater of:				N = prescale value
					50 OR <u>ICY + 40</u>				(1, 2, 4, 8)
				B 10.100001	N				
			Asynchronous	PIC16 C 6X	60	-	-	ns	
				PIC16 LC 6X	100	<u> </u>		ns	
	Ft1	Timer1 oscillator inp	out frequency rar	ige	DC	-	200	kHz	
		(oscillator enabled b	by setting bit T1C	SCEN)					
48	ICKEZtmr1	Delay from external	clock edge to tin	ner increment	2Tosc	-	/Tosc	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

F.8 PIC16C8X Family of Devices

		PIC16F83	PIC16CR83	PIC16F84	PIC16CR84
Clock	Maximum Frequency of Operation (MHz)	10	10	10	10
	Flash Program Memory	512	—	1K	—
	EEPROM Program Memory	—	_	—	—
Memory	ROM Program Memory	—	512	—	1K
	Data Memory (bytes)	36	36	68	68
	Data EEPROM (bytes)	64	64	64	64
Peripher-	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
als					
	Interrupt Sources	4	4	4	4
	I/O Pins	13	13	13	13
Features	Voltage Range (Volts)	2.0-6.0	2.0-6.0	2.0-6.0	2.0-6.0
	Packages	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC	18-pin DIP, SOIC

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.

F.9 PIC16C9XX Family Of Devices

		PIC16C923	PIC16C924
Clock	Maximum Frequency of Operation (MHz)	8	8
Mamany	EPROM Program Memory	4K	4K
wemory	Data Memory (bytes)	176	176
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Module(s)	1	1
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C
	Parallel Slave Port	—	—
	A/D Converter (8-bit) Channels	—	5
	LCD Module	4 Com, 32 Seg	4 Com, 32 Seg
	Interrupt Sources	8	9
	I/O Pins	25	25
	Input Pins	27	27
	Voltage Range (Volts)	3.0-6.0	3.0-6.0
Features	In-Circuit Serial Programming	Yes	Yes
	Brown-out Reset	-	—
	Packages	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die	64-pin SDIP ⁽¹⁾ , TQFP; 68-pin PLCC, Die

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C9XX Family devices use serial programming with clock pin RB6 and data pin RB7.