

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc62at-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											·
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physica	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Counter's (PC) Least Significant Byte								0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	-	- PORTA Data Latch when written: PORTA pins when read								uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ORTC Data Latch when written: PORTC pins when read								uuuu uuuu
08h	PORTD	PORTD Dat	ORTD Data Latch when written: PORTD pins when read								
09h	PORTE		—	xxx	uuu						
0Ah ^(1,2)	PCLATH		— — — Write Buffer for the upper 5 bits of the Program Counter								0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	_	1	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	_	Unimpleme	nted							—	_
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the M	/lost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	-	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H Capture/Compare/PWM1 (MSB)									xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	—	Unimpleme	nted							_	

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

IABLE	4-4:	SPECIA	LFUNC		GISTERS	FOR II		0004/04/	4/H04 ((cont.a)	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	rogram Counter's (PC) Least Significant Byte								0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	0001 1xxx	000q quuu						
84h ⁽¹⁾	FSR	Indirect dat	direct data memory address pointer								uuuu uuuu
85h	TRISA	_	—	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h	TRISD	PORTD Da	PORTD Data Direction Register								1111 1111
89h	TRISE	IBF	IBF OBF IBOV PSPMODE — PORTE Data Direction Bits								0000 -111
8Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE	(6)	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	-	Unimpleme	nted							-	—
8Eh	PCON	—	—	—	—	—	—	POR	BOR ⁽⁴⁾	qq	uu
8Fh	_	Unimpleme	nted							-	_
90h	-	Unimpleme	nted							_	—
91h	-	Unimpleme	nted							-	—
92h	PR2	Timer2 Period Register								1111 1111	1111 1111
93h	SSPADD	Synchronous Serial Port (I ² C mode) Address Register								0000 0000	0000 0000
94h	SSPSTAT	_	– – D/Ā P S R/W UA B							00 0000	00 0000
95h-9Fh	_	Unimpleme	nted							_	—

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											<u> </u>
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	Idress pointe	ər					xxxx xxxx	uuuu uuuu
05h	PORTA		_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	PORTD	PORTD Dat	ta Latch whe	n written: PC	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h	PORTE		_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	-	—	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE TOIE INTE RBIE TOIF INTF RBIF 0							0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2		_	0	0						
0Eh	TMR1L	Holding reg	ister for the L	east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the M	Aost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON		_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit	Register		•		xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	-	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Trai	nsmit Data R	egister						0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted							—	_

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A/R65

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

4.2.2.4 PIE1 REGISTER

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

This register contains the individual enable bits for the peripheral interrupts.

Bit PEIE (INTCON<6>) must be set to Note: enable any peripheral interrupt.

FIGURE 4-12: PIE1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 8Ch)

RW-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_		_	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7-6:	Reserved:	Always ma	intain thes	e bits clear.				
bit 5-4:	Unimplem	ented: Rea	ıd as '0'					
bit 3:	SSPIE : Syr 1 = Enables 0 = Disable	s the SSP i	nterrupt	Interrupt Er	able bit			
bit 2:	CCP1IE : C 1 = Enables 0 = Disable	s the CCP1	interrupt	bit				
bit 1:	TMR2IE: TI 1 = Enables 0 = Disable	s the TMR2	to PR2 ma	atch interru	ot			
bit 0:	TMR1IE: TI 1 = Enables 0 = Disable	s the TMR1	overflow i	nterrupt	t			

8.0 TIMER1 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

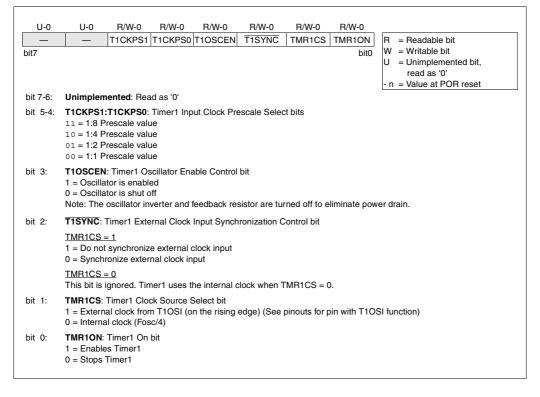
Timer1 can operate in one of two modes:

- · As a timer
- · As a counter

The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).


Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/R63/64A/R64/65A/R65/ R66/67, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

11.4 <u>I²C[™] Overview</u>

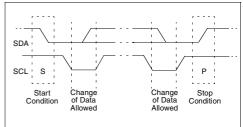
This section provides an overview of the Inter-Integrated Circuit (I²C) bus, with Section 11.5 discussing the operation of the SSP module in I^2C mode.

The I^2C bus is a two-wire serial interface developed by the Philips[®] Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. The enhanced specification (fast mode) is also supported. This device will communicate with both standard and fast mode devices if attached to the same bus. The clock will determine the data rate.

The I²C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master" which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-3 defines some of the I²C bus terminology. For additional information on the I²C interface specification, refer to the Philips document "*The I²C bus and how to use it.*"#939839340011, which can be obtained from the Philips Corporation.

In the I^2C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from/write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of as operating in either of these two relations:

- · Master-transmitter and Slave-receiver
- · Slave-transmitter and Master-receiver


In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I^2C bus is limited only by the maximum bus loading specification of 400 pF.

11.4.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. The START and STOP conditions. The master generates these conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

FIGURE 11-14: START AND STOP CONDITIONS

Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

TABLE 11-3: I²C BUS TERMINOLOGY

Register						Appli	cab	le De	vices	3					Power-on Reset Brown-out Reset	MCLR Reset during: – normal operation – SLEEP WDT Reset	Wake-up via interrupt or WDT Wake-up
W	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	N/A	N/A	N/A
TMR0	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000h	0000h	PC + 1(2)
STATUS	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0001 1xxx	000q quuu (3)	uuuq quuu ⁽³⁾
FSR	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	x xxxx	u uuuu	u uuuu
PORTA	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xx xxxx	uu uuuu	uu uuuu
PORTB	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTD	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTE	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxx	uuu	uuu
PCLATH	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0 0000	0 0000	u uuuu
INTCON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	000 0000	00 0000	uu uuuu (1)
	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu (1)
PIR2	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0	0	u(2)
TMR1L	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	00 0000	uu uuuu	uu uuuu
TMR2	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
T2CON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	-000 0000	-000 0000	-uuu uuuu
SSPBUF	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
CCPR1L	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	00 0000	00 0000	uu uuuu
RCSTA	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 -00x	0000 -00x	uuuu -uuu
TXREG	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
RCREG	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
CCPR2L	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	0000 0000	0000 0000	uuuu uuuu
OPTION	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	1111 1111	1111 1111	uuuu uuuu
TDICA	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	1 1111	1 1111	u uuuu
TRISA	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	11 1111	11 1111	uu uuuu
TRISB	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	1111 1111	1111 1111	uuuu uuuu
TRISC	61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	1111 1111	1111 1111	uuuu uuuu

TABLE 13-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0', q = value depends on condition.

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

3: See Table 13-10 and Table 13-11 for reset value for specific conditions.

13.7 <u>Watchdog Timer (WDT)</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

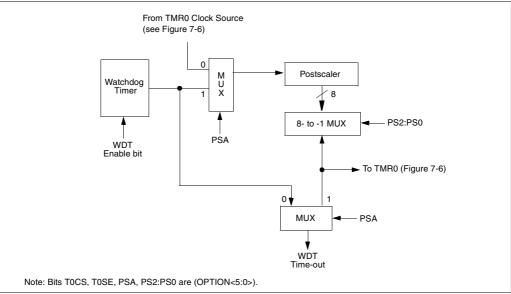
The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/ CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device reset. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (WDT Wake-up). The WDT can be permanently disabled by clearing configuration bit WDTE (Section 13.1).

13.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be

FIGURE 13-20: WATCHDOG TIMER BLOCK DIAGRAM

assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.


The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

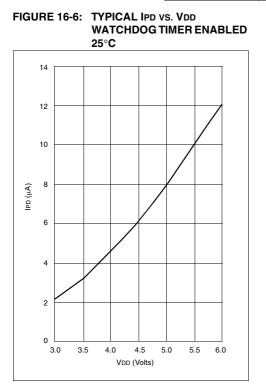
The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a WDT time-out.

13.7.2 WDT PROGRAMMING CONSIDERATIONS

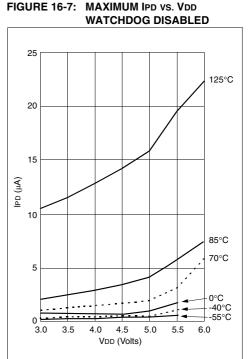
It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time-out occurs.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 13-21: SUMMARY OF WATCHDOG TIMER REGISTERS

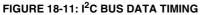

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	CP1	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

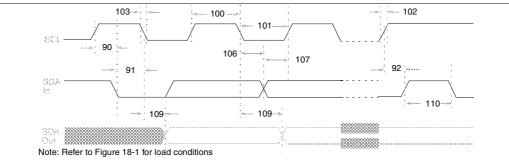
Legend: Shaded cells are not used by the Watchdog Timer.


Note 1: See Figure 13-1, Figure 13-2, and Figure 13-3 for details of these bits for the specific device.

Unconui	tional Br	anch		INCF	Incremer	nt f		
[label]	GOTO	k		Syntax:	[label]	INCF f	f,d	
$0 \le k \le 20$	047			Operands:	$0 \le f \le 12$	7		
$k \rightarrow PC <$	10:0>				d ∈ [0,1]			
PCLATH	<4:3> →	PC<12:11	>	Operation:	(f) + 1 →	(destina	tion)	
None				Status Affected:	Z			
10	1kkk	kkkk	kkkk	Encoding:	00	1010	dfff	ffff
eleven bit into PC bit PC are loa	immediate ts <10:0>. aded from	value is lo The upper PCLATH<4	bits of 1:3>.	Description:	mented. If the W regi	'd' is 0 th ster. If 'd'	e result is is 1 the re	placed in
1				Words:	1			
2				Cycles:	1			
Q1	Q2	Q3	Q4	Q Cycle Activity:	Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process data	Write to PC		Decode	Read register	Process data	Write to destination
No- Operation	No- Operation	No- Operation	No- Operation	Fuerrale	INCE		-	
GOTO T	HERE			Example				
		Address	THERE		After Inst	Z ruction	= 0xF $= 0$ $= 0x00$	-
	$0 \le k \le 20$ $k \rightarrow PC \le PCLATH$ None 10 GOTO is ar eleven bit into PC bit PC are loc GOTO is a 1 2 Q1 Decode No- Operation GOTO T: After Inst	$0 \le k \le 2047$ $k \rightarrow PC<10:0>$ $PCLATH<4:3> \rightarrow I$ None $10 \qquad 1 kkk$ GOTO is an unconditi eleven bit immediate into PC bits <10:0>. PC are loaded from GOTO is a two cycle i 1 2 $Q1 \qquad Q2$ $Decode \qquad Readliteral 'k'No-Operation Operation GOTO THERE After Instruction$	$\begin{array}{c} k \rightarrow PC < 10:0 \\ PCLATH < 4:3 \\ > \rightarrow PC < 12:11 \\ \hline None \\ \hline 10 & 1kkk & kkkk \\ \hline GOTO is an unconditional brance eleven bit immediate value is lc into PC bits < 10:0 \\ OTO is a two cycle instruction. \\ 1 \\ 2 \\ \hline Q1 & Q2 & Q3 \\ \hline Decode & Read & Process \\ \hline Operation & Operation & Operation \\ \hline Operation & Operation & Operation \\ \hline GOTO & THERE \\ \hline After Instruction \\ \hline \end{array}$	$0 \le k \le 2047$ $k \rightarrow PC<10:0>$ $PCLATH<4:3> \rightarrow PC<12:11>$ None $\hline 10 1kkk kkkk kkkk$ GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction. 1 2 $\hline Q1 Q2 Q3 Q4$ $\hline \hline Decode Read Process Write to \\ eleven & $	$0 \le k \le 2047$ $0 \le k \le 2047$ $k \rightarrow PC < 10:0 >$ $PCLATH < 4:3 > \rightarrow PC < 12:11 >$ None $10 1kkk kkkk kkkk$ $10 0 0 0 0 0 0 0 0 0 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-




Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Data based on matrix samples. See first page of this section for details.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 18-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	_	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	-	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

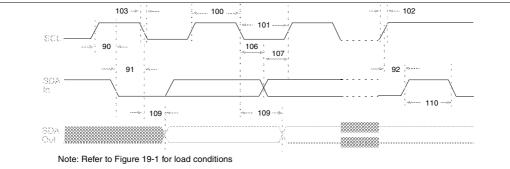
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

DC CHA	RACTERISTICS	Operatir	ng tempera	ature	-40°C 0°C	, T≥ ΄ ≤ T/	ss otherwise stated) $A \le +85^{\circ}$ C for industrial and $A \le +70^{\circ}$ C for commercial ed in DC spec Section 19.1 and
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions
	Capacitive Loading Specs on Output Pins						
D100	OSC2 pin	Cosc2	-	-	15		In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Сю	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-10: I²C BUS DATA TIMING

TABLE 19-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Thigh	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Devce must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
101	TLOW	Clock low time	100 kHz mode	4.7	_	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode		—	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

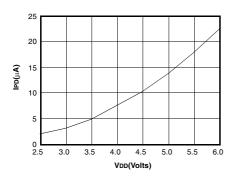
2: A fast-mode (400 kHz) I^2C -bus device can be used in a standard-mode (100 kHz) I^2C -bus system, but the requirement tsu;DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I^2C bus specification) before the SCL line is released.

Applicable Devices	61	62	62A	B62	63	B63	64	64A	R64	65	65A	B65	66	67

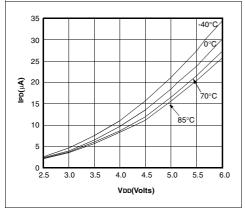
		Standa	rd Operat	ing C	ondition	s (unle	ss otherwise stated)	
		Operatir	ng temper	ature	-40°	Ć≤T	$A \le +125^{\circ}C$ for extended,	
	RACTERISTICS				-40°	C ≤T	$A \le +85^{\circ}C$ for industrial and	
	RACIERISTICS				0°C	≤ 1	$A \le +70^{\circ}C$ for commercial	
		Operating voltage VDD range as described in DC spec Section 20.1 and Section 20.2						
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions	
No.				†				
	Output High Voltage							
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С	
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С	
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С	
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С	
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin	
	Capacitive Loading Specs on Out- put Pins							
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.	
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF		
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF		

These parameters are characterized but not tested.

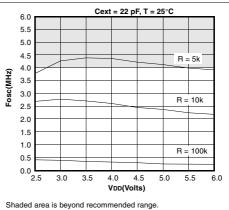
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

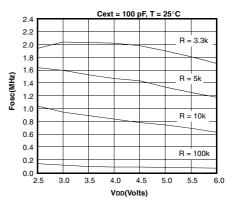

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

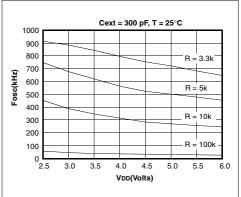

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

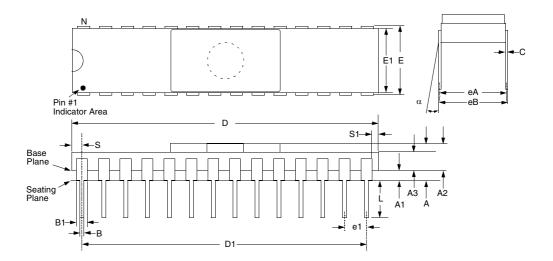

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


FIGURE 23-3: TYPICAL IPD vs. VDD @ 25°C (WDT ENABLED, RC MODE)




FIGURE 23-5: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD



24.9 28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic Side Brazed Dual In-Line (CER)								
0 militad		Millimeters		Inches				
Symbol	Min	Мах	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
Α	3.937	5.030		0.155	0.198			
A1	1.016	1.524		0.040	0.060			
A2	2.921	3.506		0.115	0.138			
A3	1.930	2.388		0.076	0.094			
В	0.406	0.508		0.016	0.020			
B1	1.219	1.321	Typical	0.048	0.052			
С	0.228	0.305	Typical	0.009	0.012			
D	35.204	35.916		1.386	1.414			
D1	32.893	33.147	Reference	1.295	1.305			
E	7.620	8.128		0.300	0.320			
E1	7.366	7.620		0.290	0.300			
e1	2.413	2.667	Typical	0.095	0.105			
eA	7.366	7.874	Reference	0.290	0.310			
eB	7.594	8.179		0.299	0.322			
L	3.302	4.064		0.130	0.160			
Ν	28	28		28	28			
S	1.143	1.397		0.045	0.055			
S1	0.533	0.737		0.021	0.029			

NOTES:

TMR0
TMR0 Clock Source Select bit, T0CS
TMR0 Interrupt
TMR0 Overflow Interrupt Enable bit, T0IE
TMR0 Overflow Interrupt Flag bit, T0IF
TMR0 Prescale Selection Table
TMR0 Source Edge Select bit, T0SE
TMR1 Overflow Interrupt Enable bit, TMR1IE
TMR1 Overflow Interrupt Flag bit, TMR1IF
TMR1CS
TMR1H
TMR1IE
TMR1IF
TMR1L
TMR10N
TMR2
TMR2 Register
TMR2 to PR2 Match Interrupt Enable bit, TMR2IE
TMR2 to PR2 Match Interrupt Flag bit, TMR2IF
TMR216 TH2 Match menupit hag bit, TMR217
TMR2IE
TMR20N
TO
TOUTPS3:TOUTPS0
Transmit Enable bit, TXEN
Transmit Enable bit, TXEN
Transmit Status and Control Register
TRISA
TRISB
TRISC
TRISD
TRISE
TRMT
TX9
TX9D
TXEN
TXIE
TXIF
TXREG
TXSTA
U

L

UA
Asynchronous Mode
Setting Up Transmission
Timing Diagram, Master Transmission
Transmitter112
Asynchronous Receiver
Setting Up Reception
Timing Diagram114
Asynchronous Receiver Mode
Block Diagram114
Section
Section
Synchronous Master Mode
Reception118
Section 116
Setting Up Reception 118
Setting Up Transmission116
Timing Diagram, Reception119
Timing Diagram, Transmission
Transmission

Synchronous Slave Mode	
Reception	120
Section	120
Setting Up Reception	120
Setting Up Transmission	120
Transmit	120
Transmit Block Diagram	112
Update Address bit, UA	84, 89
USART Receive Interrupt Enable bit, RCIE	39
USART Receive Interrupt Flag bit, RCIF	42
USART Transmit Interrupt Enable bit, TXIE	39
USART Transmit Interrupt Flag bit, TXIF	42
UV Erasable Devices	7

w

Wake-up from Sleep	141
Wake-up on Key Depression	
Wake-up Using Interrupts	141
Watchdog Timer (WDT)	
Block Diagram	140
Period	140
Programming Considerations	140
Section	140
WCOL	85, 90
Weak Internal Pull-ups	53
Write Collision Detect bit, WCOL	85, 90

Х

XMIT_MODE	
хт	
7	
2	
Ζ	
Zero bit	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent					
RE:	: Reader Response						
Fror	om: Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
	plication (optional):						
Wou	ould you like a reply?YN						
Dev	vice: PIC16C6X Literature Number: D	S30234E					
Que	iestions:						
4	What are the best features of this document?						
Ι.	what are the best features of this document?						
2.	How does this document meet your hardware and softw	vare development needs?					
3.	Do you find the organization of this data sheet easy to f	ollow? If not, why?					
4.	. What additions to the data sheet do you think would enhance the structure and subject?						
_							
5.	What deletions from the data sheet could be made with	out affecting the overall usefulness?					
6	Is there any incorrect or misleading information (what a	nd whore)?					
0.	is there any incorrect of misleading mormation (what a						
7.	How would you improve this document?						
8.	How would you improve our software, systems, and silic	con products?					