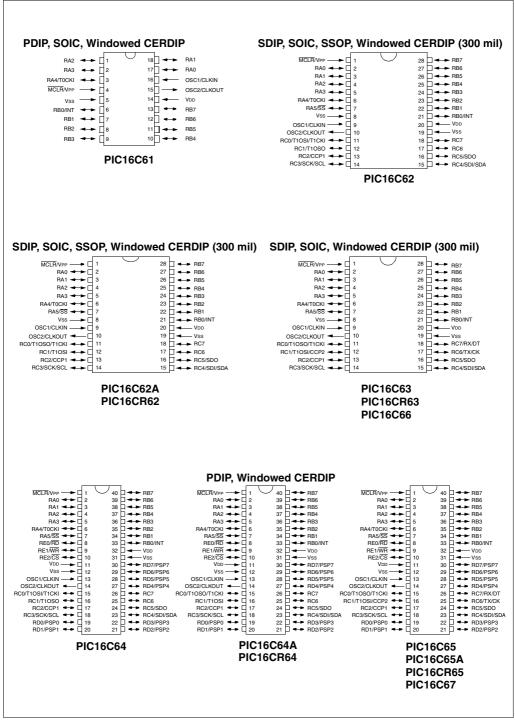


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc63-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

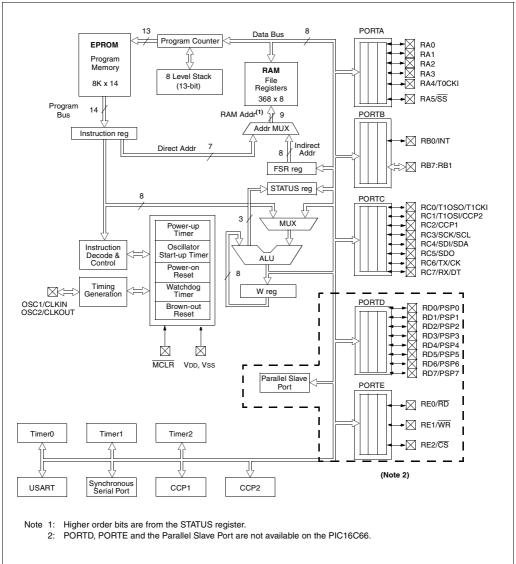


FIGURE 3-4: PIC16C66/67 BLOCK DIAGRAM

8.0 TIMER1 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

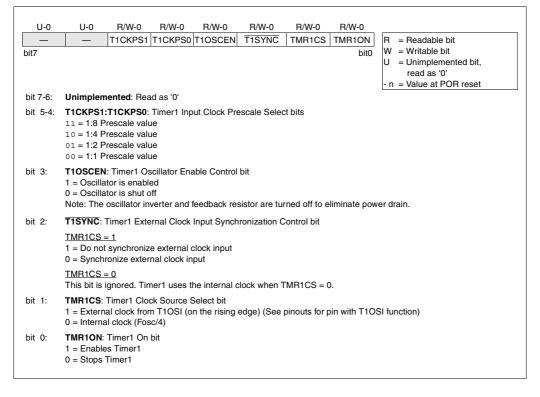
Timer1 can operate in one of two modes:

- · As a timer
- · As a counter

The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).


Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/R63/64A/R64/65A/R65/ R66/67, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

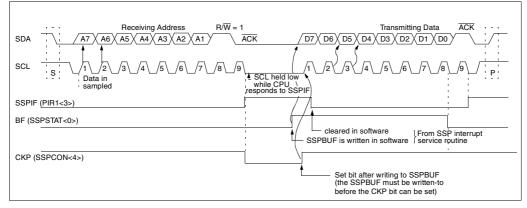
11.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SSP module in l^2 C mode works the same in all PIC16C6X devices that have an SSP module. However the SSP Module in SPI mode has differences between the PIC16C66/67 and the other PIC16C6X devices.

The register definitions and operational description of SPI mode has been split into two sections because of the differences between the PIC16C66/67 and the other PIC16C6X devices. The default reset values of both the SPI modules is the same regardless of the device:


11.2 SPI Mode for PIC16C62/62A/R62/63/R63/64/	
64A/R64/65/65A/R6584	
11.3 SPI Mode for PIC16C66/67 89	
11.4 I ² C [™] Overview95	
11.5 SSP I ² C Operation	

Refer to Application Note AN578, "Use of the SSP Module in the I^2C Multi-Master Environment."

11.5.1.3 TRANSMISSION

When the $R\overline{W}$ bit of the incoming address byte is set and an address match occurs, the $R\overline{W}$ bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-26). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 11-26: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000	
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x	
19h	TXREG	USART Tra	ansmit R	egister						0000 0000	0000 0000	
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010	
99h	SPBRG	Baud Rate	General	0000 0000	0000 0000							

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Transmission.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

Value on Value on Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR. all other BOR Resets PSPIF⁽¹⁾ 0Ch PIR1 RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000 (2) 18h RCSTA SPEN RX9 SREN CREN FFRR OFBB 0000 -00x 0000 -00x RX9D 0000 0000 0000 0000 1Ah RCREG USART Receive Register PSPIE⁽¹⁾ CCP1IE 0000 0000 0000 0000 8Ch PIE1 RCIE TXIE SSPIE TMR2IE TMR1IE (2) 0000 -010 0000 -010 98h TXSTA CSRC BRGH TRMT TX9D TX9 TXEN SYNC _ 0000 0000 0000 0000 SPBRG 99h Baud Rate Generator Register

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: PSPIF and PSPIE are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

13.0 SPECIAL FEATURES OF THE CPU

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP mode
- · Code protection
- ID locations
- · In-circuit serial programming

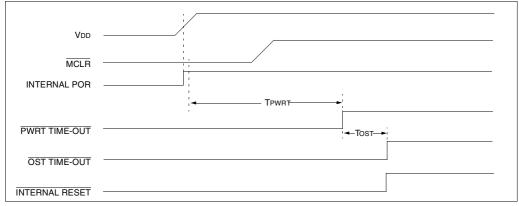
The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

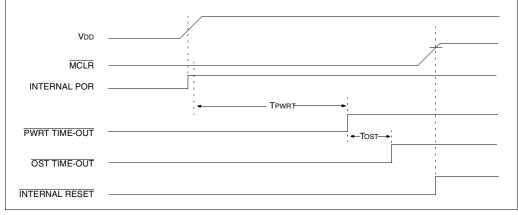
13.1 Configuration Bits

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.


FIGURE 13-1: CONFIGURATION WORD FOR PIC16C61

		-	-	_	_	-	-	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register: Address	CONFIG 2007h
oit13												bit0	71001000	200711
oit 13-5:	Unimple	mented	: Read	as '1'										
oit 4:	CP0 : Coo 1 = Code			t										
	0 = All m			orotecte	d, but	00h - 3F	⁻ h is wr	itable						
oit 3:	PWRTE : 1 = Powe 0 = Powe	r-up Tin	ner ena	bled	e bit									
oit 2:	WDTE : V 1 = WDT 0 = WDT	enabled	Ĕ	Enable	bit									
oit 1-0:	FOSC1:F 11 = RC 10 = HS 01 = XT 00 = LP	oscillato oscillato oscillato	or or r	or Sele	ction b	its								

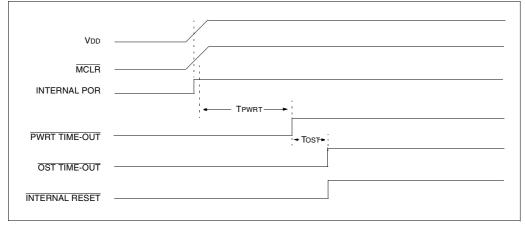

FIGURE 13-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 13-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 13-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

CLRF	Clear f						
Syntax:	[label] C	LRF f					
Operands:	$0 \le f \le 12$	7					
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	1					
Status Affected:	Z						
Encoding:	00	0001	lfff	ffff			
Description:	The conter and the Z		ster 'f' are	cleared			
Words:	1						
Cycles:	1						
Q Cycle Activity:	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process data	Write register 'f'			
Example	CLRF	FLAG	_REG				
	Before In						
	FLAG_REG = 0x5A After Instruction						
		FLAG RE	EG =	0x00			
		Z	=	1			

CLRW	Clear W			
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$00h \rightarrow (N 1 \rightarrow Z$	V)		
Status Affected:	Z			
Encoding:	0 0	0001	0xxx	xxxx
Description:	W register set.	is cleared	. Zero bit ((Z) is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	No- Operation	Process data	Write to W
Example	CLRW			
	Before In	struction		
	After Inst		0x5A	
			0x00	
		Z =	1	
CLRWDT		tobdog -	Finan	
Syntax:		CLRWD1		
Operands:	None	OLIMBI		
Operation:	$00h \rightarrow W$	/DT		
oporation	$0 \rightarrow WD$	T prescale	ər,	
	$1 \rightarrow \overline{\text{TO}}$			
Status Affactad:	$1 \rightarrow \overline{PD}$			
Status Affected:	$1 \rightarrow \overline{PD}$ TO, \overline{PD}	0000	0110	0100
Encoding:	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00	0000	0110	0100 Watch-
	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00 $CLRWDT ir dog Timer$	0000 nstruction r t It also res T. Status b	esets the ' set <u>s th</u> e pr	Watch- e <u>sca</u> ler
Encoding:	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00 $CLRWDT ir dog Timer of the WD$	nstruction r	esets the ' set <u>s th</u> e pr	Watch- e <u>sca</u> ler
Encoding: Description:	$1 \rightarrow \overline{PD}$ $\overline{TO, PD}$ 00 $CLRWDT ir dog Timer of the WD set.$	nstruction r	esets the ' set <u>s th</u> e pr	Watch- e <u>sca</u> ler
Encoding: Description: Words:	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00 $CLRWDT in dog Timer of the WD set.$ 1	nstruction r	esets the ' set <u>s th</u> e pr	Watch- e <u>sca</u> ler
Encoding: Description: Words: Cycles:	$1 \rightarrow \overline{PD}$ $\overline{TO}, \overline{PD}$ 00 $CLRWDT in dog Timer of the WD set.$ 1 1	Instruction r It also res T. Status b	esets the ' set <u>s th</u> e pr its TO and	Watch- escaler PD are
Encoding: Description: Words: Cycles:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO}, \overrightarrow{PD}$ 00 $CLRWDT ir dog Timei of the WD set.$ 1 1 $Q1$	Istruction r : It also res T. Status b Q2 No-	esets the pr sets the pr its TO and Q3 Process	Watch- escaler PD are Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO}, \overrightarrow{PD}$ $\boxed{00}$ $CLRWDT if dog Timeto of the WD set.$ 1 1 $Q1$ $Decode$ $CLRWDT$ Before In	Q2 No- Operation	esets the prite prite TO and Q3	Watch- escaler PD are Q4 Clear WDT Counter
Encoding: Description: Words: Cycles: Q Cycle Activity:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO, PD}$ 00 $CLRWDT ir dog Timeto of the WD set.$ 1 1 $Q1$ $CLRWDT$ $Before Interval of the term of term$	Q2 No- Operation WDT cour	esets the prite prite TO and Q3	Watch- escaler PD are Q4 Clear WDT
Encoding: Description: Words: Cycles: Q Cycle Activity:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO}, \overrightarrow{PD}$ $\boxed{00}$ $CLRWDT if dog Timeto of the WD set.$ 1 1 $Q1$ $Decode$ $CLRWDT$ Before In	Q2 No- Operation WDT cour	esets the prits TO and Q3 Process data	Watch- escaler PD are Q4 Clear WDT Counter
Encoding: Description: Words: Cycles: Q Cycle Activity:	$1 \rightarrow \overrightarrow{PD}$ $\overrightarrow{TO, PD}$ 00 $CLRWDT ir dog Timeto of the WD set.$ 1 1 $Q1$ $CLRWDT$ $Before Interval of the term of term$	Q2 No- Operation WDT cour ruction	esets the prits TO and Q3 Process data ter = ter = caler=	Watch- escaler PD are Q4 Clear WDT Counter

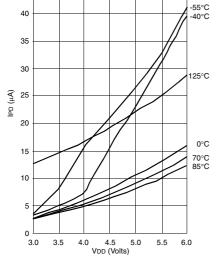
-

Applicable Devices	61	60	601	Deg	62	Dec	61	611	DGA	65	65A	Dee	66	67
Applicable Devices	01	02	02A	n02	03	n03	04	04A	n04	05	05A	H00	00	07

		Standa	rd Operat	ing Co			ss otherwise stated)			
		Operatir	ng temper	ature	-40°C	S ≤ TA	$\Delta \leq +125^{\circ}C$ for extended,			
	RACTERISTICS				-40°C	$\Delta \leq +85^{\circ}$ C for industrial and				
	ARACIERISTICS				0°C	≤ T⁄	$A \leq +70^{\circ}C$ for commercial			
		Operating voltage VDD range as described in DC spec Section 15.1 and								
		Section	15.2.							
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions			
No.				· · ·						
	Output High Voltage									
D090	I/O ports (Note 3)	Voh	VDD-0.7	-	-	v	IOH = -3.0 mA,			
						-	$VDD = 4.5V, -40^{\circ}C \text{ to } +85^{\circ}C$			
D090A			VDD-0.7	-	-	v	IOH = -2.5 mA,			
							VDD = 4.5V, -40°C to +125°C			
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA,			
							VDD = 4.5V, -40°C to +85°C			
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA,			
							VDD = 4.5V, -40°C to +125°C			
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin			
	Capacitive Loading Specs on									
	Output Pins									
D100	OSC2 pin	Cosc2			15	pF	In XT, HS and LP modes when			
							external clock is used to drive			
							OSC1.			
D101	All I/O pins and OSC2 (in RC mode)	Cio			50	pF				

The parameters are characterized but not tested.

*


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

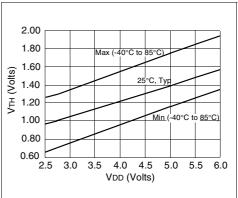

3: Negative current is defined as current sourced by the pin.

FIGURE 16-8: MAXIMUM IPD vs. VDD WATCHDOG ENABLED*

*IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior.

17.2 DC Characteristics: PIC16LC62/64-04 (Commercial, Industrial)

DC CHA	Inless otherwise stated) TA \leq +85°C for industrial and TA \leq +70°C for commercial						
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3, 5)		-	0.9	13.5	μA	VDD = 3.0V, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$
D021A			-	0.9	18	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

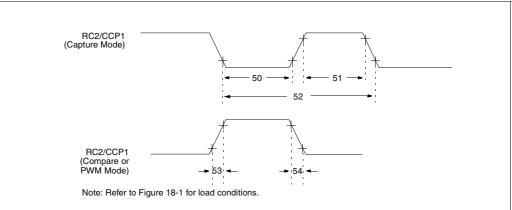
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.


3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions											
50*	TccL	CCP1	No Prescaler		0.5Tcy + 20	—	—	ns												
		input low time	With Prescaler	PIC16 C 62A/R62/ 64A/R64	10	-	—	ns												
				PIC16 LC 62A/R62/ 64A/R64	20	-	—	ns												
51*	TccH	CCP1	No Prescaler		0.5Tcy + 20	_	_	ns												
		input high time	With Prescaler	PIC16 C 62A/R62/ 64A/R64	10	-	—	ns												
				PIC16 LC 62A/R62/ 64A/R64	20	-	—	ns												
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4 or 16)											
53*	TccR	TccR	TccR	TccR	TccR	TccR	TccR	TccR	TccR	TccR	TccR	TccR	CCP1 output rise ti	ime	PIC16 C 62A/R62/ 64A/R64	_	10	25	ns	
				PIC16 LC 62A/R62/ 64A/R64	_	25	45	ns												
54*	TccF	CCP1 output fall tir	ne	PIC16 C 62A/R62/ 64A/R64	_	10	25	ns												
				PIC16 LC 62A/R62/ 64A/R64	_	25	45	ns												

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

19.0 ELECTRICAL CHARACTERISTICS FOR PIC16C65

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +85°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOI	H) x IOH} + \sum (VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

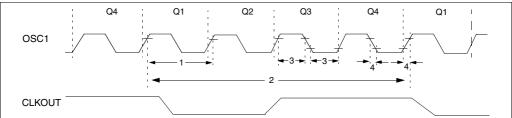
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C65-04	PIC16C65-10	PIC16C65-20	PIC16LC65-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
хт	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V	VDD: 4.5V to 5.5V IDD: 15 mA max. at 5.5V IPD 1.0 μA typ. at 4.5V	5.5V IPD: 1.5 μA typ. at 4.5V	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V
LP	Freq: 4 MHz max. VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Freq: 10 MHz max. Not recommended for use in LP mode	Freq: 20 MHz max. Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 105 μA max. at 32 kHz, 3.0V IPD: 800 μA max. at 3.0V Freq: 200 kHz max.	Freq: 20 MHz max. VDD: 3.0V to 6.0V IDD: 105 μA max. at 32 kHz, 3.0V IPD: 800 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


22.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр			
CC	CCP1	OSC	OSC1
ck		rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	se letters and their meanings:		
S		_	
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 2	2-1: LOAD CONDITIONS FOR D	EVICE TIMING S	PECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		
	J		
	\gtrsim RL	F	
	\sim		*
	•		Vss
		RL = 464Ω	
	+		
	Vss		for all pins except OSC2/CLKOUT but including D and E outputs as ports
Note 1:	PORTD and PORTE are not imple-		• • •
	mented on the PIC16C66.	15 pF	for OSC2 output
		-	

22.5 <u>Timing Diagrams and Specifications</u>

FIGURE 22-2: EXTERNAL CLOCK TIMING

TABLE 22-2: EXTERNAL CLOCK TIMING REQUIREMENTS

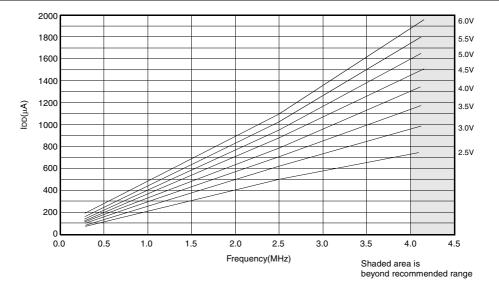
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
				_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250		—	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—		25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

These parameters are characterized but not tested.

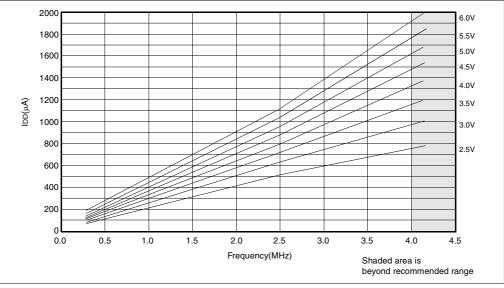
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Parameter No.	Sym	Characteristic	Min	Typt	Max	Units	Conditions
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	—	ns	
72*	TscL	SCK input low time (slave mode)	TCY + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	—	ns	
75*	TdoR	SDO data output rise time	—	10	25	ns	
76*	TdoF	SDO data output fall time	_	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	—	10	25	ns	
79*	TscF	SCK output fall time (master mode)	—	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	—	50	ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK edge	Тсү	—	—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	—	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40	_	—	ns	

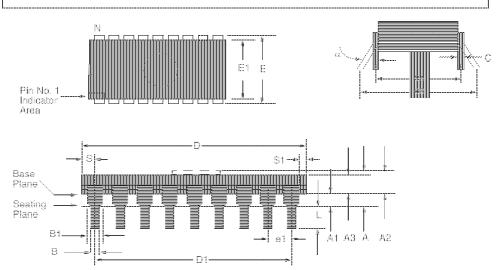

TABLE 22-8: SPI MODE REQUIREMENTS

* These parameters are characterized but not tested.

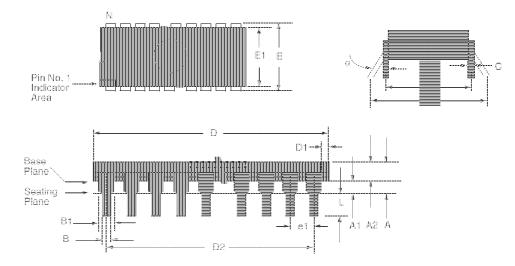

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 23-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)



24.6 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)							
	Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
А	_	5.080		_	0.200		
A1	0.381	1.778		0.015	0.070		
A2	3.810	4.699		0.150	0.185		
A3	3.810	4.445		0.150	0.175		
В	0.355	0.585		0.014	0.023		
B1	1.270	1.651	Typical	0.050	0.065	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	22.352	23.622		0.880	0.930		
D1	20.320	20.320	Reference	0.800	0.800	Reference	
E	7.620	8.382		0.300	0.330		
E1	5.588	7.874		0.220	0.310		
e1	2.540	2.540	Reference	0.100	0.100	Reference	
eA	7.366	8.128	Typical	0.290	0.320	Typical	
eB	7.620	10.160		0.300	0.400		
L	3.175	3.810		0.125	0.150		
Ν	18	18		18	18		
S	0.508	1.397		0.020	0.055		
S1	0.381	1.270		0.015	0.050		

24.7 28-Lead Ceramic CERDIP Dual In-line with Window (300 mil)) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)							
	Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
А	3.30	5.84		.130	0.230		
A1	0.38	_		0.015	_		
A2	2.92	4.95		0.115	0.195		
В	0.35	0.58		0.014	0.023		
B1	1.14	1.78	Typical	0.045	0.070	Typical	
С	0.20	0.38	Typical	0.008	0.015	Typical	
D	34.54	37.72		1.360	1.485		
D2	32.97	33.07	Reference	1.298	1.302	Reference	
Е	7.62	8.25		0.300	0.325		
E1	6.10	7.87		0.240	0.310		
е	2.54	2.54	Typical	0.100	0.100	Typical	
eA	7.62	7.62	Reference	0.300	0.300	Reference	
eB	—	11.43		—	0.450		
L	2.92	5.08		0.115	0.200		
Ν	28	28		28	28		
D1	0.13	_		0.005	_		