

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc63-04i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-6: PIC16C62/62A/R62/64/64A/ R64 REGISTER FILE MAP

File Address File Addres									
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h						
01h	TMR0	OPTION	81h						
02h	PCL	PCL	82h						
03h	STATUS	STATUS	83h						
04h	FSR	FSR	84h						
05h	PORTA	TRISA	85h						
06h	PORTB	TRISB	86h						
07h	PORTC	TRISC	87h						
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h						
09h	PORIE ⁽²⁾		89h						
0Ah	PCLAIH	PCLAIH	8Ah						
0Bh	INTCON	INTCON	8Bh						
0Ch	PIR1	PIE1	8Ch						
0Dh			8Dh						
0Eh	TMR1L	PCON	8Eh						
0Fh	TMR1H		8Fh						
10h	T1CON		90h						
11h	TMR2		91h						
12h	T2CON	PR2	92h						
13h	SSPBUF	SSPADD	93h						
14h	SSPCON	SSPSTAT	94h						
15h	CCPR1L		95h						
16h	CCPR1H		96h						
17h	CCP1CON		97h						
18h			98h						
1Fh			9Fh						
20h		Gaparal	A0h						
		Purpose							
	General	Register	BFh						
	Purpose Register		C0h						
	0								
7Fh			FFh						
	Bank 0	Bank 1							
Unin Note	e 1: Not a physica	emory location; rea Il register.	u as 0°.						
	2: PORTD and	PORTE are not ava	ilable on						
	the PIC16C6	2/62A/R62.							

FIGURE 4-7: PIC16C63/R63/65/65A/R65 REGISTER FILE MAP

	i i Edio		
File Addre	ess		File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	PORTD ⁽²⁾	TRISD ⁽²⁾	88h
09h	PCLATH	PCLATH	89h
	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh	PIR2	PIE2	8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H		8Fh
10h	TICON		
11h	TMB2		91h
12h	T2CON	PB2	
106	SSPRIJE	SERVED	
14h		SSPSTAT	
15h	CCPP1		95h
166			96h
176			97h
1711	CCP1CON		0.0%h
18N	RCSTA	TXSTA	9011
19h	TXREG	SPBRG	99h
1Ah	RCREG		9Ah
1Bh	CCPR2L		9Bh
1Ch	CCPR2H		9Ch
1Dh	CCP2CON		9Dh
1Eh			9Eh
1Fh			9Fh
20h	General	General	A0h
ZEb	Purpose Begister	Purpose Register	
/Fn	Bank 0	Bank 1	FFh
🗌 Unir	nplemented data me	emory location; re	ad as '0'.
Note	e 1: Not a physica	I register	voilable or
	the PIC16C6	- On i E are not av 3/R63.	valiable on

4.2.2.6 PIE2 REGISTER

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

This register contains the CCP2 interrupt enable bit.

FIGURE 4-20: PIE2 REGISTER (ADDRESS 8Dh)

5.5 PORTE and TRISE Register

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTE has three pins, RE2/CS, RE1/WR, and RE0/RD which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which controls the parallel slave port operation and also controls the direction of the PORTE pins.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1					
IBF	OBF	IBOV	PSPMODE	_	bit2	bit1	bit0	R = Readable bit				
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7 :	IBF: Input 1 = A word 0 = No wor	Buffer Full has been d has beer	Status bit received and n received	is waiting t	o be read by	the CPU						
bit 6:	 OBF: Output Buffer Full Status bit 1 = The output buffer still holds a previously written word 0 = The output buffer has been read 											
bit 5:	 iBOV: Input Buffer Overflow Detect bit (in microprocessor mode) 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred 											
bit 4:	PSPMODE 1 = Paralle 0 = Genera	E: Parallel S I slave por al purpose	Slave Port Mo t mode I/O mode	de Select k	bit							
bit 3:	Unimplem	ented: Re	ad as '0'									
	PORTE D	ata Direc	ction Bits									
bit 2:	Bit2 : Direct 1 = Input 0 = Output	tion Contro	ol bit for pin R	E2/CS								
bit 1:	Bit1: Direc 1 = Input 0 = Output	tion Contro	ol bit for pin R	E1/WR								
bit 0:	Bit0 : Direc 1 = Input 0 = Output	tion Contro	ol bit for pin R	E0/RD								

5.6 I/O Programming Considerations

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

5.6.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stavs in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;					PORT	latch	PORT	pins
;								
	BCF	PORTB,	7	;	01pp	pppp	11pp	pppp
	BCF	PORTB,	6	;	10pp	pppp	11pp	pppp
	BSF	STATUS,	RP0	;				
	BCF	TRISB,	7	;	10pp	pppp	11pp	pppp
	BCF	TRISB,	6	;	10pp	pppp	10pp	pppp

;Note that the user may have expected the ;pin values to be 00pp pppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high).

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

PC	X PC	(PC + 1	X	PC + 2	PC + 3	This example shows a write to PORT
Instruction fetched WOVV P	MOVWF PORTB write to PORTB	MOVF PORTB,W		NOP	NOP	followed by a read from PORTB. Note that:
RB7:RB0		;;	<u>x :</u>			data setup time = (0.25Tcy - TPD)
		1 1 1 1 1 1 1 1	Î	Port pin sampled here		where Tcy = instruction cycle TPD = propagation delay
Instruction executed		MOVWF PORTB	TPD MO	VF PORTB,W	NOP	Therefore, at higher clock frequencie a write followed by a read may be pro lematic.
		PORTB				1

FIGURE 5-10: SUCCESSIVE I/O OPERATION

8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and generate an interrupt on overflow which will wake the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair, TMR1L and TMR1H (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters (45 - 47).

8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

;	All Int	errupts	are	disabled
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
	MOVF	TMR1H,	W	;Read high byte
	SUBWF	TMPH,	W	;Sub 1st read
				;with 2nd read
	BTFSC	STATUS	Z	;is result = 0
	GOTO	CONTINU	JE	;Good 16-bit read
;	TMR1L ma	y have r	olle	d over between the read
;	of the h	igh and	low	bytes. Reading the high
;	and low	bytes no	w w	ill read a good value.
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
;	Re-ena	ble Inte	rrup	ot (if required)
CC	ONTINUE			;Continue with
	:			;your code

8.4 <u>Timer1 Oscillator</u>

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

A crystal oscillator circuit is built in-between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must allow a software time delay to ensure proper oscillator start-up.

TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C2					
LP	32 kHz	33 pF	33 pF				
	100 kHz	15 pF	15 pF				
	200 kHz	15 pF	15 pF				
These v	alues are for o	design guidan	ce only.				
Crystals Tested:							
32.768 kHz Epson C-001R32.768K-A ± 20 P							
100 kHz	00.00 KC-P	\pm 20 PPM					
200 kHz	STD XTL 20	0.000 kHz	\pm 20 PPM				
200 kHz STD XTL 200.000 kHz ± 20 PPM Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropri-							

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and \overline{SS} could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-10 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application firmware. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the firmware protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched the interrupt flag bit SSPIF (PIR1<3>) is set.

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-11, Figure 11-12, and Figure 11-13 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

FIGURE 11-10: SPI MASTER/SLAVE CONNECTION (PIC16C66/67)

11.4.4 MULTI-MASTER

PIC16C6X

The I^2C protocol allows a system to have more than one master. This is called multi-master. When two or more masters try to transfer data at the same time, arbitration and synchronization occur.

11.4.4.1 ARBITRATION

Arbitration takes place on the SDA line, while the SCL line is high. The master which transmits a high when the other master transmits a low loses arbitration (Figure 11-22), and turns off its data output stage. A master which lost arbitration can generate clock pulses until the end of the data byte where it lost arbitration. When the master devices are addressing the same device, arbitration continues into the data.

FIGURE 11-22: MULTI-MASTER ARBITRATION (TWO MASTERS)

Masters that also incorporate the slave function, and have lost arbitration must immediately switch over to slave-receiver mode. This is because the winning master-transmitter may be addressing it.

Arbitration is not allowed between:

- A repeated START condition
- · A STOP condition and a data bit
- A repeated START condition and a STOP condition

Care needs to be taken to ensure that these conditions do not occur.

11.2.4.2 Clock Synchronization

Clock synchronization occurs after the devices have started arbitration. This is performed using a wired-AND connection to the SCL line. A high to low transition on the SCL line causes the concerned devices to start counting off their low period. Once a device clock has gone low, it will hold the SCL line low until its SCL high state is reached. The low to high transition of this clock may not change the state of the SCL line, if another device clock is still within its low period. The SCL line is held low by the device with the longest low period. Devices with shorter low periods enter a high waitstate, until the SCL line comes high. When the SCL line comes high, all devices start counting off their high periods. The first device to complete its high period will pull the SCL line low. The SCL line high time is determined by the device with the shortest high period, Figure 11-23.

FIGURE 11-23: CLOCK SYNCHRONIZATION

11.5.1.3 TRANSMISSION

When the $R\overline{W}$ bit of the incoming address byte is set and an address match occurs, the $R\overline{W}$ bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-26). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 11-26: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

13.8 Power-down Mode (SLEEP)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, status bit \overline{PD} (STATUS<3>) is cleared, status bit \overline{TO} (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, and disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC).

13.8.1 WAKE-UP FROM SLEEP

The device can wake from SLEEP through one of the following events:

- 1. External reset input on MCLR/VPP pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from RB0/INT pin, RB port change, or some peripheral interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. SSP (Start/Stop) bit detect interrupt.
- 3. SSP transmit or receive in slave mode (SPI/I²C).
- 4. CCP capture mode interrupt.
- 5. Parallel Slave Port read or write.
- 6. USART TX or RX (synchronous slave mode).

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the substruction after the substruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

13.8.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

RETLW	Return with Literal in W		RETURN	Return from Subroutine								
Syntax:	[label]	RETLW	k		Syntax:	[label] RETURN						
Operands:	$0 \le k \le 2$	55			Operands:	None						
Operation:	$k \rightarrow (W);$				Operation:	Operation: $TOS \rightarrow PC$						
	$TOS \to PC$				Status Affected:	None						
Status Affected:	None			Encodina:	00	0000	0000	1000				
Encoding:	11	01xx	kkkk	kkkk	Description:	Return fro	m subrout	ine. The st	ack is			
Description: The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the				POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.								
	instruction	iress). This I.	s is a two o	cycle	Words:	ords: 1						
Words:	1				Cycles:	2						
Cycles:	2				Q Cycle Activity:	Q1	Q2	Q3	Q4			
Q Cycle Activity:	_ Q1	Q2	Q3	Q4	1st Cycle	Decode	No- Operation	No- Operation	Pop from the Stack			
1st Cycle	Decode	Read literal 'k'	No- Operation	Write to W, Pop from the	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation			
2nd Cycle	No-	No-	No-	No-	Example	RETURN						
Zha Oyoic	Operation Operation Operation			After Interrupt								
Example	CALL TABL	E ;W con ;offse ;W now	tains tabl t value has table	le value			PC =	TOS				
TABLE	ADDWF PC RETLW k1 RETLW k2 •	;W = o ;Begin ;	ffset table									
	RETLW kn	; End	of table									
	Before In	W =	0x07									
	After Inst	ruction	0.07									
		W =	value of k8	3								

17.5 <u>Timing Diagrams and Specifications</u>

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	—	ns	XT and RC osc mode
		(Note 1)	250	_	—	ns	HS osc mode (-04)
			100	—	—	ns	HS osc mode (-10)
			50	_	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	-	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	_	1,000	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High	100		—	ns	XT oscillator
	TosH	or Low Time	2.5	_	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 18-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	-	_	ns	Must also meet
				With Prescaler	10	-		ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	_		ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	—	—	ns	
				With Prescaler	Greater of:	—	—	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
45*	TATL	T10KLLligh Time	Cumebroneus, D		N 0.ETax + 00				Must also most
45"	ITIH	I ICKI High Time	Synchronous, P	rescaler = 1	0.51CY + 20		_	ns	Must also meet
			Broscalor -	PIC 10C0A	15			ns	
			2,4,8	PIC 16 LC 6X	25	_		ns	
			Asynchronous	PIC16 C 6X	30	—	—	ns	
				PIC16 LC 6X	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler = 1	0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	_	ns	
			Asynchronous	PIC16 C 6X	30	-	_	ns	
				PIC16 LC 6X	50	-	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	Greater of:	-	—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16LC6X	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u> N				(1, 2, 4, 8)
			Asynchronous	PIC16 C 6X	60			ns	
				PIC16 LC 6X	100	-	—	ns	
	Ft1	Timer1 oscillator inp	out frequency rar	ige	DC	-	200	kHz	
		(oscillator enabled b	by setting bit T1C	SCEN)					
48	TCKEZtmr1	Delay from external	clock edge to tin	ner increment	2Tosc	—	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

19.0 ELECTRICAL CHARACTERISTICS FOR PIC16C65

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +85°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +14V
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-	VOH) x IOH} + Σ (VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C65-04	PIC16C65-10	PIC16C65-20	PIC16LC65-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 µA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 µA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz may	VDD: 4.5V to 5.5V IDD: 15 mA max. at 5.5V IPD 1.0 μA typ. at 4.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Fren: 20 MHz max	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 105 μA max. at 32 kHz, 3.0V IPD: 800 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 105 μA max. at 32 kHz, 3.0V IPD: 800 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

19.2 DC Characteristics: PIC16LC65-04 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)									
DC CH	ARACTERISTICS	Operatir	ig temp	perature	e -40	°C ≤	$IA \le +85^{\circ}C$ for industrial and		
				1	0-0	,	$IA \leq +70^{\circ}C$ for commercial		
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions		
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details		
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	105	μA	LP osc configuration Fosc = 32 kHz, VDD = 4.0V, WDT disabled		
D020	Power-down Current	IPD	-	7.5	800	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3, 5)		-	0.9	800	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.9	800	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3-	CLKOUT AND I/O TIMING REQUIREMENTS.
TADLL 13-3.	

Parameter	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
No.								
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		—	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		0.25Tcy + 25		—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0		—	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		—	50	150	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port	OSC1 [↑] (Q2 cycle) to Port PIC16 C 65			—	ns	
	input invalid (I/O in hold time)		PIC16 LC 65	200		—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O i	n setup time)	0		—	ns	
20*	TioR	Port output rise time	PIC16 C 65	—	10	25	ns	
			PIC16 LC 65	—		60	ns	
21*	TioF	Port output fall time	PIC16 C 65	—	10	25	ns	
			PIC16 LC 65	—		60	ns	
22††*	Tinp	RB0/INT pin high or low time		Тсү	-	—	ns	
23††*	Trbp	RB7:RB4 change int high or low	w time	TCY	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 19-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Мах	Units	Conditions
70	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү	_	l	ns	
71	TscH	SCK input high time (slave mode)	TCY + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	—		ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_		ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_		ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time		10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	10	—	50	ns	
78	TscR	SCK output rise time (master mode)		10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

21.3 DC Characteristics: PIC16CR63/R65-04 (Commercial, Industrial) PIC16CR63/R65-10 (Commercial, Industrial) PIC16CR63/R65-20 (Commercial, Industrial) PIC16LCR63/R65-04 (Commercial, Industrial)

		Standa	rd Operat	ing (Conditions	s (unle	ss otherwise stated)
		Operatir	ng temper	ature	-40°C	C ≤ T.	$A \leq +85^{\circ}C$ for industrial and
DC CHA	RACTERISTICS				0°C	≤ T.	$A \le +70^{\circ}C$ for commercial
		Operatin	ng voltage	VDD	range as o	describ	ed in DC spec Section 21.1 and
Danama	Oberresterietie	Section	21.2	True	Max	Linite	Oanditiana
Param	Characteristic	Sym	MIN	iyp +	Max	Units	Conditions
110.	Innut I an Valtana			-			
D000		VIL	Vee		0.151/00		
D030	with IIL buffer		VSS	-	0.15VDD	V	For entire VDD range $4.5\% < 5.5\%$
D030A	with Cohmitt Trigger buffer		VSS Voo	-		v	$4.5V \leq VDD \leq 5.5V$
D031			V55	-		v	
D032	MCLR, USC1 (In RC mode)		VSS	-	0.2VDD	V	Neted
D033	USC1 (In XT, HS and LP)		VSS	-	0.3VDD	V	Note 1
5040		VIH		-	N/		
D040	with IIL buffer		2.0	-	VDD	V	$4.5V \le VDD \le 5.5V$
D040A			0.25VDD	-	VDD	v	For entire VDD range
			+ 0.8V				
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9VDD	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$V_{SS} \le V_{PIN} \le V_{DD}$
D063	OSC1		-	-	±5	μ Α	Vss \leq VPIN \leq VDD, XT, HS and
							LP osc configuration
	Output Low Voltage						
D080	I/O ports	VOL	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V,
							-40°C to +85°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,
							-40°C to +85°C
	Output High Voltage						
D090	I/O ports (Note 3)	Voh	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V,
							-40°C to +85°C
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5 V,
							-40°C to +85°C
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

22.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. Tcc:s⊤	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:		
S			
F	Fall	P	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST	(I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 2	2-1: LOAD CONDITIONS FOR DEVICE	TIMING SP	ECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		
	Ĭ		
	\ge RL	Pi	
	<		
	► • • • • • • • • • • • • • • • • • • •		Vss
	'''' 🖌 RL	= 464 Ω	
	VSS CL	= 50 pF fo	or all pins except OSC2/CLKOUT
Note 1:	PORTD and PORTE are not imple-	b	ut including D and E outputs as ports
	mented on the PIC16C66.	15 pF fo	or OSC2 output
1			

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-8: PARALLEL SLAVE PORT TIMING (PIC16C67)

TABLE 22-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C67)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62*	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)		20	_	_	ns	
				25	—	—	ns	Extended Range Only
63*	TwrH2dtl	I $\overline{\text{WR}}$ or $\overline{\text{CS}}$ to data–in invalid (hold	PIC16 C 67	20	_	_	ns	
	time)	PIC16 LC 67	35	—	—	ns		
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		-	—	80	ns	
				-	_	90	ns	Extended Range Only
65*	TrdH2dtl	$\overline{RD}\uparrow$ or $\overline{CS}\uparrow$ to data–out invalid		10	—	30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

23.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR: PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16C64, PIC16C64A, PIC16CR64, PIC16C65A, PIC16C66, PIC16C67

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range.

Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25° C, while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

FIGURE 23-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)

FIGURE 23-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)

