

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc63t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.1 STATUS REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The STATUS register, shown in Figure 4-9, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit
bit7							bit0	W = Writable bit - n = Value at POR reset x = unknown
bit 7:	IRP: Regls 1 = Bank 2 0 = Bank 0	, 3 (100h - 1	1FFh)	ed for indire	ect addressir	ng)		
bit 6-5:	RP1:RP0 : 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	3 (180h - 1) 2 (100h - 1 1 (80h - FF 0 (00h - 7F)	FFh) 7Fh) h) n)	bits (used fo	or direct addr	essing)		
bit 4:	TO : Time-or 1 = After points $0 = A WDT$	ower-up, CL		uction, or S	LEEP instruc	tion		
bit 3:	PD : Power- 1 = After po 0 = By exec	ower-up or			tion			
bit 2:	Z : Zero bit 1 = The res $0 = The res$			0 1	tion is zero tion is not ze	ero		
bit 1:		-out from th	e 4th low o	order bit of t	he result occ		nstructions)	(For borrow the polarity is reversed).
bit 0:	1 = A carry 0 = No carr Note: a sub	-out from th y-out from otraction is o	the most sig the most si executed by	nificant bit of gnificant bit of gnifica	of the result of t of the result tof the result two's comp	occurred t lement of th	ne second of	orrow the polarity is reversed). perand. ow order bit of the source register.

FIGURE 4-9: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS (1)	bit5	TTL	Input/output or slave select input for synchronous serial port.

Legend: TTL = TTL input, ST = Schmitt Trigger input

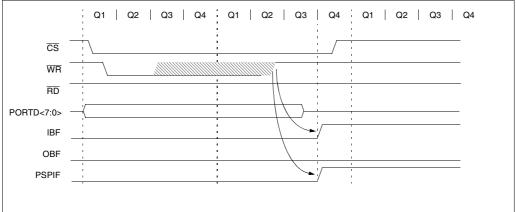
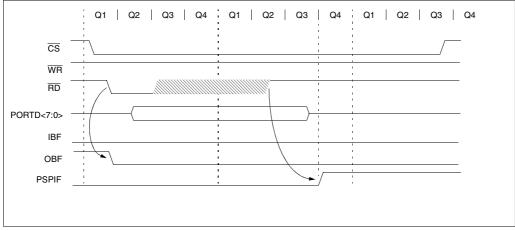

Note 1: The PIC16C61 does not have PORTA<5> or TRISA<5>, read as '0'.

TABLE 5-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	—	—	PORTA Data	Direction Re	egister ⁽¹⁾				11 1111	11 1111


Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C61, read as '0'.

FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS

TABLE 5-13: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	PSP7	PSP6	PSP5	PSP4	PSP3	PSP2	PSP1	PSP0	xxxx xxxx	uuuu uuuu
09h	PORTE	_			_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Directior	n Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	(1)	RCIF ⁽²⁾	TXIF ⁽²⁾	SSPIF	CCP1IF	TMR2IF	TRM1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	(1)	RCIE ⁽²⁾	TXIE ⁽²⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.

Note 1: These bits are reserved, always maintain these bits clear.

2: These bits are implemented on the PIC16C65/65A/R65/67 only.

8.5 <u>Resetting Timer1 using a CCP Trigger</u> Output

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

CCP2 is implemented on the PIC16C63/R63/65/65A/ R65/66/67 only.

If CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCPxM3:CCPxM0 = 1011), this signal will reset Timer1.

Note: The "special event trigger" from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF(PIR1<0>).

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If the Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL registers pair effectively becomes the period register for the Timer1 module.

8.6 <u>Resetting of TMR1 Register Pair</u> (TMR1H:TMR1L)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The TMR1H and TMR1L registers are not reset to 00h on a POR or any other reset except by the CCP1 or CCP2 special event trigger.

The T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescaler. In all other resets, the register is unaffected.

8.7 <u>Timer1 Prescaler</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

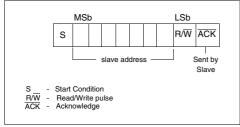
The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	,	all c	e on other sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
0Eh	TMR1L	Holding re	egister	for the Lea	st Significar	nt Byte of the	e 16-bit TN	/R1 registe	er	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	egister	for the Mos	t Significan	t Byte of the	16-bit TM	IR1 registe	r	xxxx	xxxx	uuuu	uuuu
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

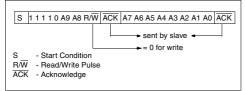
TABLE 8-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: The USART is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

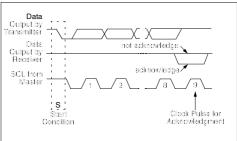

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.


11.4.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/W bit (Figure 11-15). The more complex is the 10-bit address with a R/W bit (Figure 11-16). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

FIGURE 11-15: 7-BIT ADDRESS FORMAT


FIGURE 11-16: I²C 10-BIT ADDRESS FORMAT

11.4.3 TRANSFER ACKNOWLEDGE

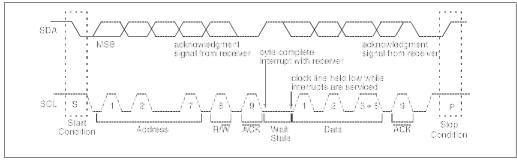

All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (\overline{ACK}) (Figure 11-17). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave SDA high so that the master can generate the STOP condition (Figure 11-14).

FIGURE 11-17: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-18. The slave will inherently stretch the clock, when it is a transmitter, but will not when it is a receiver. The slave will have to clear the SSPCON<4> bit to enable clock stretching when it is a receiver.

FIGURE 11-18: DATA TRANSFER WAIT STATE

11.5.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set. An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 11-25: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W=0 Receiving Data ACK Receiving Data ACK SDA -	F 7 I I I I / I PI - I - I - I - I - I - I - I -
SSPIF (PIR1<3>) Cleared in software BF (SSPSTAT<0>) SSPBUF register is read	Bus Master terminates transfer
SSPOV (SSPCON<6>) Bit SSPOV is set because the SSPBUF register is still full.	
ACK is not sent.	

Instruction Descriptions 14.1

Add Lite	ral and	w	
[<i>label</i>] A	DDLW	k	
$0 \le k \le 25$	55		
(W) + k –	→ (W)		
C, DC, Z			
11	111x	kkkk	kkkk
added to t	he eight b	it literal 'k'	and the
1			
1			
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process data	Write to W
After Inst	W = ruction	0x10 0x25	
	[<i>label</i>] All $0 \le k \le 2\xi$ (W) + k - C, DC, Z 11 The conte added to the result is pl 1 1 Q1 Decode ADDLW Before Inn After Inst	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	$0 \le k \le 255$ (W) + k → (W) C, DC, Z $11 111x kkkk$ The contents of the W register added to the eight bit literal 'k' result is placed in the W regist 1 1 2 2 2 2 2 3 2 2 2 3 2 2 3 2 3 2 3 3 2 3

ANDLW	AND Lite	eral with	W					
Syntax:	[<i>label</i>] A	NDLW	k					
Operands:	$0 \le k \le 25$	55						
Operation:	(W) .AND	D. (k) \rightarrow (W)					
Status Affected:	Z							
Encoding:	11	1001	kkkk	kkkk				
Description:	AND'ed wi	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.						
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal "k"	Process data	Write to W				
Example	ANDLW	0x5F						
	Before In	Before Instruction						
	After Inst		0xA3					
		W =	0x03					

ADDWF	Add W a	nd f		
Syntax:	[<i>label</i>] A	DDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$.7		
Operation:	(W) + (f)	\rightarrow (dest	ination)	
Status Affected:	C, DC, Z			
Encoding:	00	0111	dfff	ffff
Description:	register 'f'.	If 'd' is 0 egister. If	the W reg the result i 'd' is 1 the ter 'f'.	s stored
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Evennle	ADDUE	BOD	<u>.</u>	
Example	ADDWF		0	
	Before In	structior	ו 0x17	
		FSR =	0xC2	
	After Inst			
		W = FSR =	0xD9 0xC2	

ANDWF	AND W v	vith f		
Syntax:	[<i>label</i>] Al	NDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7		
Operation:	(W) .AND	0. (f) \rightarrow (e	destinatio	on)
Status Affected:	Z			
Encoding:	0.0	0101	dfff	ffff
Description:	AND the W is 0 the res ter. If 'd' is register 'f'.	sult is stor 1 the res	red in the	W regis-
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example	ANDWF	FSR,	1	
	Before In			
		W = FSR =	0x17 0xC2	
	After Inst		0102	
		W =	0x17	
		FSR =	0x02	

SUBWF	Subtract	W from f		
Syntax:	[label]	SUBWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$,		
Operation:	(f) - (W) \rightarrow	(destina	tion)	
Status Affected:	C, DC, Z			
Encoding:	00	0010	dfff	ffff
Description:	Subtract (2' ister from re stored in the result is sto	egister 'f'. l e W regist	f 'd' is 0 the er. If 'd' is 1	result is the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example 1:	SUBWF	reg1,1		
	Before Ins	truction		
	REG1	=	3	
	W C	=	2 ?	
	Z	=	?	
	After Instru	uction		
	REG1	=	1	
	W C	=	2 1; result is	nositive
	z	=	0	poolavo
Example 2:	Before Ins	truction		
	REG1	=	2	
	W C	=	2 ?	
	Z	=	?	
	After Instru	uction		
	REG1	=	0	
	W C	=	2 1; result is	7010
	z	=	1	2010
Example 3:	Before Ins	truction		
	REG1	=	1	
	W C	=	2 ?	
	z	=	?	
	After Instru	uction		
	REG1	=	0xFF	
	W C	=	2 0; result is	negative
	z	=	0	guivo

SWAPF	Swap Ni	bbles in	f						
Syntax:	[label]	SWAPF 1	,d						
Operands:	$0 \le f \le 12$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$							
Operation:	· · ·	ightarrow (destin $ ightarrow$ (destin							
Status Affected:	None								
Encoding:	0 0	1110	dfff	ffff					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example	SWAPF	REG,	0						
	Before In	struction							
	REG1 = 0xA5								
	After Instruction								
		REG1 W	= 0x/ = 0x5	.0					

TRIS	Load TR	IS Regis	ster					
Syntax:	[label]	TRIS	f					
Operands:	$5 \leq f \leq 7$							
Operation:	(W) \rightarrow TRIS register f;							
Status Affected:	None							
Encoding:	00	0000	0110	Offf				
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.							
Words:	1							
Cycles:	1							
Example								
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.							

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.3 DC Characteristics: PIC16C61-04 (Commercial, Industrial, Extended) PIC16C61-20 (Commercial, Industrial, Extended) PIC16LC61-04 (Commercial, Industrial)

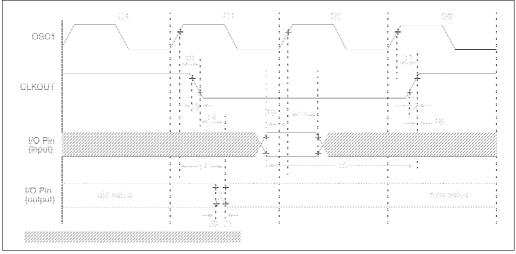
DC CH4	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Section	15.2. Min	Тур†	Max	Units	Conditions		
	Input Low Voltage								
	I/O ports	VIL							
D030 D030A	with TTL buffer		Vss Vss	-	0.15VDD 0.8V	V V	For entire VDD range 4.5V ≤ VDD ≤ 5.5V		
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v			
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	v			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1		
	Input High Voltage								
	I/O ports	VIH		-					
D040	with TTL buffer		2.0	-	Vdd	v	$4.5V \le VDD \le 5.5V$		
D040A			0.25Vdd + 0.8V	-	Vdd	V	For entire VDD range		
D041	with Schmitt Trigger buffer		0.85Vdd	-	Vdd	v	For entire VDD range		
D042	MCLR		0.85VDD	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	IPURB	50	250	† 400	μA	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi-impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq V PIN \leq V DD$		
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration		
1	Output Low Voltage								
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		

The parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-3: CLKOUT AND I/O TIMING

CLKOUT AND I/O TIMING REQUIREMENTS TABLE 18-3:

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		-	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		_	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT \uparrow		Tosc + 200	_	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT \uparrow		0	_	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out va	lid	—	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port input PIC16 C 62A/ invalid (I/O in hold time) R62/64A/R64		100	—	—	ns	
			PIC16 LC 62A/ R62/64A/R64	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in	setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16 C 62A/ R62/64A/R64	—	10	40	ns	
			PIC16 LC 62A/ R62/64A/R64	_	_	80	ns	
21*	TioF	Port output fall time	PIC16 C 62A/ R62/64A/R64	—	10	40	ns	
			PIC16 LC 62A/ R62/64A/R64	_	-	80	ns	
22††*	Tinp	RB0/INT pin high or low time		Тсү	_	_	ns	
23††*	Trbp	RB7:RB4 change int high or low	time	Тсү	_	—	ns	

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

20.0 ELECTRICAL CHARACTERISTICS FOR PIC16C63/65A

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-V	′он) x Iон} + ∑(Vol x Iol)

- Note 2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.
- Note 3: PORTD and PORTE not available on the PIC16C63.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 20-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C63-04 PIC16C65A-04	PIC16C63-10 PIC16C65A-10	PIC16C63-20 PIC16C65A-20	PIC16LC63-04 PIC16LC65A-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V		VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V
	IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	IPD 1.5 μA typ. at 4.5V Freq: 10 MHz max.	IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.		IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

20.1 DC Characteristics: PIC16C63/65A-04 (Commercial, Industrial, Extended) PIC16C63/65A-10 (Commercial, Industrial, Extended) PIC16C63/65A-20 (Commercial, Industrial, Extended)

DC CH		Standai Operatir			e -40	°C ≦ °C ≤	unless otherwise stated) $\leq TA \leq +125^{\circ}C$ for extended, $\leq TA \leq +85^{\circ}C$ for industrial and $\leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001 D001A	Supply Voltage	Vdd	4.0 4.5	-	6.0 5.5	V V	XT, RC and LP osc configuration HS osc configuration
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	BVDD	3.7	4.0	4.3	V	BODEN configuration bit is enabled
			3.7	4.0	4.4	V	Extended Range Only
D010	Supply Current (Note 2, 5)	IDD	-	2.7	5	mA	XT, RC, osc config Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc config Fosc = 20 MHz, VDD = 5.5V
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	10.5	42	μA	VDD = 4.0V, WDT enabled,-40°C to +85°C
D021	(Note 3, 5)		-	1.5	16	μA	$VDD = 4.0V$, WDT disabled, $-0^{\circ}C$ to $+70^{\circ}C$
D021A D021B			-	1.5 2.5	19 19	μ Α μ Α	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

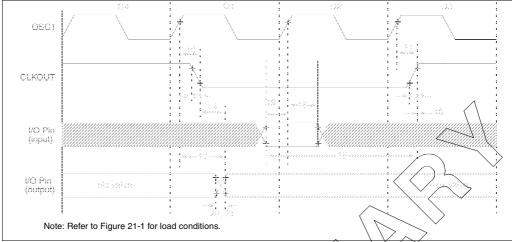
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.


4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

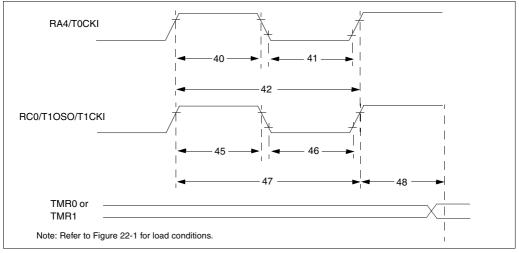
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-3: CLKOUT AND I/O TIMING

TABLE 21-3: CLKOUT AND I/O TIMING F	REQUIREMENTS
-------------------------------------	--------------

		1		$\sim \rightarrow$	/ /			
Param	Sym	Characteristic	<	Min	Typt	∨ Max	Units	Conditions
No.					\checkmark			
10*	TosH2ckL	OSC1↑ to CLKOUT↓) /	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		$\backslash - \checkmark$	75	200	ns	Note 1
12*	TckR	CLKOUT rise time	$\sim 1 M /$	\searrow	35	100	ns	Note 1
13*	TckF	CLKOUT fall time	\sum	> -	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid	/ /	—	—	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	$///\sim$	Tosc + 200	—		ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑	$\overline{\langle \langle \rangle}$	0	—		ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out val	id 🔪	_	50	150	ns	
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port input	PIC16CR63/R65	100	—		ns	
		invalid (I/O in hold time)	PIC16LCR63/R65	200	—		ns	
19*	TioV2osH	Port input valid to OSC11 (I/Q in	setup time)	0	—		ns	
20*	TioR	Port output rise time	PIC16CR63/R65	_	10	40	ns	
		\frown	PIC16LCR63/R65	—	—	80	ns	
21*	TioF	Port output fall time	PIC16CR63/R65	_	10	40	ns	
	\langle	$\langle \checkmark \land \rangle$	PIC16LCR63/R65	_	—	80	ns	
22††*	Tinp	INT pin high or low time	•	Тсү	—	-	ns	
23††*	Trbp	RB7:RB4 change INT high or low	time	Тсү	—	_	ns	
* 1	hose narang	eters are characterized but not test	her					

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

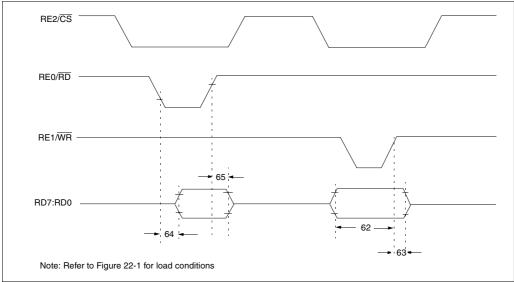
t† These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 22-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

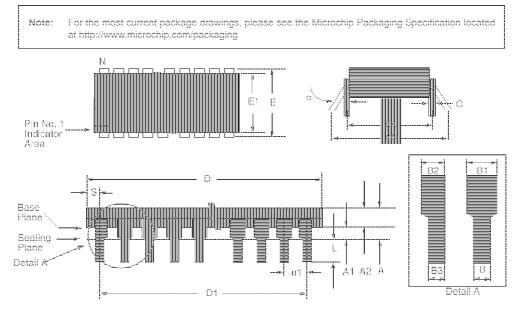

Param No.	Sym	Characteristic			Min	Typ†	Мах	Units	Conditions
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	-	-	ns	Must also meet
		1		With Prescaler	10	—	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	-	-	ns	Must also meet
				With Prescaler	10		—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	_	-	ns	
				With Prescaler		_	-	ns	N = prescale value
					20 or <u>TCY + 40</u>				(2, 4,, 256)
			1		N				
45*	Tt1H	T1CKI High Time	Synchronous, F		0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	-	ns	
			Asynchronous	PIC16 C 6X	30		—	ns	
				PIC16 LC 6X	50	_	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F		0.5TCY + 20	_	-	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	_	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	-	—	ns	
			Asynchronous	PIC16 C 6X	30	_	—	ns	
				PIC16 LC 6X	50	_	—	ns	
47*	Tt1P T1CKI input period Synchronous		Synchronous	PIC16 C 6X	<u>Greater of:</u> 30 OR <u>TCY + 40</u> N	-	—	ns	N = prescale value (1, 2, 4, 8)
				PIC16 LC 6X	<u>Greater of:</u> 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16 C 6X	60	_	—	ns	
				PIC16 LC 6X	100	_	—	ns	
	Ft1	Timer1 oscillator inp			DC	—	200	kHz	
		(oscillator enabled b							
48 * T		Delay from external	0		2Tosc		7Tosc	-	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-8: PARALLEL SLAVE PORT TIMING (PIC16C67)


TABLE 22-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C67)

Parameter No.	Sym	Characteristic			Тур†	Max	Units	Conditions
62*	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (setup time)		20	_	_	ns	
					—	—	ns	Extended Range Only
63*	TwrH2dtl	\overline{WR} or \overline{CS} to data–in invalid (hold	PIC16 C 67	20	_	—	ns	
		time)	PIC16 LC 67	35		_	ns	
64	TrdL2dtV	$\overline{\mathrm{RD}}\downarrow$ and $\overline{\mathrm{CS}}\downarrow$ to data–out valid		-		80	ns	
				-	—	90	ns	Extended Range Only
65*	TrdH2dtl	\overline{RD} for \overline{CS} to data-out invalid			-	30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

24.2 28-Lead Plastic Dual In-line (300 mil) (SP)

	Package Group: Plastic Dual In-Line (PLA)									
		Millimeters		Inches						
Symbol	Min	Мах	Notes	Min	Мах	Notes				
α	0°	10°		0°	10°					
А	3.632	4.572		0.143	0.180					
A1	0.381	-		0.015	-					
A2	3.175	3.556		0.125	0.140					
В	0.406	0.559		0.016	0.022					
B1	1.016	1.651	Typical	0.040	0.065	Typical				
B2	0.762	1.016	4 places	0.030	0.040	4 places				
B3	0.203	0.508	4 places	0.008	0.020	4 places				
С	0.203	0.331	Typical	0.008	0.013	Typical				
D	34.163	35.179		1.385	1.395					
D1	33.020	33.020	Reference	1.300	1.300	Reference				
E	7.874	8.382		0.310	0.330					
E1	7.112	7.493		0.280	0.295					
e1	2.540	2.540	Typical	0.100	0.100	Typical				
eA	7.874	7.874	Reference	0.310	0.310	Reference				
eB	8.128	9.652		0.320	0.380					
L	3.175	3.683		0.125	0.145					
Ν	28	28		28	28					
S	0.584	1.220		0.023	0.048					

APPENDIX C: WHAT'S NEW

Added PIC16CR63 and PIC16CR65 devices.

Added PIC16C66 and PIC16C67 devices. The PIC16C66/67 devices have 368 bytes of data memory distributed in 4 banks and 8K of program memory in 4 pages. These two devices have an enhanced SPI that supports both clock phase and polarity. The USART has been enhanced.

When upgrading to the PIC16C66/67 please note that the upper 16 bytes of data memory in banks 1,2, and 3 are mapped into bank 0. This may require relocation of data memory usage in the user application code.

Q-cycles for instruction execution were added to Section 14.0 Instruction Set Summary.

APPENDIX D: WHAT'S CHANGED

Minor changes, spelling and grammatical changes.

Divided SPI section into SPI for the PIC16C66/67 (Section 11.3) and SPI for all other devices (Section 11.2).

Added the following note for the USART. This applies to all devices except the PIC16C66 and PIC16C67.

For the PIC16C63/R63/65/65A/R65 the asynchronous high speed mode (BRGH = 1) may experience a high rate of receive errors. It is recommended that BRGH = 0. If you desire a higher baud rate than BRGH = 0 can support, refer to the device errata for additional information or use the PIC16C66/67.

APPENDIX E: REVISION E

January 2013 - Added a note to each package drawing.

Figure 11-2:	SSPCON: Sync Serial Port
	Control Register (Address 14h) 85
Figure 11-3:	SSP Block Diagram (SPI Mode) 86
Figure 11-4:	SPI Master/Slave Connection 87
Figure 11-5:	SPI Mode Timing, Master Mode or
	Slave Mode w/o SS Control
Figure 11-6:	SPI Mode Timing, Slave Mode with
	SS Control
Figure 11-7:	SSPSTAT: Sync Serial Port Status
	Register (Address 94h)(PIC16C66/67) 89
Figure 11-8:	SSPCON: Sync Serial Port Control
Figure 11 Or	Register (Address 14h)(PIC16C66/67)90
Figure 11-9:	SSP Block Diagram (SPI Mode)
Figure 11-10:	(PIC16C66/67)91 SPI Master/Slave Connection
Figure 11-10.	(PIC16C66/67)
Figure 11-11:	SPI Mode Timing, Master Mode
rigule 11-11.	(PIC16C66/67)
Figure 11-12:	SPI Mode Timing (Slave Mode With
rigule 11-12.	CKE = 0) (PIC16C66/67)
Figure 11-13:	SPI Mode Timing (Slave Mode With
i iguio i i ioi	CKE = 1) (PIC16C66/67)
Figure 11-14:	Start and Stop Conditions
Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence97
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
	(Two Masters)98
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram (I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
	(7-bit Address) 101
Figure 11-26:	I ² C Waveforms for Transmission
	(7-bit Address)
Figure 11-27:	Operation of the I ² C Module in
	IDLE_MODE, RCV_MODE or
Figure 10.1	XMIT_MODE
Figure 12-1:	Control Register (Address 98h) 105
Figure 12-2:	RCSTA: Receive Status and
rigule 12-2.	Control Register (Address 18h)
Figure 12-3:	RX Pin Sampling Scheme (BRGH = 0)
. iguio 12 01	PIC16C63/R63/65/65A/R65)
Figure 12-4:	RX Pin Sampling Scheme (BRGH = 1)
.g	(PIC16C63/R63/65/65A/R65) 110
Figure 12-5:	
Figure 12-5:	RX Pin Sampling Scheme (BRGH = 1)
	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110
Figure 12-5: Figure 12-6:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110 RX Pin Sampling Scheme (BRGH = 0 or = 1)
	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110
Figure 12-6:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111
Figure 12-6: Figure 12-7:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113
Figure 12-6: Figure 12-7: Figure 12-8:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 111 USART Transmit Block Diagram 113 Asynchronous Master Transmission (Back to Back) USART Receive Block Diagram 114 Asynchronous Transmission 114 Synchronous Transmission
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Transmission 114 Synchronous Transmission
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13: Figure 12-14:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) USART Receive Block Diagram 114 USART Receive Block Diagram 114 Synchronous Transmission 117 Synchronous Transmission through TXEN 117 Master Mode, SREN)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception

Figure 13-2:	Configuration Word for
	PIC16C62/64/65 124
Figure 13-3:	Configuration Word for
	PIC16C62A/R62/63/R63/64A/R64/
	65A/R65/66/67 124
Figure 13-4:	Crystal/Ceramic Resonator Operation
	(HS, XT or LP OSC Configuration)
Figure 13-5:	External Clock Input Operation
rigule 15-5.	(HS, XT or LP OSC Configuration)
Einung 10.0	
Figure 13-6:	External Parallel Resonant
	Crystal Oscillator Circuit 127
Figure 13-7:	External Series Resonant
	Crystal Oscillator Circuit 127
Figure 13-8:	RC Oscillator Mode 127
Figure 13-9:	Simplified Block Diagram of
	On-chip Reset Circuit 128
Figure 13-10:	Brown-out Situations 129
Figure 13-11:	Time-out Sequence on Power-up
•	(MCLR not Tied to VDD): Case 1
Figure 13-12:	Time-out Sequence on Power-up
. iguio 10 12.	(MCLR Not Tied To VDD): Case 2
Figure 13-13:	Time-out Sequence on Power-up
rigule 15-15.	(MCLR Tied to VDD)
Einung 10 14.	
Figure 13-14:	External Power-on Reset Circuit
	(For Slow VDD Power-up) 135
Figure 13-15:	External Brown-out
	Protection Circuit 1 135
Figure 13-16:	External Brown-out
	Protection Circuit 2 135
Figure 13-17:	Interrupt Logic for PIC16C61 137
Figure 13-18:	Interrupt Logic for PIC16C6X 137
Figure 13-19:	INT Pin Interrupt Timing 138
Figure 13-20:	Watchdog Timer Block Diagram 140
Figure 13-21:	Summary of Watchdog
riguie to 21.	Timer Registers 140
Figure 12.00	
Figure 13-22:	Wake-up from Sleep Through Interrupt142
Einung 10.00	
Figure 13-23:	Typical In-circuit Serial
	Programming Connection 142
Figure 14-1:	General Format for Instructions 143
Figure 16-1:	Load Conditions for Device Timing
	Specifications 168
Figure 16-2:	External Clock Timing 169
Figure 16-3:	CLKOUT and I/O Timing 170
Figure 16-4:	Reset, Watchdog Timer, Oscillator
-	Start-up Timer and Power-up Timer
	Timing 171
Figure 16-5:	Timer0 External Clock Timings 172
Figure 17-1:	Typical RC Oscillator
i iguio i i ii	Frequency vs. Temperature
Eiguro 17 0	Typical RC Oscillator
Figure 17-2:	
E' 47.0	Frequency vs. VDD
Figure 17-3:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-4:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-5:	Typical IPD vs. VDD Watchdog Timer
	Disabled 25°C 174
Figure 17-6:	
i iguio i i oi	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Ū.	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Ū.	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7: Figure 17-8:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7: Figure 17-8:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C

Table 23-5:	Timer0 and Timer1 External
	Clock Requirements272
Table 23-6:	Capture/Compare/PWM
	Requirements (CCP1 and CCP2)273
Table 23-7:	Parallel Slave Port Requirements (PIC16C67) 274
Table 23-8:	SPI Mode Requirements277
Table 23-9:	I ² C Bus Start/Stop Bits
	Requirements278
Table 23-10:	I ² C Bus Data Requirements279
Table 23-11:	USART Synchronous Transmission
	Requirements
Table 23-12:	USART Synchronous Receive
	Requirements280
Table 24-1:	RC Oscillator Frequencies
Table 24-2:	Capacitor Selection for Crystal
	Oscillators
Table E-1:	Pin Compatible Devices

-