

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

- · ·	
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc64a-04-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C6X

4.2.2.4 PIE1 REGISTER

Applicable Devices 61 | 62 | 62A | R62 | 63 | R63 | 64 | 64A | R64 | 65 | 65A | R65 | 66 | 67

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

FIGURE 4-12: PIE1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 8Ch)

RW-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	_	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit					
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset					
bit 7-6:	it 7-6: Reserved: Always maintain these bits clear.												
bit 5-4:	Unimplemented: Read as '0'												
bit 3:	SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt												
bit 2:	CCP1IE: C0 1 = Enables 0 = Disables	the CCP1	I interrupt	bit									
bit 1:	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt												
bit 0:	TMR1IE: TM 1 = Enables 0 = Disables	the TMR1	1 overflow i	nterrupt	t								

FIGURE 4-17: PIR1 REGISTER FOR PIC16C63/R63/66 (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit
oit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	Reserved:	Always ma	intain thes	e bits clear.				
bit 5:	RCIF: USA 1 = The US 0 = The US	ART receiv	e buffer is	full (cleared	d by reading	RCREG)		
bit 4:	TXIF: USA 1 = The US 0 = The US	ART transi	nit buffer is	empty (cle	ared by writi	ng to TXRE	G)	
bit 3:	SSPIF: Syr 1 = The tra 0 = Waiting	nsmission/i	reception is		ag bit (must be clea	ared in softv	vare)	
bit 2:	0 = No TMI Compare N	ode 1 register c R1 register Mode 1 register c R1 register	apture occ capture oc ompare ma	urred (must curred atch occurre	t be cleared i ed (must be o	,	oftware)	
bit 1:	TMR2IF : T 1 = TMR2 t 0 = No TMI	o PR2 mat	ch occurre	d (must be	bit cleared in so	ftware)		
bit 0:	TMR1IF : T 1 = TMR1 i 0 = No TMI	egister ove	rflow occu	rred (must l	oe cleared in	software)		

Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

5.6 <u>I/O Programming Considerations</u>

Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

5.6.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stavs in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-4 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 5-4: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

```
;Initial PORT settings: PORTB<7:4> Inputs
                        PORTB<3:0> Outputs
;PORTB<7:6> have external pull-ups and are
; not connected to other circuitry
                     PORT latch PORT pins
 BCF PORTB, 7
                   ; 01pp pppp
                                 11pp pppp
 BCF PORTB, 6
                   ; 10pp pppp
                                 11pp pppp
 BSF STATUS, RPO
 BCF TRISB, 7
                   ; 10pp pppp
                                 11pp pppp
 BCF TRISB, 6
                   ; 10pp pppp
                                 10pp pppp
; Note that the user may have expected the
;pin values to be 00pp pppp. The 2nd BCF
; caused RB7 to be latched as the pin value
: (high).
```

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

5.6.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-10). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU separate than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 5-10: SUCCESSIVE I/O OPERATION

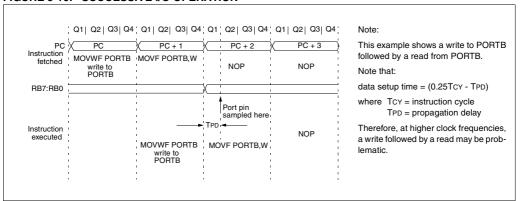
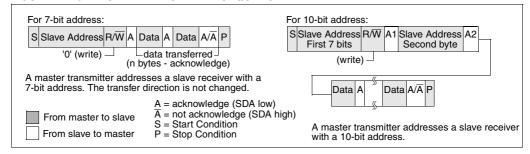
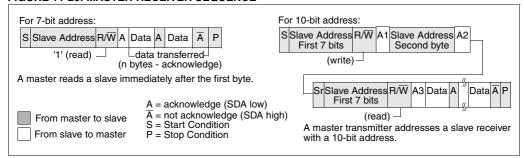



Figure 11-19 and Figure 11-20 show Master-transmitter and Master-receiver data transfer sequences.


When a master does not wish to relinquish the bus (by generating a STOP condition), a repeated START condition (Sr) must be generated. This condition is identical to the start condition (SDA goes high-to-low while

SCL is high), but occurs after a data transfer acknowledge pulse (not the bus-free state). This allows a master to send "commands" to the slave and then receive the requested information or to address a different slave device. This sequence is shown in Figure 11-21.

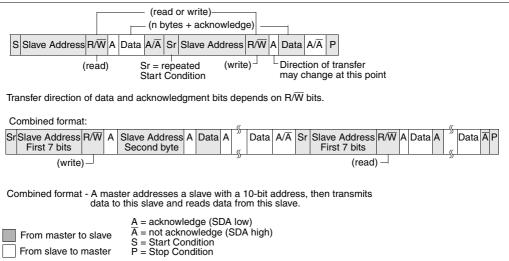

FIGURE 11-19: MASTER-TRANSMITTER SEQUENCE

FIGURE 11-20: MASTER-RECEIVER SEQUENCE

FIGURE 11-21: COMBINED FORMAT

PIC16C6X

13.3 Reset

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The PIC16CXX differentiates between various kinds of reset:

- · Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (normal operation)
- Brown-out Reset (BOR) Not on PIC16C61/62/ 64/65

Some registers are not affected in any reset condition, their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on MCLR or WDT Reset, on MCLR reset during SLEEP, and on Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation.

The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 13-7, Table 13-8, and Table 13-9. These bits are used in software to determine the nature of the reset. See Table 13-12 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 13-9.

On the PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67, the MCLR reset path has a noise filter to detect and ignore small pulses. See parameter #34 for pulse width specifications.

It should be noted that a WDT Reset does not drive the MCLR pin low.

FIGURE 13-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

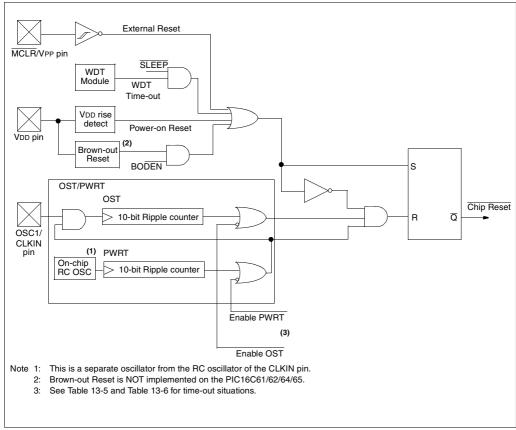


FIGURE 15-3: CLKOUT AND I/O TIMING

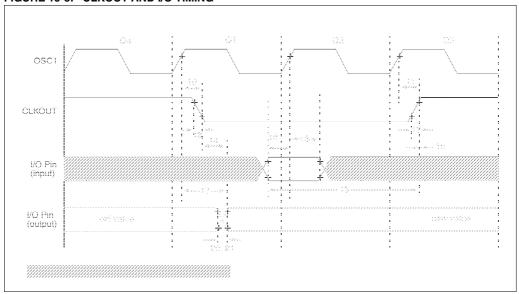


TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	15	30	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time	_	5	15	ns	Note 1	
13*	TckF	CLKOUT fall time	_	5	15	ns	Note 1	
14*	TckL2ioV	CLKOUT ↓ to Port out valid	_		0.5Tcy + 20	ns	Note 1	
15*	TioV2ckH	Port in valid before CLKOU	0.25Tcy + 25		_	ns	Note 1	
16*	TckH2ioI	Port in hold after CLKOUT	0		_	ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port	_		80 - 100	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port (I/O in hold time)	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)			_	ns	
19*	TioV2osH	Port input valid to OSC1↑ (time)	(I/O in setup	TBD	-	_	ns	
20*	TioR	Port output rise time	PIC16 C 61	_	10	25	ns	
			PIC16 LC 61	_	_	60	ns	
21*	TioF	Port output fall time	PIC16 C 61	_	10	25	ns	
			PIC16 LC 61		_	60	ns	
22††*	Tinp	RB0/INT pin high or low tin	ne	20	_	_	ns	-
23††*	Trbp	RB7:RB4 change int high	or low time	20		_	ns	

^{*} These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

^{††} These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 16-6: TYPICAL IPD VS. VDD
WATCHDOG TIMER ENABLED
25°C

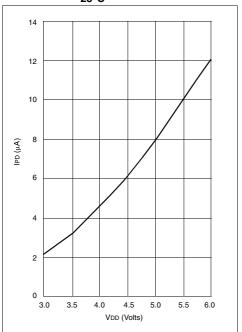
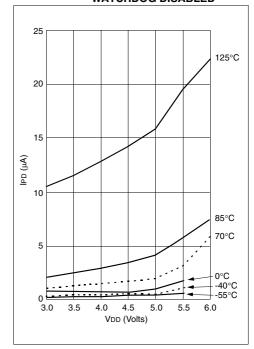



FIGURE 16-7: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

Data based on matrix samples. See first page of this section for details.

ELECTRICAL CHARACTERISTICS FOR PIC16C62/64

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +85°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +14V
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loκ (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE* (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE* (combined)	200 mA
Maximum current sunk by PORTC and PORTD* (combined)	200 mA
Maximum current sourced by PORTC and PORTD* (combined)	200 mA
* PORTD and PORTE not available on the PIC16C62.	

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 17-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62-04 PIC16C64-04	PIC16C62-10 PIC16C64-10	PIC16C62-20 PIC16C64-20	PIC16LC62-04 PIC16LC64-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μ A max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq:4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 13.5 μ A max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μ A max. at 4V Freq:4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 3.8 mA max. at 5.5V IPD: 21 μ A max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq:4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 13.5 μ A max. at 3.0V Freq: 4 MHz max.	VDD: $4.0V$ to $6.0V$ IDD: 3.8 mA max. at $5.5V$ IPD: $21~\mu$ A max. at $4V$ Freq:4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq:4 MHz max.	VDD: $4.5V$ to $5.5V$ IDD: 15 mA max. at $5.5V$ IPD: 1.5 μ A typ. at $4.5V$ Freq: 10 MHz max.	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μ A typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μ A typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq:200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 13.5 μA max. at 3.0V Freq:200 kHz max.	VDD: 3.0V to 6.0V IDD: 48 μ A max. at 32 kHz, 3.0V IPD:13.5 μ A max. at 3.0V Freq:200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (Vol x IOL)

17.2 DC Characteristics: PIC16LC62/64-04 (Commercial, Industrial)

DC CHA	ARACTERISTICS		Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C							
Param	Characteristic	Sym	Min	Typ†		; ≤ Units	Ta ≤ +70°C for commercial Conditions			
No.		-								
D001	Supply Voltage	VDD	3.0	-	6.0	٧	LP, XT, RC osc configuration (DC - 4 MHz)			
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	٧				
D003	VDD start voltage to ensure internal Power- on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details			
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details			
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			-	22.5	48	μΑ	LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled			
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C			
D021	(Note 3, 5)		-	0.9	13.5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C			
D021A			-	0.9	18	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C			

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

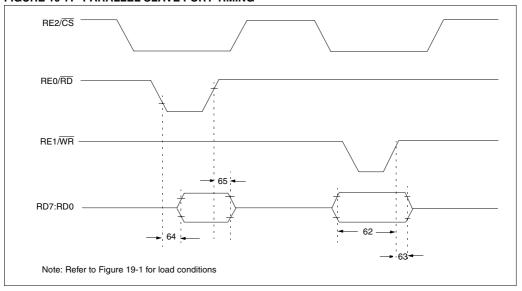
MCLR = VDD; WDT enabled/disabled as specified.

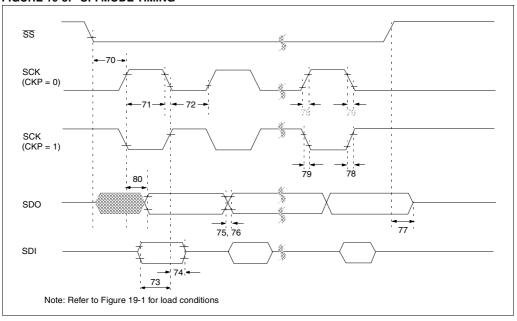
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-7: PARALLEL SLAVE PORT TIMING




TABLE 19-7: PARALLEL SLAVE PORT REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS↑ (setup time)			_	_	ns	
63*	TwrH2dtl	WR↑ or CS↑ to data–in invalid (hold	PIC16 C 65	20	_	_	ns	
		time)	PIC16 LC 65	35	_	_	ns	
64	TrdL2dtV	RD↓ and CS↓ to data–out valid			_	80	ns	
65	TrdH2dtl	RD↑ or CS↑ to data–out invalid		10	_	30	ns	

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-8: SPI MODE TIMING

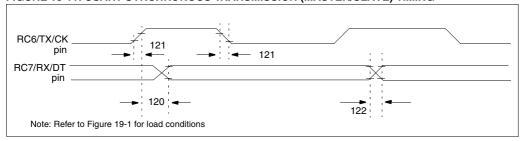


TABLE 19-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	_	ns	
75	TdoR	SDO data output rise time	_	10	25	ns	
76	TdoF	SDO data output fall time	_	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78	TscR	SCK output rise time (master mode)	_	10	25	ns	
79	TscF	SCK output fall time (master mode)	_	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

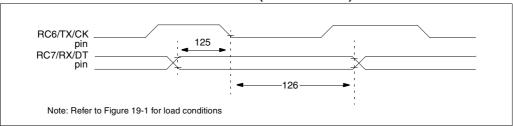


TABLE 19-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16 C 65		_	80	ns	
	Clock high to data out valid	PIC16 LC 65		_	100	ns		
121	121 Tckrf	Clock out rise time and fall time	PIC16 C 65		_	45	ns	
		(Master Mode)	PIC16 LC 65		_	50	ns	
122	122 Tdtrf Data out rise time and		PIC16 C 65	-	_	45	ns	
			PIC16 LC 65	_	_	50	ns	

t: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

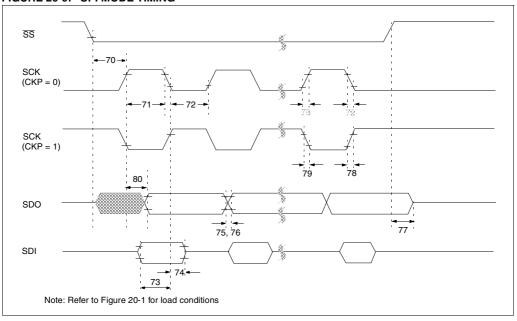


TABLE 19-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK ↓ (DT setup time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK ↓ (DT hold time)	15	_	_	ns	

^{†:} Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-9: SPI MODE TIMING

TABLE 20-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Tcy	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	_	ns	
75*	TdoR	SDO data output rise time	l	10	25	ns	
76*	TdoF	SDO data output fall time	l	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	l	10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

These parameters are characterized but not tested.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

21.0 ELECTRICAL CHARACTERISTICS FOR PIC16CR63/R65

Absolute Maximum Ratings (†) Ambient temperature under bias-55°C to +125°C Storage temperature-65°C to +150°C Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)......-...-...-0.3V to (VDD + 0.3V) Voltage on VDD with respect to Vss-0.3V to +7.5V Input clamp current. IIK (VI < 0 or VI > VDD)..... Output clamp current, lox (Vo < 0 or Vo > VDD) Maximum output current sunk by any I/O pin.......25 mA Maximum output current sourced by any I/O pin Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)...... Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined) Maximum current sunk by PORTC and PORTD (Note 3) (combined) Maximum current sourced by PORTC and PORTD (Note 3) (combined)......

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - ∑ION} + ∑ (VDD-VOH) x IOH} + ∑(VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.

Note 3: PORTD and PORTE not available on the P(C16CR63).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 21-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16CR63-04 PIC16CR65-04	PIC16CR63-10 PIC16CR65-10	PIC16CR63-20 PIC16CR65-20	PIC16LCR63-04 PIC16LCR65-04	JW Devices
RC	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max)	VDD: 4.5V to 5.5V IDD: 2,7 mA typ. at 5.5V IRD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μ A typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 5.5V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 µA max. at 4V Freq: 4 MHz max.	Voo: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μ A typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 5.5V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V
	IPD: $1.5~\mu\text{A}$ typ. at 4.5V Freq: $4~\text{MHz}$ max.	IPD 1.5 μA typ. at 4.5V Freq: 10 MHz max.	IPD: $1.5 \mu A$ typ. at $4.5 V$ Freq: 20 MHz max.	use in 113 mode	IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 5.5V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 3.0V to 5.5V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: $3.0V$ to $5.5V$ IDD: $48~\mu A$ max. at $32~kHz$, $3.0V$ IPD: $5~\mu A$ max. at $3.0V$ Freq: $200~kHz$ max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

22.2 DC Characteristics: PIC16LC66/67-04 (Commercial, Industrial)

DC CHA		Standa Operatir	•	•		°C ≤	Inless otherwise stated) TA ≤ +85°C for industrial and TA ≤ +70°C for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	VDD	2.5	-	6.0	٧	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	VDR	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	BVDD	3.7	4.0	4.3	V	BODEN configuration bit is enabled
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μА	LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	ΔIBOR	-	350	425	μА	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μΑ	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3, 5)		-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.9	5	μΑ	VDD = 3.0V, WDT disabled, -40°C to +85°C
D023*	Brown-out Reset Current (Note 6)	ΔIBOR	-	350	425	μА	BOR enabled, VDD = 5.0V

- * These parameters are characterized but not tested.
- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- Note 1: This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
 - MCLR = VDD; WDT enabled/disabled as specified.
 - 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
 - 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
 - 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
 - 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

FIGURE 23-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)

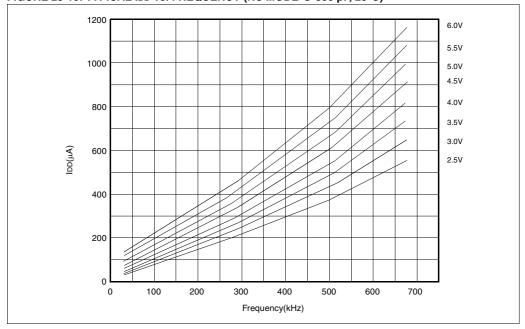


FIGURE 23-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)

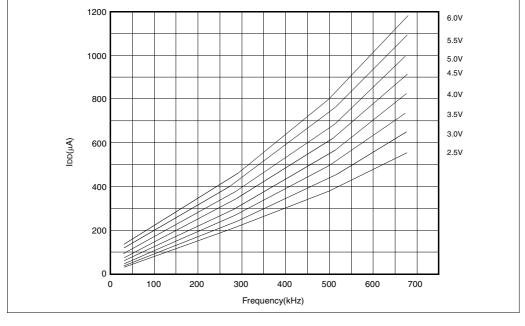


FIGURE 23-18: TYPICAL IDD vs.

CAPACITANCE @ 500 kHz

(RC MODE)

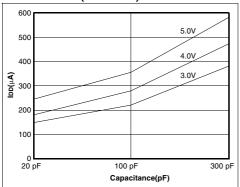


TABLE 23-1: RC OSCILLATOR FREQUENCIES

Cext	Rext	Average Fosc @ 5V, 25°C			
Cext	next				
22 pF	5k	4.12 MHz	± 1.4%		
	10k	2.35 MHz	± 1.4%		
	100k	268 kHz	± 1.1%		
100 pF	3.3k	1.80 MHz	± 1.0%		
	5k	1.27 MHz	± 1.0%		
	10k	688 kHz	± 1.2%		
	100k	77.2 kHz	± 1.0%		
300 pF	3.3k	707 kHz	± 1.4%		
	5k	501 kHz	± 1.2%		
	10k	269 kHz	± 1.6%		
	100k	28.3 kHz	± 1.1%		

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

FIGURE 23-19: TRANSCONDUCTANCE(gm)
OF HS OSCILLATOR vs. VDD

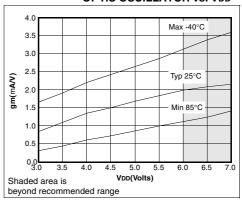


FIGURE 23-20: TRANSCONDUCTANCE(gm)
OF LP OSCILLATOR vs. VDD

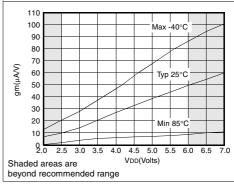


FIGURE 23-21: TRANSCONDUCTANCE(gm)
OF XT OSCILLATOR vs. VDD

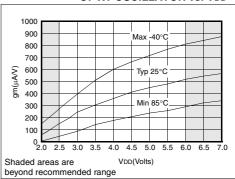
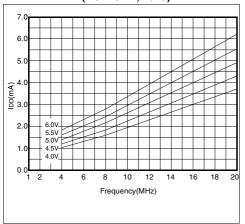
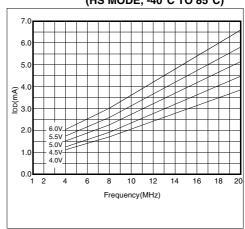




FIGURE 23-29: TYPICAL IDD vs. FREQUENCY (HS MODE, 25°C)

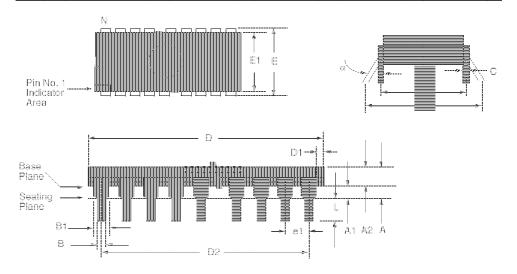


FIGURE 23-30: MAXIMUM IDD vs. FREQUENCY (HS MODE, -40°C TO 85°C)

24.7 28-Lead Ceramic CERDIP Dual In-line with Window (300 mil)) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)						
		Millimeters		Inches		
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
Α	3.30	5.84		.130	0.230	
A1	0.38	_		0.015	_	
A2	2.92	4.95		0.115	0.195	
В	0.35	0.58		0.014	0.023	
B1	1.14	1.78	Typical	0.045	0.070	Typical
С	0.20	0.38	Typical	0.008	0.015	Typical
D	34.54	37.72		1.360	1.485	
D2	32.97	33.07	Reference	1.298	1.302	Reference
E	7.62	8.25		0.300	0.325	
E1	6.10	7.87		0.240	0.310	
е	2.54	2.54	Typical	0.100	0.100	Typical
eA	7.62	7.62	Reference	0.300	0.300	Reference
eB	_	11.43			0.450	
L	2.92	5.08		0.115	0.200	
N	28	28		28	28	
D1	0.13	_		0.005		

PIC16C6X

Figure 11-2:	SSPCON: Sync Serial Port Control Register (Address 14h)85	Figure 13-2:	Configuration Word for PIC16C62/64/65	124
Figure 11-3:	SSP Block Diagram (SPI Mode) 86	Figure 13-3:	Configuration Word for	
Figure 11-4:	SPI Master/Slave Connection 87	•	PIC16C62A/R62/63/R63/64A/R64/	
Figure 11-5:	SPI Mode Timing, Master Mode or		65A/R65/66/67	124
3	Slave Mode w/o SS Control88	Figure 13-4:	Crystal/Ceramic Resonator Operation	
Figure 11-6:	SPI Mode Timing, Slave Mode with		(HS, XT or LP OSC Configuration)	125
ga	SS Control	Figure 13-5:	External Clock Input Operation	0
Figure 11-7:	SSPSTAT: Sync Serial Port Status	rigulo 10 0.	(HS, XT or LP OSC Configuration)	125
rigule 11-7.	•	Figure 10 Cr	External Parallel Resonant	123
Fi 44.0	Register (Address 94h)(PIC16C66/67) 89	Figure 13-6:		407
Figure 11-8:	SSPCON: Sync Serial Port Control	F: 40 7	Crystal Oscillator Circuit	127
	Register (Address 14h)(PIC16C66/67)90	Figure 13-7:	External Series Resonant	
Figure 11-9:	SSP Block Diagram (SPI Mode)		Crystal Oscillator Circuit	
	(PIC16C66/67)91	Figure 13-8:	RC Oscillator Mode	127
Figure 11-10:	SPI Master/Slave Connection	Figure 13-9:	Simplified Block Diagram of	
	(PIC16C66/67)92		On-chip Reset Circuit	
Figure 11-11:	SPI Mode Timing, Master Mode	Figure 13-10:	Brown-out Situations	129
	(PIC16C66/67)93	Figure 13-11:	Time-out Sequence on Power-up	
Figure 11-12:	SPI Mode Timing (Slave Mode With		(MCLR not Tied to VDD): Case 1	134
	CKE = 0) (PIC16C66/67)	Figure 13-12:	Time-out Sequence on Power-up	
Figure 11-13:	SPI Mode Timing (Slave Mode With		(MCLR Not Tied To VDD): Case 2	134
	CKE = 1) (PIC16C66/67)	Figure 13-13:	Time-out Sequence on Power-up	
Figure 11-14:	Start and Stop Conditions95	•	(MCLR Tied to VDD)	134
	7-bit Address Format96	Figure 13-14:	External Power-on Reset Circuit	
	I ² C 10-bit Address Format96	3	(For Slow VDD Power-up)	135
	Slave-receiver Acknowledge96	Figure 13-15	External Brown-out	
	Data Transfer Wait State96	rigulo to to.	Protection Circuit 1	135
•	Master-transmitter Sequence	Figure 13-16:	External Brown-out	100
	Master-receiver Sequence	rigule 13-10.	Protection Circuit 2	125
	Combined Format	Eiguro 12 17:		
			Interrupt Logic for PIC16C61	
rigure 11-22.	Multi-master Arbitration		Interrupt Logic for PIC16C6X	
F' 11 00	(Two Masters)		INT Pin Interrupt Timing	
	Clock Synchronization		Watchdog Timer Block Diagram	140
	SSP Block Diagram (I ² C Mode)99	Figure 13-21:	Summary of Watchdog	
Figure 11-25:	I ² C Waveforms for Reception		Timer Registers	140
	(7-bit Address)101	Figure 13-22:	Wake-up from Sleep	
Figure 11-26:	I ² C Waveforms for Transmission		Through Interrupt	142
	(7-bit Address) 102	Figure 13-23:	Typical In-circuit Serial	
Figure 11-27:	Operation of the I ² C Module in		Programming Connection	142
	IDLE_MODE, RCV_MODE or	Figure 14-1:	General Format for Instructions	143
	XMIT_MODE 104	Figure 16-1:	Load Conditions for Device Timing	
Figure 12-1:	TXSTA: Transmit Status and		Specifications	168
	Control Register (Address 98h) 105	Figure 16-2:	External Clock Timing	169
Figure 12-2:	RCSTA: Receive Status and	Figure 16-3:	CLKOUT and I/O Timing	170
•	Control Register (Address 18h) 106	Figure 16-4:	Reset, Watchdog Timer, Oscillator	
Figure 12-3:	RX Pin Sampling Scheme (BRGH = 0)	Ü	Start-up Timer and Power-up Timer	
Ü	PIC16C63/R63/65/65A/R65)110		Timing	171
Figure 12-4:	RX Pin Sampling Scheme (BRGH = 1)	Figure 16-5:	Timer0 External Clock Timings	
9	(PIC16C63/R63/65/65A/R65)110	Figure 17-1:	Typical RC Oscillator	
Figure 12-5:	RX Pin Sampling Scheme (BRGH = 1)	rigulo 17 1.	Frequency vs. Temperature	173
rigaro 12 o.	(PIC16C63/R63/65/65A/R65)110	Figure 17-2:	Typical RC Oscillator	
Eiguro 10 6:	,	rigule 17-2.	Frequency vs. VDD	17/
Figure 12-6:	RX Pin Sampling Scheme (BRGH = 0 or = 1)	Fig 17.0.		1/4
Figure 12-7:	(PIC16C66/67)	Figure 17-3:	Typical RC Oscillator Frequency vs. VDD	17/
	USART Transmit Block Diagram	Fig 47 4.	Typical RC Oscillator	1/4
Figure 12-8:	Asynchronous Master Transmission 113	Figure 17-4:	Typical RC Oscillator	474
Figure 12-9:	Asynchronous Master Transmission		Frequency vs. VDD	1/4
	(Back to Back)	Figure 17-5:	Typical IPD vs. VDD Watchdog Timer	
•	USART Receive Block Diagram 114		Disabled 25°C	174
	Asynchronous Reception114	Figure 17-6:	Typical IPD vs. VDD Watchdog Timer	
	Synchronous Transmission117		Enabled 25°C	175
Figure 12-13:	Synchronous Transmission	Figure 17-7:	Maximum IPD vs. VDD Watchdog	
	through TXEN117		Disabled	175
Figure 12-14:	Synchronous Reception	Figure 17-8:	Maximum IPD vs. VDD Watchdog	
	(Master Mode, SREN)119		Enabled*	176
Figure 13-1:	Configuration Word for PIC16C61123	Figure 17-9:	VTH (Input Threshold Voltage) of	
-		-	I/O Pins vs. VDD	176