

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc64a-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-5.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-5: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 2											
100h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
101h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
102h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signi	ficant Byte					0000 0000	0000 0000
103h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
104h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	er					xxxx xxxx	uuuu uuuu
105h	—	Unimpleme	implemented -								
106h	PORTB	PORTB Dat	a Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
107h	—	Unimpleme	nted							—	—
108h	—	Unimpleme	nted							_	_
109h	—	Unimpleme	nted							—	-
10Ah ^(1,2)	PCLATH	—			Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Ch- 10Fh	_	Unimpleme	nted							—	—
Bank 3											
180h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
181h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte					0000 0000	0000 0000
183h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
184h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	ər					xxxx xxxx	uuuu uuuu
185h	_	Unimpleme	nted							_	_
186h	TRISB	PORTB Dat	a Direction I	Register						1111 1111	1111 1111
187h	_	Unimpleme	nted							—	—
188h	_	Unimpleme	nted							—	_
189h	—	Unimpleme	nted							—	-
18Ah ^(1,2)	PCLATH	—			Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
18Bh ⁽¹⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
18Ch- 19Fh	-	Unimpleme	nted							-	-

TABLE 4-6: SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: PIE1<6> and PIR1<6> are reserved on the PIC16C66/67, always maintain these bits clear.

5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.

6: PSPIF (PIR1<7>) and PSPIE (PIE1<7>) are reserved on the PIC16C66, maintain these bits clear.

FIGURE 4-15: PIE1 REGISTER FOR PIC16C65/65A/R65/67 (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PSPIE	_	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit				
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7:	PSPIE: Part 1 = Enable 0 = Disable	rallel Slave s the PSP es the PSP	Port Read read/write i read/write	/Write Interr nterrupt interrupt	upt Enable b	vit						
bit 6:	Reserved: Always maintain this bit clear.											
bit 5:	RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt											
bit 4:	TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt											
bit 3:	SSPIE: Syn 1 = Enable 0 = Disable	nchronous s the SSP es the SSP	Serial Port interrupt interrupt	Interrupt Er	nable bit							
bit 2:	CCP1IE : C 1 = Enable 0 = Disable	CP1 Interrors the CCP ⁻ is the CCP ⁻ ies the CCP	upt Enable I interrupt 1 interrupt	bit								
bit 1:	TMR2IE: T 1 = Enable 0 = Disable	MR2 to PR s the TMR2 es the TMR	2 Match In 2 to PR2 m 2 to PR2 m	terrupt Enat atch interrup atch interru	ole bit pt ipt							
bit 0:	TMR1IE: T 1 = Enable 0 = Disable	MR1 Overf s the TMR es the TMR	low Interru 1 overflow i 1 overflow	ot Enable bi nterrupt interrupt	t							

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
PSPIF bit7	-	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R W U - n	= Readable bit = Writable bit = Unimplemented bit, read as '0' = Value at POR reset			
oit 7:	 PSPIF: Parallel Slave Port Interrupt Flag bit 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write operation has taken place 											
bit 6:	Reserved:	Reserved: Always maintain this bit clear.										
bit 5-4:	Unimplemented: Read as '0'											
bit 3:	SSPIF : Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive											
bit 2:	CCP1IF: CCP1 Interrupt Flag bit <u>Capture Mode</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM Mode</u> <u>Howard in this mode</u>											
bit 1:	TMR2IF : T 1 = TMR2 1 0 = No TM	MR2 to PR to PR2 mat R2 to PR2	2 Match Int ch occurred match occu	errupt Flag d (must be irred	bit cleared in so	ftware)						
bit 0:	TMR1IF : T 1 = TMR1 0 = No TMI	MR1 Overf register ove R1 register	low Interrup erflow occur occurred	ot Flag bit rred (must l	be cleared in	software)						
Interri globa enabli	upt flag bits (enable bit, ng an interri	get set whe GIE (INTC) upt.	n an interrเ ON<7>). ปร	upt conditio ser software	n occurs rega e should ensi	ardless of th ure the appr	e state of its ropriate inter	cori rupt	responding enable bit or the flag bits are clear prior to			

FIGURE 4-18: PIR1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 0Ch)

10.0 CAPTURE/COMPARE/PWM (CCP) MODULE(s)

Applicable Devices

61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	CCP1
61	62	62A	R62	63	R63	64	64A	R64	65	65A	R65	66	67	CCP2

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register, or as a PWM master/slave duty cycle register. Both the CCP1 and CCP2 modules are identical in operation, with the exception of the operation of the special event trigger. Table 10-1 and Table 10-2 show the resources and interactions of the CCP modules(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 module:

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 module:

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

For use of the CCP modules, refer to the *Embedded Control Handbook*, "Using the CCP Modules" (AN594).

TABLE 10-1: CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 10-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

FIGURE 11-13: SPI MODE TIMING (SLAVE MODE WITH CKE = 1) (PIC16C66/67)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset		Value on a Power-on Reset	
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
13h	SSPBUF	Synchron	ous Serial	Port Rec	eive Buffe	r/Transmit	Register			xxxx	xxxx	uuuu	uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
85h	TRISA	_	— — PORTA Data Direction register									11	1111
87h	TRISC	PORTC D	ORTC Data Direction register									1111	1111
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000	0000	0000	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16C66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

12.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin. If bit BRGH (TXSTA<2>) is clear (i.e., at the low baud rates), the sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 12-3). If bit BRGH is set (i.e., at the high baud rates), the sampling is done on the 3 clock edges preceding the second rising edge after the first falling edge of a x4 clock (Figure 12-4 and Figure 12-5).

FIGURE 12-3: RX PIN SAMPLING SCHEME (BRGH = 0) PIC16C63/R63/65/65A/R65)

FIGURE 12-4: RX PIN SAMPLING SCHEME (BRGH = 1) (PIC16C63/R63/65/65A/R65)

13.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) and Brown-out Reset (BOR)

Applicable Devices 61|62|62A|R62|63|R63|64|64A|R64|65|65A|R65|66|67

13.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the \overline{MCLR}/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions.

For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*."

13.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details.

13.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

13.4.4 BROWN-OUT RESET (BOR)

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (parameter D005 in Electrical Specification section) for greater than parameter #34 (see Electrical Specification section), the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #34. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 13-10 shows typical brown-out situations.

FIGURE 13-10: BROWN-OUT SITUATIONS

13.5.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered: either rising if edge select bit INTEDG (OPTION<6>) is set, or falling, if bit INTEDG is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP, if enable bit INTE was set prior to going into SLEEP. The status of global enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 13.8 for details on SLEEP mode.

13.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>) (Section 7.0).

13.5.3 PORTB INTERRUPT ON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>) (Section 5.2).

Note: For the PIC16C61/62/64/65, if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then flag bit RBIF may not get set.

FIGURE 13-19: INT PIN INTERRUPT TIMING

14.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 14-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 14-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location $(= 0 \text{ or } 1)$ The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
<>	Register bit field
∈	In the set of
italics	User defined term (font is courier)

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 14-2 lists the instructions recognized by the MPASM assembler.

Figure 14-1 shows the general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC16CXX products, do not use the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

BTFSS	Bit Test f, Skip if Set		CALL	Call Sub	Call Subroutine						
Syntax:	[<i>label</i>] B	FSS f,b			Syntax:	[label]	CALL k	[
Operands:	$0 \le f \le 12$	27			Operands:	$0 \le k \le 2$	047				
	0 ≤ b < 7				Operation:	$(PC)+1 \rightarrow TOS,$					
Operation:	skip if (f<	:b>) = 1				$\dot{k} \rightarrow PC <$	$k \rightarrow PC < 10:0>,$				
Status Affected:	None					(PCLATH	$(PCLATH{<}4:3{>}) \rightarrow PC{<}12:11{>}$				
Encoding:	01 11bb bfff ffff		Status Affected:	None							
Description:	If bit 'b' in	register 'f' i	s '0' then t	he next	Encoding:	10	0kkk	kkkk	kkkk		
Words:	instructior If bit 'b' is discarded instead, m 1	is execute '1', then the and a NOF naking this	d. e next instr is execut a 2Tcy ins	uction is ed truction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCI ATL CALL					
Cycles:	1(2)					is a two cy	cle instruc	ction.			
O Cuelo Activitur	·(<u></u>)	00	02	04	Words:	1					
Q Cycle Activity.		Q2	03	Q4	Cycles:	2					
	Decode	register 'f'	data	No- Operation	Q Cycle Activity:	Q1	Q2	Q3	Q4		
If Skip:	(2nd Cyc	le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC		
	Q1	Q2	Q3	Q4			Push PC to Stack				
	No- Operation	No- Operation	No- Operation	No- Operation	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation		
Example	HERE	BTFSC	FLAG,1	CODE	Example	HERE	CALL	THERE			
	TRUE	•	1100200	_0022		Before Ir	struction				
		•					PC = A	ddress HE	RE		
		•				After Ins	truction	ddroee TU	TDT		
	Before Ir	Istruction	addroco T				TOS = A	ddress HE	RE+1		
	After Inst	ruction	address i	IERE							
	/	if FLAG<1:	> = 0,								
		PC =	address F	ALSE							
		it FLAG<1: PC =	> = 1, address ™	RIIR							

SLEEP

Syntax:	[label]	SLEEP						
Operands:	None							
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \mbox{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$							
Status Affected:	TO, PD							
Encoding:	0.0	0000	0110	0011				
Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 13.8 for more details.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	No- Operation	No- Operation	Go to Sleep				
Example:	SLEEP							

SUBLW	Subtract W from Literal							
Syntax:	[label]	SUBLW	/ k					
Operands:	$0 \le k \le 25$	5						
Operation:	$k \text{ - } (W) \to (W)$							
Status Affected:	C, DC, Z							
Encoding:	11	110x	kkkk	kkkk				
Description:	The W regiment meth	ister is sub od) from th is placed i	otracted (2's ne eight bit n the W reg	s comple- literal 'k'. jister.				
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal 'k'	Process data	Write to W				
Example 1:	SUBLW	0x02						
	Before Ins	struction						
		W = C = Z =	1 ? ?					
	After Instr	ruction						
		W = C = Z =	1 1; result is 0	positive				
Example 2:	Before Ins	struction						
		W = C = Z =	2 ? ?					
	After Instr	ruction						
		W = C = Z =	0 1; result i 1	s zero				
Example 3:	Before Ins	struction						
		W = C = Z =	3 ? ?					
	After Instr	ruction						
		W = C = Z =	0xFF 0; result is 0	negative				

-

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.5 <u>Timing Diagrams and Specifications</u>

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	-	4	MHz	XT and RC osc mode
		(Note 1)		_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode (-04)
			1		20	MHz	HS osc mode (-20)
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	1,000	ns	HS osc mode (-04)
			50	—	1,000	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μS	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	IosH	Low lime	2.5	—	—	μS	LP oscillator
			10	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	—	—	ns	XT oscillator
	IOSF	Fall lime	50	—	—	ns	LP oscillator
			15	_	—	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.2 DC Characteristics: PIC16LC65-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)							
DC CH	DC CHARACTERISTICS Operating temperature $-40^{\circ}C \le 1A \le +85^{\circ}C$ for industrial and						$IA \le +85^{\circ}C$ for industrial and	
				i	0-0	,	$IA \leq +70^{\circ}C$ for commercial	
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)	
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details	
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)	
D010A			-	22.5	105	μA	LP osc configuration Fosc = 32 kHz, VDD = 4.0V, WDT disabled	
D020	Power-down Current	IPD	-	7.5	800	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C	
D021	(Note 3, 5)		-	0.9	800	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C	
D021A			-	0.9	800	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 21-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	—	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	$\overline{\text{SS}}$ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	—	50	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

22.0 ELECTRICAL CHARACTERISTICS FOR PIC16C66/67

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +14V
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VD	$D-VOH$) x IOH} + $\Sigma(VOI \times IOL)$

- Note 2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.
- Note 3: PORTD and PORTE not available on the PIC16C66.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 22-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C66-04 PIC16C67-04	PIC16C66-10 PIC16C67-10	PIC16C66-20 PIC16C67-20	PIC16LC66-04 PIC16LC67-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
XT	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V	Not recommended for	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V
	IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.	IPD 1.5 μA typ. at 4.5V Freq: 10 MHz max.	IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.		IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

24.0 PACKAGING INFORMATION

24.1 18-Lead Plastic Dual In-line (300 mil) (P)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Plastic Dual In-Line (PLA)							
		Millimeters Inches			Inches		
Symbol	Min	Мах	Notes	Min	Мах	Notes	
α	0°	10°		0°	10°		
А	_	4.064		_	0.160		
A1	0.381	_		0.015	_		
A2	3.048	3.810		0.120	0.150		
В	0.355	0.559		0.014	0.022		
B1	1.524	1.524	Reference	0.060	0.060	Reference	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	22.479	23.495		0.885	0.925		
D1	20.320	20.320	Reference	0.800	0.800	Reference	
E	7.620	8.255		0.300	0.325		
E1	6.096	7.112		0.240	0.280		
e1	2.489	2.591	Typical	0.098	0.102	Typical	
eA	7.620	7.620	Reference	0.300	0.300	Reference	
eB	7.874	9.906		0.310	0.390		
L	3.048	3.556		0.120	0.140		
N	18	18		18	18		
S	0.889	-		0.035	-		
S1	0.127	_		0.005	_		

Package Marking Information (Cont'd)

44-Lead PLCC

44-Lead MQFP

Example

Example

Example

Legend:	MMM XXX AA	Microchip part number information Customer specific information* Year code (last 2 digits of calender year)			
	BB	Week code (week of January 1 is week '01')			
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.			
	D ₁	Mask revision number for microcontroller			
	E	Assembly code of the plant or country of origin in which part was assembled.			
Note:	In the even line, it will b available cl	n the event the full Microchip part number cannot be marked on one ine, it will be carried over to the next line thus limiting the number of available characters for customer specific information.			

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

INDEX

Numerics

9-bit Receive Enable bit, RX9	106
9-bit Transmit Enable bit, TX9	105
9th bit of received data, RX9D	106
9th bit of transmit data, TX9D	105

A

Absolute Maximum
Ratings
ACK
ALU
Application Notes
AN552 (Implementing Wake-up on Key Stroke) 53
AN556 (Implementing a Table Read) 48
AN594 (Using the CCP Modules)77
Architectural Overview9

в

Baud Rate Formula	107
Baud Rate Generator	107
Baud Rates	
Asynchronous Mode	108
Error, Calculating	107
RX Pin Sampling, Timing Diagrams	111
Sampling	110
Synchronous Mode	108
BF	100
Block Diagrams	
Capture Mode Operation	78
Compare Mode	79
Crystal Oscillator, Ceramic Resonator	125
External Brown-out Protection	135
External Parallel Resonant Crystal Circuit	127
External Power-on Reset	135
External Series Besonant Crystal Circuit	127
I ² C Mode	99
In-circuit Programming Connections	142
Interrunt Logic	137
On-chin Beset Circuit	128
Parallel Slave Port PORTD-PORTE	61
PIC16C61	10
PIC16C62	11
PIC16C624	11
PIC16C63	12
PIC16C64	11
PIC16C64A	11
PIC16C65	12
PIC16C65A	12
PIC16C66	13
PIC16C67	13
PIC16CR62	11
PIC16CB63	12
PIC16CR64	
PIC16CB65	12
POBTC	
PORTD (I/O Mode)	57
PORTE (I/O Mode)	58
PWM	80
RA3:RA0 pins	51
RA4/T0CKI pin	51
RA5 pin	51
RB3:RB0 pins	54
RB7:RB4 pins	3. 54
RC Oscillator Mode	127

SPI Master/Slave Connection	
SSP in I ² C Mode	
SSP in SPI Mode	
Timer0	
Timer0/WDT Prescaler	68
Timer1	
Timer2	
USART Receive	114
USART Transmit	112
Watchdog Timer	140
BOR	129
BOR	47, 131
BRGH	
Brown-out Reset (BOR)	
Brown-out Reset Status bit. BOR	
Buffer Full Status bit, BF	84, 89
,	

С

0						05
C	•••••					35
C Compiler					1	161
Capture						
Block Diagram						78
Mode						78
Pin Configuration						78
Prescaler						79
Software Interrupt						78
Conturo Interrupt						70
						10
Capture/Compare/PWVM (CCP)						
Capture Mode						78
Capture Mode Block Diagram						78
CCP1						77
CCP2						77
Compare Mode						79
Compare Mode Block Diagram						79
Overview						62
Dreaseler						70
						19
PWM Block Diagram						80
PWM Mode						80
PWM, Example Frequencies/Res	oluti	ons				81
Section						77
Carry						9
Carry bit						35
CCP Module Interaction						77
CCP nin Configuration						78
						70
CCP to Timer Resource Use	•••••	• • • • • • •				11
CCP1 Interrupt Enable bit, CCP1IE						38
CCP1 Interrupt Flag bit, CCP1IF						41
CCP1 Mode Select bits						78
CCP1CON	. 24,	26,	28,	30,	32,	34
CCP1IE						38
CCP1IF						41
CCP1M3·CCM1M0						78
						70
COPO Interrupt Enchlis hit COPOIE						10
CCP2 Interrupt Enable bit, CCP2IE	•••••					45
CCP2 Interrupt Flag bit, CCP2IF						46
CCP2 Mode Select bits						78
CCP2CON	. 24,	26,	28,	30,	32,	34
CCP2IE						45
CCP2IF						46
CCP2M3·CCP2M0						78
						78
	 04	26	 20	20	20	24
	. 24,	20,	20,	30,	02, 00	04
	. 24,	20,	∠8,	30,	32,	34
	. 24,	26,	28,	30,	32,	34
CCPH2L	. 24,	26,	28,	30,	32,	34
CKE						89
CKP					85,	90

LIST OF EQUATION AND EXAMPLES

Example 3-1:	Instruction Pipeline Flow
Example 4-1:	Call of a Subroutine in Page 1
	from Page 0
Example 4-2:	Indirect Addressing
Example 5-1:	Initializing PORTA
Example 5-2:	Initializing PORTB53
Example 5-3:	Initializing PORTC55
Example 5-4:	Read-Modify-Write Instructions on an
	I/O Port60
Example 7-1:	Changing Prescaler (Timer0→WDT)69
Example 7-2:	Changing Prescaler (WDT→Timer0)69
Example 8-1:	Reading a 16-bit
	Free-running Timer73
Example 10-1:	Changing Between
	Capture Prescalers79
Example 10-2:	PWM Period and Duty
	Cycle Calculation81
Example 11-1:	Loading the SSPBUF
	(SSPSR) Register86
Example 11-2:	Loading the SSPBUF
	(SSPSR) Register (PIC16C66/67)91
Example 12-1:	Calculating Baud Rate Error107
Example 13-1:	Saving Status and W
	Registers in RAM139
Example 13-2:	Saving Status, W, and
	PCLATH Registers in RAM
	(All other PIC16C6X devices) 139

LIST OF FIGURES

Figure 3-1:	PIC16C61 Block Diagram	10
Figure 3-2:	PIC16C62/62A/R62/64/64A/R64	
	Block Diagram	11
Figure 3-3:	PIC16C63/R63/65/65A/R65	
	Block Diagram	12
Figure 3-4:	PIC16C66/67 Block Diagram	13
Figure 3-5:	Clock/Instruction Cycle	18
Figure 4-1:	PIC16C61 Program Memory Map	
	and Stack	19
Figure 4-2:	PIC16C62/62A/R62/64/64A/	
	R64 Program Memory Map and Stack	19
Figure 4-3:	PIC16C63/R63/65/65A/R65 Program	
	Memory Map and Stack	19
Figure 4-4:	PIC16C66/67 Program Memory	
	Map and Stack	20
Figure 4-5:	PIC16C61 Register File Map	20
Figure 4-6:	PIC16C62/62A/R62/64/64A/	
	R64 Register File Map	21
Figure 4-7:	PIC16C63/R63/65/65A/R65	
	Register File Map	21
Figure 4-8:	PIC16C66/67 Data Memory Map	22
Figure 4-9:	STATUS Register	
	(Address 03h, 83h, 103h, 183h)	35
Figure 4-10:	OPTION Register	
	(Address 81h, 181h)	36
Figure 4-11:	INTCON Register	
	(Address 0Bh, 8Bh, 10Bh 18Bh)	37
Figure 4-12:	PIE1 Register for PIC16C62/62A/R62	
	(Address 8Ch)	38
Figure 4-13:	PIE1 Register for PIC16C63/R63/66	
	(Address 8Ch)	39
Figure 4-14:	PIE1 Register for PIC16C64/64A/R64	
	(Address 8Ch)	39

Figure 4-15:	PIE1 Register for PIC16C65/65A/R65/67
Figure 4-16:	(Address 8Ch) 40 PIR1 Register for PIC16C62/62A/R62
	(Address 0Ch)
Figure 4-17:	PIR1 Register for PIC16C63/R63/66 Address 0Cb) 42
Figure 4-18:	PIR1 Register for PIC16C64/64A/R64
Figure 4-19:	PIR1 Register for PIC16C65/65A/R65/67
0	(Address 0Ch) 44
Figure 4-20:	PIE2 Register (Address 8Dh) 45
Figure 4-21:	PIR2 Register (Address 0Dh) 46
Figure 4-22:	PCON Register for PIC16C62/64/65
Figure 4-23	(Address 8En)
Figure 4-23.	B63/644/B64/654/B65/66/67
	(Address 8Eh) 47
Figure 4-24:	Loading of PC in Different Situations
Figure 4-25	Direct/Indirect Addressing 49
Figure 5-1	Block Diagram of the
i iguio o ii	BA3 BA0 Pins and the BA5 Pin 51
Figure 5-2	Block Diagram of the BA4/T0CKI Pin 51
Figure 5-3	Block Diagram of the
. iguio o oi	BB7 BB4 Pins for PIC16C61/62/64/65 53
Figure 5-4	Block Diagram of the
	BB7:BB4 Pins for PIC16C62A/63/B63/
	64A/65A/B65/66/67
Figure 5-5:	Block Diagram of the
J	RB3:RB0 Pins
Figure 5-6:	PORTC Block Diagram55
Figure 5-7:	PORTD Block Diagram
Ū.	(In I/O Port Mode)
Figure 5-8:	PORTE Block Diagram
Figure F. Or	(III I/O POIL MOUE)
Figure 5-9.	Successive I/O Operation 60
Figure 5-10.	PORTD and PORTE as a Parallel
riguie o ri.	Slave Port 61
Figure 5-12	Parallel Slave Port Write Waveforms 62
Figure 5-13:	Parallel Slave Port Read Waveforms
Figure 7-1:	Timer0 Block Diagram
Figure 7-2:	Timer0 Timing: Internal Clock/No
3	
	Prescaler
Figure 7-3:	Prescaler
Figure 7-3:	Prescaler
Figure 7-3: Figure 7-4:	Prescaler
Figure 7-3: Figure 7-4: Figure 7-5:	Prescaler
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6:	Prescaler 65 Timer0 Timing: Internal 66 Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6:	Prescaler 65 Timer0 Timing: Internal 66 Clock/Prescale 1:2 66 TMR0 Interrupt Timing. 66 Timer0 Timing With External Clock 67 Block Diagram of the Timer0/WDT 7 Prescaler 68
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2 66 TMR0 Interrupt Timing. 66 Timer0 Timing With External Clock 67 Block Diagram of the Timer0/WDT 7 Prescaler 68 T1CON: Timer1 Control Register 68
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2 66 TMR0 Interrupt Timing. 66 Timer0 Timing With External Clock
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1: Figure 8-2:	Prescaler 65 Timer0 Timing: Internal 66 Clock/Prescale 1:2 66 TMR0 Interrupt Timing. 66 Timer0 Timing With External Clock 67 Block Diagram of the Timer0/WDT 7 Prescaler 68 T1CON: Timer1 Control Register 64 (Address 10h) 71 Timer1 Block Diagram 72
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1: Figure 8-2: Figure 9-1:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1: Figure 8-2: Figure 9-1: Figure 9-2:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1: Figure 8-2: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1: Figure 10-2:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1: Figure 10-2:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2. 66 TMR0 Interrupt Timing. 66 Timer0 Timing With External Clock 67 Block Diagram of the Timer0/WDT Prescaler Prescaler 68 T1CON: Timer1 Control Register 68 (Address 10h) 71 Timer2 Block Diagram 72 Timer2 Block Diagram 75 T2CON: Timer2 Control Register (Address 12h) (Address 12h) 75 CCP1CON Register (Address 17h) / 78 Capture Mode Operation 80 Block Diagram 78
Figure 7-3: Figure 7-4: Figure 7-5: Figure 8-1: Figure 8-2: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1: Figure 10-2: Figure 10-3:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2. 66 TMR0 Interrupt Timing. 66 Timer0 Timing With External Clock 67 Block Diagram of the Timer0/WDT Prescaler Prescaler 68 T1CON: Timer1 Control Register 68 (Address 10h) 71 Timer2 Block Diagram 72 Timer2 Block Diagram 75 T2CON: Timer2 Control Register (Address 12h) (Address 12h) 75 CCP1CON Register (Address 17h) / 78 Capture Mode Operation 80 Block Diagram 78 Compare Mode Operation 78
Figure 7-3: Figure 7-4: Figure 7-5: Figure 8-1: Figure 8-2: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1: Figure 10-2: Figure 10-3:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 8-1: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1: Figure 10-2: Figure 10-3: Figure 10-4:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 8-1: Figure 8-1: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1: Figure 10-2: Figure 10-3: Figure 10-4: Figure 10-5:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2
Figure 7-3: Figure 7-4: Figure 7-5: Figure 8-1: Figure 8-1: Figure 8-2: Figure 9-1: Figure 9-2: Figure 10-1: Figure 10-2: Figure 10-3: Figure 10-4: Figure 10-5: Figure 11-1:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2. 66 TMR0 Interrupt Timing. 66 Timer0 Timing With External Clock 67 Block Diagram of the Timer0/WDT 7 Prescaler 68 T1CON: Timer1 Control Register (Address 10h) (Address 10h) 71 Timer2 Block Diagram 72 Timer2 Block Diagram 75 T2CON: Timer2 Control Register (Address 12h) (Address 12h) 75 CCP1CON Register (Address 17h) / 78 Capture Mode Operation 80 Block Diagram 79 Simplified PWM Block Diagram 80 PWM Output 80 SPSTAT: Sync Serial Port Status 80
Figure 7-3: Figure 7-4: Figure 7-5: Figure 8-1: Figure 8-1: Figure 9-1: Figure 9-2: Figure 10-1: Figure 10-2: Figure 10-3: Figure 10-4: Figure 10-5: Figure 11-1:	Prescaler 65 Timer0 Timing: Internal Clock/Prescale 1:2