

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc64a-04-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C61** device has 36 bytes of RAM and 13 I/O pins. In addition a timer/counter is available.

The **PIC16C62/62A/R62** devices have 128 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPITM) or the two-wire Inter-Integrated Circuit (I²C) bus.

The **PIC16C63/R63** devices have 192 bytes of RAM, while the **PIC16C66** has 368 bytes. All three devices have 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I^2C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also know as a Serial Communications Interface or SCI.

The **PIC16C64/64A/R64** devices have 128 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. An 8-bit Parallel Slave Port is also provided.

The **PIC16C65/65A/R65** devices have 192 bytes of RAM, while the **PIC16C67** has 368 bytes. All four devices have 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmit-

ter (USART) is also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is also provided.

The PIC16C6X device family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers a power saving mode. The user can wake the chip from SLEEP through several external and internal interrupts, and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control to low-power remote sensors, keyboards and telecom processors. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use, and I/O flexibility make the PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions, and co-processor applications).

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to PIC16CXX family of devices (Appendix B).

1.2 Development Support

PIC16C6X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 15.0 for more details about Microchip's development tools.

TABLE 3-3: PIC16C64/64A/R64/65/65A/R65/67 PINOUT DESCRIPTION

Pin Name	DIP Pin#	PLCC Pin#	TQFP MQFP Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	Ι	ST/CMOS(3)	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLK- OUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	2	18	I/P	ST	Master clear reset input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0	2	3	19	I/O	TTL	
RA1	3	4	20	I/O	TTL	
RA2	4	5	21	I/O	TTL	
RA3	5	6	22	I/O	TTL	
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/SS	7	8	24	I/O	TTL	RA5 can also be the slave select for the synchronous serial port.
						PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST(4)	RB0 can also be the external interrupt pin.
RB1	34	37	9	I/O	TTL	
RB2	35	38	10	I/O	TTL	
RB3	36	39	11	I/O	TTL	
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽⁵⁾	Interrupt on change pin. Serial programming data.
						PORTC is a bi-directional I/O port.
RC0/T1OSO ⁽¹⁾ /T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output ⁽¹⁾ or Timer1 clock input.
RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾ .
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 out- put/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/out- put for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK ⁽²⁾	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmit ⁽²⁾ or Synchronous Clock ⁽²⁾ .
RC7/RX/DT ⁽²⁾	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive ⁽²⁾ or Synchronous Data ⁽²⁾ .
Legend: I = input C) = outp	ut	I/C) = input/	output	P = power

— = Not used TTL = TTL input

ST = Schmitt Trigger input Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C64.

2: CCP2 and the USART are not available on the PIC16C64/64A/R64.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: This buffer is a Schmitt Trigger input when configured as the external interrupt.

5: This buffer is a Schmitt Trigger input when used in serial programming mode.

6: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	register)	0000 0000	0000 0000					
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	ər					xxxx xxxx	uuuu uuuu
05h	PORTA	_	_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	hen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h ⁽⁵⁾	PORTD	PORTD Da	ta Latch whe	n written: PC	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h ⁽⁵⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH	_	_		Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽⁶⁾	(4)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	_	_			_	—	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the l	_east Signific	cant Byte of t	he 16-bit TM	R1 register	1	1	xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Nost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Por	t Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Transmit Data Register								0000 0000	0000 0000
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Compare/PWM2 (LSB)									uuuu uuuu
1Ch	CCPR2H	Capture/Co	apture/Compare/PWM2 (MSB)								
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	-	Unimpleme	nted							—	_

TABLE 4-6: SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: PIE1<6> and PIR1<6> are reserved on the PIC16C66/67, always maintain these bits clear.

5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.

6: PSPIF (PIR1<7>) and PSPIE (PIE1<7>) are reserved on the PIC16C66, maintain these bits clear.

FIGURE 4-15: PIE1 REGISTER FOR PIC16C65/65A/R65/67 (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PSPIE	_	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit				
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset				
bit 7:	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt											
bit 6:	Reserved:	Always ma	aintain this	bit clear.								
bit 5:	RCIE: USA 1 = Enable 0 = Disable	ART Receiv s the USAF es the USA	e Interrupt RT receive RT receive	Enable bit interrupt interrupt								
bit 4:	TXIE: USA 1 = Enable 0 = Disable	RT Transm s the USAF s the USA	it Interrupt RT transmit RT transmi	Enable bit interrupt t interrupt								
bit 3:	SSPIE: Syn 1 = Enable 0 = Disable	nchronous s the SSP es the SSP	Serial Port interrupt interrupt	Interrupt Er	nable bit							
bit 2:	CCP1IE : C 1 = Enable 0 = Disable	CP1 Interrors the CCP ⁻ is the CCP ⁻ ies the CCP	upt Enable I interrupt 1 interrupt	bit								
bit 1:	TMR2IE: T 1 = Enable 0 = Disable	MR2 to PR s the TMR2 es the TMR	2 Match In 2 to PR2 m 2 to PR2 m	terrupt Enat atch interrup atch interru	ole bit pt ipt							
bit 0:	TMR1IE: T 1 = Enable 0 = Disable	MR1 Overf s the TMR es the TMR	low Interru 1 overflow i 1 overflow	ot Enable bi nterrupt interrupt	t							

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS (1)	bit5	TTL	Input/output or slave select input for synchronous serial port.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C61 does not have PORTA<5> or TRISA<5>, read as '0'.

TABLE 5-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	_	—	PORTA Data	Direction Re	egister ⁽¹⁾				11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C61, read as '0'.

11.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

11.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SSP module in l^2 C mode works the same in all PIC16C6X devices that have an SSP module. However the SSP Module in SPI mode has differences between the PIC16C66/67 and the other PIC16C6X devices.

The register definitions and operational description of SPI mode has been split into two sections because of the differences between the PIC16C66/67 and the other PIC16C6X devices. The default reset values of both the SPI modules is the same regardless of the device:

11.2	SPI Mode for PIC16C62/62A/R62/63/R63/64	1/
	64A/R64/65/65A/R65 8	4
11.3	SPI Mode for PIC16C66/67 8	9
11.4	I ² C™ Overview9	5
11.5	SSP I ² C Operation	9

Refer to Application Note AN578, "Use of the SSP Module in the I^2C Multi-Master Environment."

11.2 <u>SPI Mode for PIC16C62/62A/R62/63/</u> R63/64/64A/R64/65/65A/R65

This section contains register definitions and operational characteristics of the SPI module for the PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16CR63, PIC16C64A, PIC16CR64, PIC16CR64, PIC16C65, PIC16C65A, PIC16CR65.

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
—		D/A	Р	S	R/W	UA	BF	R = Readable bit
bit7							bit0	W = Writable bit
								as '0'
								- n =Value at POR reset
bit 7-6:	Unimp	emented	Read as	'0'				
bit 5:	D/A: Da	ata/Addres	s bit (I ² C	mode only)				
	1 = Indi 0 = Indi	cates that cates that	the last b	yte receive vte receive	d or transmit d or transmit	ted was da ted was ad	ta dress	
hit 4	P. Ston	bit (I ² C m	nde only	This bit is c	leared when	the SSP n	nodule is disa	abled SSPEN is cleared)
ын 4.	1 = Indi	cates that	a stop bit	has been	detected last	(this bit is	'0' on RESET)
	0 = Sto	p bit was ı	not detecte	ed last				
bit 3:	S: Start	bit (I ² C m	node only.	This bit is o	cleared wher	the SSP n	nodule is disa	abled, SSPEN is cleared)
	1 = Indi 0 = Sta	cates that	a start bit	has been ed last	detected last	t (this bit is	'0' on RESE)
hit 2.	e − eta R/W· B	ead/Write	bit inform	ation (I ² C n	node only)			
DR E.	This bit	holds the	R/W bit i	nformation	following the	ast addre	ess match. Th	nis bit is valid from the address
	match t	o the next	start bit, s	stop bit, or	ACK bit.			
	1 = Rea 0 = Wri	ad te						
hit 1·		 date Addr	ess (10-hi	t I ² C mode	only)			
2.1.11	1 = Indi	cates that	the user i	needs to up	date the add	dress in the	SSPADD reg	gister
	0 = Adc	lress does	s not need	to be upda	ited			
bit 0:	BF: But	fer Full St	atus bit					
	Receive	e (SPI and	I I ² C mode	es)				
	1 = Rec 0 - Rec	ceive com	plete, SSP	'BUF is tull SSPRLIE is	emntv			
	Transm	it (I ² C mo	de only)	001 001 13	Subry			
	1 = Trai	nsmit in pr	ogress, S	SPBUF is f	ull			
	0 = Trai	nsmit com	plete, SSF	PBUF is err	pty			

Γ

FIGURE 11-8: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)(PIC16C66/67)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	WCOL: W $1 = \text{The S}^2$ (must be c 0 = No col	rite Collisio SPBUF reg cleared in s lision	on Detect gister is w software)	bit ritten while	e it is still tr	ransmitting	the previou	is word
bit 6:	SSPOV: R	leceive Ov	erflow Ind	cator bit				
	$\frac{\text{In SPI mon}}{1 = A \text{ new}}$ the data in if only tran- new recep 0 = No over	de byte is rece SSPSR is asmitting da tion (and t erflow	eived while lost. Ove ata, to avo ransmissio	e the SSPE flow can o id setting on) is initia	BUF registe only occur overflow. I ted by wri	er is still ho in slave mo in master i ting to the	Iding the pro ode. The use mode the ov SSPBUF re	evious data. In case of overflow, er must read the SSPBUF, even rerflow bit is not set since each gister.
	$\frac{\ln l^2 C \mod}{1 = A \text{ byte}}$ in transmit 0 = No over	<u>te</u> is received mode. SS erflow	while the POV mus	SSPBUF I t be cleare	register is ed in softw	still holding are in eith	g the previou er mode.	is byte. SSPOV is a "don't care"
bit 5:	SSPEN: S	ynchronou	s Serial F	ort Enable	bit			
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$	<u>de</u> es serial po es serial p	ort and co	nfigures So nfigures th	CK, SDO, nese pins a	and SDI a as I/O port	s serial port pins	pins
	$\frac{\ln l^2 C \mod}{1 = \text{Enable}}$ $0 = \text{Disabl}$ $\ln \text{ both model}$	<u>de</u> es the seria es serial p odes, wher	al port and ort and co enabled,	l configure nfigures th these pins	s the SDA nese pins a s must be	and SCL as I/O port	pins as seri pins onfigured as	al port pins s input or output.
bit 4:	CKP : Cloc In SPI mod 1 = Idle sta 0 = Idle sta In I^2 C mod SCK relea 1 = Enable 0 = Holds	k Polarity : de ate for cloc ate for cloc de se control ∋ clock clock low (Select bit k is a higł k is a low clock stre	n level level tch) (Used	to ensure	data setu	p time)	
bit 3-0:	SSPM3:S 0000 = SF 0010 = SF 0011 = SF 0100 = SF 0101 = SF 0110 = I ² (0111 = I ² (1110 = I ² (1111 = I ² (SPM0: Syr PI master r PI master r PI master r PI master r PI slave mo C slave mo C slave mo C slave mo C slave mo C slave mo C slave mo	nchronous node, cloc node, cloc node, cloc ode, clock ode, clock de, 7-bit controlled de, 7-bit de, 10-bit de, 10-bit	Serial Por k = Fosc/4 k = Fosc/4 k = Fosc/6 k = TMR2 = SCK pin ddress address address master m address with	rt Mode So 4 16 64 output/2 a. <u>SS</u> pin c a. <u>SS</u> pin c node (slave th start an vith start a	ontrol ena ontrol ena ontrol disa e idle) d stop bit i nd stop bit	bled. bled. SS ca nterrupts er i interrupts e	n be used as I/O pin nabled anabled

Applicable Devices	61	62	624	B62	63	B63	64	644	R64	65	654	R65	66	67
Applicubic Devices		02	0211	1102	00	1100	0-	047	110-	00	007	1100	00	01

		Standa	d Operat	ina Ca	nditiona	Junior	a otherwise stated)	
		Operatir	na temperat	niy cu atura	-40°C		$< \pm 125^{\circ}$ C for extended	
		Operation	ig temper	ature	-40°C	$\sim T_{\rm A} < 185^{\circ}$ C for inductrial and		
DC CHA	ARACTERISTICS				-40 0	^ ∠	$1 \leq +00$ C for commercial	
		0° $\leq IA \leq +70^{\circ}$ C for commercial						
		Operatir	ig vollage	VDD ra	ange as c	escribe	ed in DC spec Section 15.1 and	
		Section	15.2.			r		
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions	
No.								
	Output High Voltage							
D090	I/O ports (Note 3)	Voh	Vpp-0.7	-	-	v	IOH = -3.0 mA	
2000		1011	100 0.1				$V_{DD} = 4.5V - 40^{\circ}C t_{0} + 85^{\circ}C$	
						v		
DU90A			VDD-0.7	-	-	v	10H = -2.5 mA,	
							$VDD = 4.5V, -40^{\circ}C t0 + 125^{\circ}C$	
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOн = -1.3 mA,	
							VDD = 4.5V, -40°C to +85°C	
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA,	
							VDD = 4.5V, -40°C to +125°C	
D150*	Open-Drain High Voltage	VOD	-	-	14	V	RA4 pin	
	Capacitive Loading Specs on							
	Output Pins							
D100	OSC2 pin	Cosca			15	nF	In XT HS and LP modes when	
0100	0002 pm	00302			15	рі	avtornal clock is used to drive	
						_	0301.	
D101	All I/O pins and OSC2 (in RC mode)	CIO			50	pF		

The parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 16-8: MAXIMUM IPD vs. VDD WATCHDOG ENABLED*

*IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior.

TABLE 16-2: INPUT CAPACITANCE*

Pin Name	Typical Capacitance (pF)						
	18L PDIP	18L SOIC					
RA port	5.0	4.3					
RB port	5.0	4.3					
MCLR	17.0	17.0					
OSC1/CLKIN	4.0	3.5					
OSC2/CLKOUT	4.3	3.5					
ТОСКІ	3.2	2.8					
*All capacitance values are typical at 25°C. A part to pa	art variation of $\pm 25\%$ (three stan	dard deviations) should be					

Data based on matrix samples. See first page of this section for details.

taken into account.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 18-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	_	—	ns	
71*	TscH	SCK input high time (slave mode)	TCY + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	—	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	—	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	$\overline{\text{SS}}^{\uparrow}$ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)		10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

20.4 Timing Parameter Symbology

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	ppS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:	1	
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st	(I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 2	20-1: LOAD CONDITIONS FOR DEVICE	TIMING SP	ECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		7
	J	\succ	
	\leq RL	Pi	
	$ \leq $		+
	★		Vss
	↓ RL	= 464Ω	
	Vss Cl	= 50 pF fo	or all pins except OSC2/CLKOUT
Note 1:	PORTD and PORTE are not imple-	b	ut including D and E outputs as ports
	mented on the PIC16C63.	15 pF fo	or OSC2 output

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-10: I²C BUS START/STOP BITS TIMING

TABLE 20-9: I²C BUS START/STOP BITS REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур	Мах	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	—	—	ne	Only relevant for repeated START
		Setup time	400 kHz mode	600	—	—	113	condition
91*	THD:STA	START condition	100 kHz mode	4000	—	_	ne	After this period the first clock
		Hold time	400 kHz mode	600	_	_	115	pulse is generated
92*	TSU:STO	STOP condition	100 kHz mode	4700	—	_	ne	
		Setup time	400 kHz mode	600	-	—	113	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	ne	
		Hold time	400 kHz mode	600	—		115	

These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-3: CLKOUT AND I/O TIMING

TABLE 21-3: CLKOUT AND I/O TIMING REQUIREMENT

Param	Sym	Characteristic	<	Min	Typt	Max	Units	Conditions
No.				$\langle - \rangle \langle$	\sum			
10*	TosH2ckL	OSC1↑ to CLKOUT↓		$\langle \mathcal{F} \rangle$	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑			75	200	ns	Note 1
12*	TckR	CLKOUT rise time	$\sim V $	\searrow	35	100	ns	Note 1
13*	TckF	CLKOUT fall time	\sum	> -	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid \land	$ _{A} _{\wedge}$	[_		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	$///\sim$	Tosc + 200	-	_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑	$\overline{\langle \langle \rangle}$	0	I	_	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out val	id 🔪	—	50	150	ns	
18*	TosH2ioI	OSC1↑ (Q2 cycle) to Port input	P1C16CR63/R65	100		_	ns	
		invalid (I/O in hold time)	PIC16LCR63/R65	200		_	ns	
19*	TioV2osH	Port input valid to OSC11 (I/Q in	setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16CR63/R65	—	10	40	ns	
		\frown	PIC16LCR63/R65	_	-	80	ns	
21*	TioF	Port output fall time	PIC16CR63/R65	_	10	40	ns	
	\langle	$\langle \rangle \rangle$	PIC16LCR63/R65	—		80	ns	
22††*	Tinp	INT pin high or low time		Тсү	-	_	ns	
23††*	Trbp	RB7:RB2 change INT high or low	time	Тсү	_	_	ns	
	\cdot		1					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t† These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 21-5: BROWN-OUT RESET TIMING

TABLE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
-							
30	TmcL	MCLR Pulse Width (low)	2	—	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc	—	—	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset		_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	—	μs	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 22-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions	
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	_	_	ns	
		input low time	With Prescaler	PIC16 C 66/67	10	—	—	ns	
				PIC16LC66/67	20	—	—	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—	—	ns	
	input high time	With Prescaler	PIC16 C 66/67	10	—	—	ns		
				PIC16 LC 66/67	20	_	_	ns	
52*	TccP	CCP1 and CCP2 input period			<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 output rise time		PIC16 C 66/67	—	10	25	ns	
				PIC16 LC 66/67	—	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16 C 66/67	—	10	25	ns	
				PIC16LC66/67	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

24.0 PACKAGING INFORMATION

24.1 18-Lead Plastic Dual In-line (300 mil) (P)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Plastic Dual In-Line (PLA)						
		Millimeters			Inches	
Symbol	Min	Мах	Notes	Min	Мах	Notes
α	0°	10°		0°	10°	
А	_	4.064		_	0.160	
A1	0.381	_		0.015	_	
A2	3.048	3.810		0.120	0.150	
В	0.355	0.559		0.014	0.022	
B1	1.524	1.524	Reference	0.060	0.060	Reference
С	0.203	0.381	Typical	0.008	0.015	Typical
D	22.479	23.495		0.885	0.925	
D1	20.320	20.320	Reference	0.800	0.800	Reference
E	7.620	8.255		0.300	0.325	
E1	6.096	7.112		0.240	0.280	
e1	2.489	2.591	Typical	0.098	0.102	Typical
eA	7.620	7.620	Reference	0.300	0.300	Reference
eB	7.874	9.906		0.310	0.390	
L	3.048	3.556		0.120	0.140	
N	18	18		18	18	
S	0.889	-		0.035	-	
S1	0.127	_		0.005	_	

Package Marking Information (Cont'd)

44-Lead PLCC

44-Lead MQFP

Example

Example

Example

Legend:	MMM XXX AA	Microchip part number information Customer specific information* Year code (last 2 digits of calender year)		
	BB	Week code (week of January 1 is week '01')		
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.		
	D ₁	Mask revision number for microcontroller		
	E	Assembly code of the plant or country of origin in which part was assembled.		
Note:	In the even line, it will b available cl	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.		

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.