

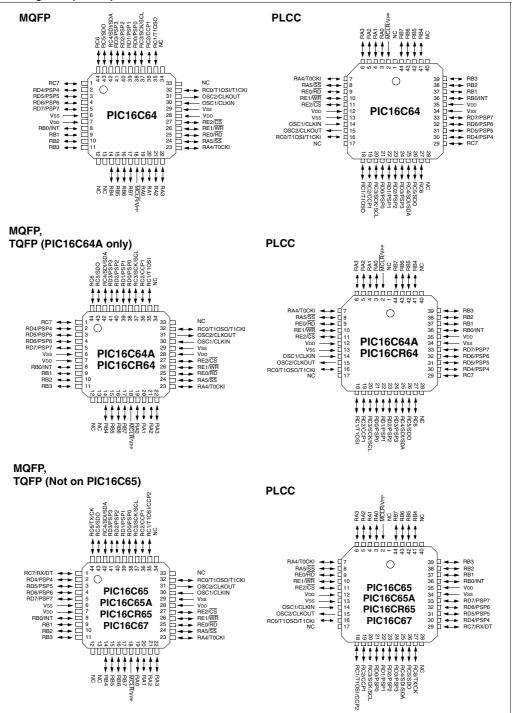


#### Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 4MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, SPI                                                      |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                      |
| Number of I/O              | 33                                                                         |
| Program Memory Size        | 3.5KB (2K x 14)                                                            |
| Program Memory Type        | ОТР                                                                        |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 128 × 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 6V                                                                  |
| Data Converters            | -                                                                          |
| Oscillator Type            | External                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Through Hole                                                               |
| Package / Case             | 40-DIP (0.600", 15.24mm)                                                   |
| Supplier Device Package    | 40-PDIP                                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc64a-04i-p |
|                            |                                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Pin Diagrams (Cont.'d)



### 11.2 <u>SPI Mode for PIC16C62/62A/R62/63/</u> R63/64/64A/R64/65/65A/R65

This section contains register definitions and operational characteristics of the SPI module for the PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16CR63, PIC16C64A, PIC16CR64, PIC16CR64, PIC16C65, PIC16C65A, PIC16CR65.

### FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

| U-0      | U-0      | R-0                           | B-0        | B-0                                                     | R-0                                 | B-0          | B-0          |                                                                                      |
|----------|----------|-------------------------------|------------|---------------------------------------------------------|-------------------------------------|--------------|--------------|--------------------------------------------------------------------------------------|
| _        | _        | D/A                           | P          | S                                                       | R/W                                 | UA           | BF           | R = Readable bit                                                                     |
| bit7     |          |                               | 1          |                                                         |                                     | <u>I</u>     | bit0         | W = Writable bit<br>U = Unimplemented bit, read<br>as '0'<br>- n =Value at POR reset |
| bit 7-6: | Unimpl   | emented                       | Read as    | '0'                                                     |                                     |              |              |                                                                                      |
| bit 5:   | 1 = Indi | cates that                    | the last b | ,                                                       | )<br>d or transmit<br>d or transmit |              |              |                                                                                      |
| bit 4:   | 1 = Indi |                               | a stop bi  | has been                                                | cleared when<br>detected last       |              |              | abled, SSPEN is cleared)<br>T)                                                       |
| bit 3:   | 1 = Indi |                               | a start bi | t has been                                              | cleared wher<br>detected last       |              |              | abled, SSPEN is cleared)<br>T)                                                       |
| bit 2:   | This bit | holds the<br>o the next<br>ad | R/W bit i  | ation (I <sup>2</sup> C r<br>nformation<br>stop bit, or | following the                       | e last addre | ess match. T | his bit is valid from the address                                                    |
| bit 1:   | 1 = Indi | cates that                    | the user   | it I <sup>2</sup> C mode<br>needs to up<br>to be upda   | odate the add                       | dress in the | SSPADD re    | egister                                                                              |
| bit 0:   | BF: Buf  | fer Full St                   | atus bit   |                                                         |                                     |              |              |                                                                                      |
|          | 1 = Rec  |                               | olete, SSF | es)<br>PBUF is full<br>SSPBUF is                        |                                     |              |              |                                                                                      |
|          | 1 = Trar |                               | ogress, S  | SPBUF is f<br>PBUF is err                               |                                     |              |              |                                                                                      |

### 11.4 <u>I<sup>2</sup>C<sup>™</sup> Overview</u>

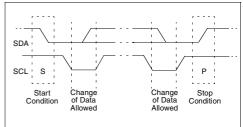
This section provides an overview of the Inter-Integrated Circuit (I<sup>2</sup>C) bus, with Section 11.5 discussing the operation of the SSP module in  $I^2C$  mode.

The  $I^2C$  bus is a two-wire serial interface developed by the Philips<sup>®</sup> Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. The enhanced specification (fast mode) is also supported. This device will communicate with both standard and fast mode devices if attached to the same bus. The clock will determine the data rate.

The I<sup>2</sup>C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master" which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-3 defines some of the I<sup>2</sup>C bus terminology. For additional information on the I<sup>2</sup>C interface specification, refer to the Philips document "*The I<sup>2</sup>C bus and how to use it.*"#939839340011, which can be obtained from the Philips Corporation.

In the  $I^2C$  interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from/write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of as operating in either of these two relations:

- · Master-transmitter and Slave-receiver
- · Slave-transmitter and Master-receiver


In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the  $I^2C$  bus is limited only by the maximum bus loading specification of 400 pF.

### 11.4.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. The START and STOP conditions. The master generates these conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

### FIGURE 11-14: START AND STOP CONDITIONS



| Term            | Description                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitter     | The device that sends the data to the bus.                                                                                                  |
| Receiver        | The device that receives the data from the bus.                                                                                             |
| Master          | The device which initiates the transfer, generates the clock and terminates the transfer.                                                   |
| Slave           | The device addressed by a master.                                                                                                           |
| Multi-master    | More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.      |
| Arbitration     | Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted. |
| Synchronization | Procedure where the clock signals of two or more devices are synchronized.                                                                  |

### TABLE 11-3: I<sup>2</sup>C BUS TERMINOLOGY

#### 11.5.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the  $l^2C$  bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

#### 11.5.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the  $I^2C$  bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- · Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

| Address                 | Name                                    | Bit 7                | Bit 6              | Bit 5                  | Bit 4      | Bit 3      | Bit 2    | Bit 1  | Bit 0  | Value on<br>POR,<br>BOR | Value on all other resets |
|-------------------------|-----------------------------------------|----------------------|--------------------|------------------------|------------|------------|----------|--------|--------|-------------------------|---------------------------|
| 0Bh, 8Bh,<br>10Bh, 18Bh | INTCON                                  | GIE                  | PEIE               | TOIE                   | INTE       | RBIE       | T0IF     | INTF   | RBIF   | 0000 000x               | 0000 000u                 |
| 0Ch                     | PIR1                                    | PSPIF <sup>(1)</sup> | (2)                | RCIF                   | TXIF       | SSPIF      | CCP1IF   | TMR2IF | TMR1IF | 0000 0000               | 0000 0000                 |
| 8Ch                     | PIE1                                    | PSPIE <sup>(1)</sup> | (2)                | RCIE                   | TXIE       | SSPIE      | CCP1IE   | TMR2IE | TMR1IE | 0000 0000               | 0000 0000                 |
| 13h                     | SSPBUF                                  | Synchrono            | us Serial          | Port Rece              | eive Buffe | r/Transmit | Register |        |        | xxxx xxxx               | uuuu uuuu                 |
| 93h                     | SSPADD                                  | Synchrono            | us Serial          | Port (I <sup>2</sup> C | mode) Ad   | ldress Re  | gister   |        |        | 0000 0000               | 0000 0000                 |
| 14h                     | SSPCON                                  | WCOL                 | SSPOV              | SSPEN                  | CKP        | SSPM3      | SSPM2    | SSPM1  | SSPM0  | 0000 0000               | 0000 0000                 |
| 94h                     | SSPSTAT                                 | SMP <sup>(3)</sup>   | CKE <sup>(3)</sup> | D/A                    | Р          | S          | R/W      | UA     | BF     | 0000 0000               | 0000 0000                 |
| 87h                     | 37h TRISC PORTC Data Direction register |                      |                    |                        |            |            |          |        |        |                         | 1111 1111                 |

### TABLE 11-5: REGISTERS ASSOCIATED WITH I<sup>2</sup>C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16C66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

3: The SMP and CKE bits are implemented on the PIC16C66/67 only. All other PIC16C6X devices have these two bits unimplemented, read as '0'. Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit  $\ensuremath{\mathsf{RCIE}}$  .
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting enable bit CREN.

- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.

| Address | Name  | Bit 7                | Bit 6     | Bit 5   | Bit 4     | Bit 3     | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR,<br>BOR | Value on<br>all other<br>Resets |
|---------|-------|----------------------|-----------|---------|-----------|-----------|--------|--------|--------|-------------------------|---------------------------------|
| 0Ch     | PIR1  | PSPIF <sup>(1)</sup> | (2)       | RCIF    | TXIF      | SSPIF     | CCP1IF | TMR2IF | TMR1IF | 0000 0000               | 0000 0000                       |
| 18h     | RCSTA | SPEN                 | RX9       | SREN    | CREN      | _         | FERR   | OERR   | RX9D   | 0000 -00x               | 0000 -00x                       |
| 1Ah     | RCREG | USART Re             | eceive Re | egister |           |           |        |        |        | 0000 0000               | 0000 0000                       |
| 8Ch     | PIE1  | PSPIE <sup>(1)</sup> | (2)       | RCIE    | TXIE      | SSPIE     | CCP1IE | TMR2IE | TMR1IE | 0000 0000               | 0000 0000                       |
| 98h     | TXSTA | CSRC                 | TX9       | TXEN    | SYNC      | _         | BRGH   | TRMT   | TX9D   | 0000 -010               | 0000 -010                       |
| 99h     | SPBRG | Baud Rate            | Genera    |         | 0000 0000 | 0000 0000 |        |        |        |                         |                                 |

### TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: PSPIE and PSPIF are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIE1<6> and PIR1<6> are reserved, always maintain these bits clear.

#### 12.3 USART Synchronous Master Mode

#### Applicable Devices

#### 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Synchronous Master mode the data is transmitted in a half-duplex manner i.e., transmission and reception do not occur at the same time. When transmitting data the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6 and RC7 I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

#### 12.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 12-7. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR register is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG register is empty and interrupt flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the status of enable bit TXIE and cannot be cleared in software. It will clear only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR register is not mapped in data memory so it is not available to the user.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 12-12). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN (Figure 12-13). This is advantageous when slow baud rates are selected, since the BRG is kept in reset when bits TXEN. CREN, and SREN are clear. Setting enable bit TXEN will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG register. Back-to-back transfers are possible.

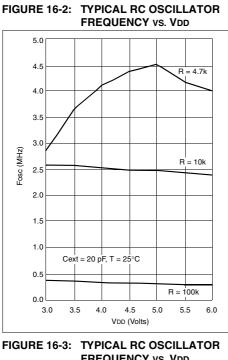
Clearing enable bit TXEN, during a transmission, will cause the transmission to be aborted and will reset the transmitter. The DT and CK pins will revert to hi-impedance. If, during a transmission, either bit CREN or bit SREN is set the transmission is aborted and the DT pin reverts to a hi-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic however, is not reset although it is disconnected from the pins. In order to reset the transmitter, the user has to clear enable bit TXEN. If enable bit SREN is set (to interrupt an on going transmission and receive a single word), then after the single word is received, enable bit SREN will be cleared, and the serial port will revert back to transmitting since enable bit TXEN is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, enable bit TXEN should be cleared.

In order to select 9-bit transmission, bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR register was empty and the TXREG register was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.

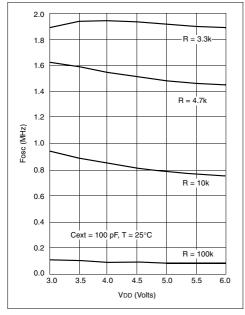
Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 12.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set enable bit  $\ensuremath{\mathsf{TXIE}}$  .
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

### TABLE 14-2: PIC16CXX INSTRUCTION SET


| Mnemonic,  |        | Description                  | Cycles |     | 14-Bit | Opcode | e    | Status   | Notes |
|------------|--------|------------------------------|--------|-----|--------|--------|------|----------|-------|
| Operands   |        |                              |        | MSb |        |        | LSb  | Affected |       |
| BYTE-ORIE  | NTED   | FILE REGISTER OPERATIONS     |        |     |        |        |      |          |       |
| ADDWF      | f, d   | Add W and f                  | 1      | 00  | 0111   | dfff   | ffff | C,DC,Z   | 1,2   |
| ANDWF      | f, d   | AND W with f                 | 1      | 00  | 0101   | dfff   | ffff | Z        | 1,2   |
| CLRF       | f      | Clear f                      | 1      | 00  | 0001   | lfff   | ffff | Z        | 2     |
| CLRW       | -      | Clear W                      | 1      | 00  | 0001   | 0xxx   | xxxx | Z        |       |
| COMF       | f, d   | Complement f                 | 1      | 00  | 1001   | dfff   | ffff | Z        | 1,2   |
| DECF       | f, d   | Decrement f                  | 1      | 00  | 0011   | dfff   | ffff | Z        | 1,2   |
| DECFSZ     | f, d   | Decrement f, Skip if 0       | 1(2)   | 00  | 1011   | dfff   | ffff |          | 1,2,3 |
| INCF       | f, d   | Increment f                  | 1      | 00  | 1010   | dfff   | ffff | Z        | 1,2   |
| INCFSZ     | f, d   | Increment f, Skip if 0       | 1(2)   | 00  | 1111   | dfff   | ffff |          | 1,2,3 |
| IORWF      | f, d   | Inclusive OR W with f        | 1      | 00  | 0100   | dfff   | ffff | Z        | 1,2   |
| MOVF       | f, d   | Move f                       | 1      | 00  | 1000   | dfff   | ffff | Z        | 1,2   |
| MOVWF      | f      | Move W to f                  | 1      | 00  | 0000   | lfff   | ffff |          |       |
| NOP        | -      | No Operation                 | 1      | 00  | 0000   | 0xx0   | 0000 |          |       |
| RLF        | f, d   | Rotate Left f through Carry  | 1      | 00  | 1101   | dfff   | ffff | С        | 1,2   |
| RRF        | f, d   | Rotate Right f through Carry | 1      | 00  | 1100   | dfff   | ffff | С        | 1,2   |
| SUBWF      | f, d   | Subtract W from f            | 1      | 00  | 0010   | dfff   | ffff | C,DC,Z   | 1,2   |
| SWAPF      | f, d   | Swap nibbles in f            | 1      | 00  | 1110   | dfff   | ffff |          | 1,2   |
| XORWF      | f, d   | Exclusive OR W with f        | 1      | 00  | 0110   | dfff   | ffff | Z        | 1,2   |
| BIT-ORIENT | ED FIL | E REGISTER OPERATIONS        |        |     |        |        |      |          |       |
| BCF        | f, b   | Bit Clear f                  | 1      | 01  | 00bb   | bfff   | ffff |          | 1,2   |
| BSF        | f, b   | Bit Set f                    | 1      | 01  | 01bb   | bfff   | ffff |          | 1,2   |
| BTFSC      | f, b   | Bit Test f, Skip if Clear    | 1 (2)  | 01  | 10bb   | bfff   | ffff |          | 3     |
| BTFSS      | f, b   | Bit Test f, Skip if Set      | 1 (2)  | 01  | 11bb   | bfff   | ffff |          | 3     |
| LITERAL A  | ND CO  | NTROL OPERATIONS             |        |     |        |        |      |          |       |
| ADDLW      | k      | Add literal and W            | 1      | 11  | 111x   | kkkk   | kkkk | C,DC,Z   |       |
| ANDLW      | k      | AND literal with W           | 1      | 11  | 1001   | kkkk   | kkkk | Z        |       |
| CALL       | k      | Call subroutine              | 2      | 10  | 0kkk   | kkkk   | kkkk |          |       |
| CLRWDT     | -      | Clear Watchdog Timer         | 1      | 00  | 0000   | 0110   | 0100 | TO,PD    |       |
| GOTO       | k      | Go to address                | 2      | 10  | 1kkk   | kkkk   | kkkk |          |       |
| IORLW      | k      | Inclusive OR literal with W  | 1      | 11  | 1000   | kkkk   | kkkk | Z        |       |
| MOVLW      | k      | Move literal to W            | 1      | 11  | 00xx   | kkkk   | kkkk |          |       |
| RETFIE     | -      | Return from interrupt        | 2      | 00  | 0000   | 0000   | 1001 |          |       |
| RETLW      | k      | Return with literal in W     | 2      | 11  | 01xx   | kkkk   | kkkk |          |       |
| RETURN     | -      | Return from Subroutine       | 2      | 00  | 0000   | 0000   | 1000 |          |       |
| SLEEP      | -      | Go into standby mode         | 1      | 00  | 0000   | 0110   | 0011 | TO,PD    |       |
| SUBLW      | k      | Subtract W from literal      | 1      | 11  | 110x   | kkkk   | kkkk | C,DC,Z   |       |
| XORLW      | k      | Exclusive OR literal with W  | 1      | 11  | 1010   | kkkk   | kkkk | Z        |       |
|            | ĸ      |                              | · ·    | 11  | TOTO   | ĸĸĸĸ   | кккк | ~        |       |

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.


2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

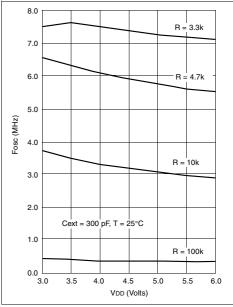
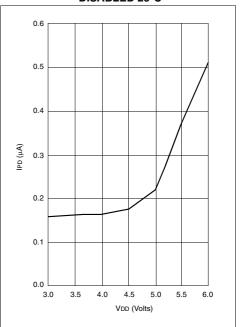
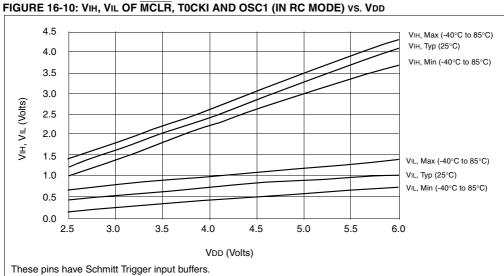
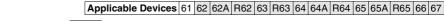
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

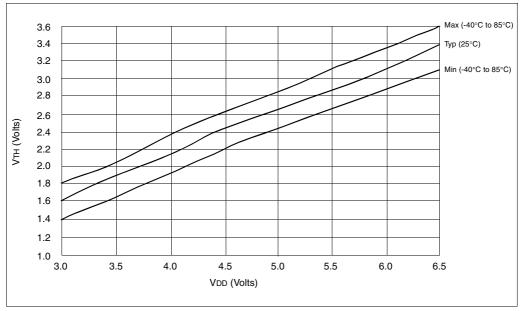


### FREQUENCY vs. VDD





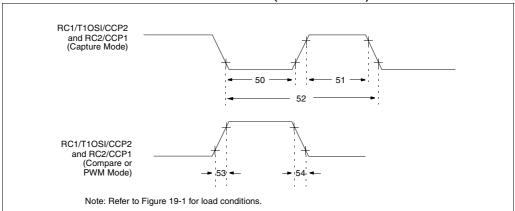







FIGURE 16-5: TYPICAL IPD VS. VDD WATCHDOG TIMER **DISABLED 25°C** 












Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67



### FIGURE 19-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 19-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

| Parameter<br>No. | Sym            | Characteristic   |                 |                    | Min                   | Тур† | Max | Units | Conditions                         |
|------------------|----------------|------------------|-----------------|--------------------|-----------------------|------|-----|-------|------------------------------------|
| 50*              | input low time |                  | No Prescaler    |                    | 0.5TCY + 20           | —    | _   | ns    |                                    |
|                  |                |                  | With Prescaler  | PIC16 <b>C</b> 65  | 10                    | _    |     | ns    |                                    |
|                  |                |                  |                 | PIC16 <b>LC</b> 65 | 20                    | —    | -   | ns    |                                    |
| 51*              | TccH           | CCP1 and CCP2    | No Prescaler    |                    | 0.5Tcy + 20           | _    |     | ns    |                                    |
|                  |                | input high time  | With Prescaler  | PIC16 <b>C</b> 65  | 10                    | _    |     | ns    |                                    |
|                  |                |                  |                 | PIC16 <b>LC</b> 65 | 20                    | —    |     | ns    |                                    |
| 52*              | TccP           | CCP1 and CCP2 in | nput period     |                    | <u>3Tcy + 40</u><br>N | _    | I   | ns    | N = prescale value<br>(1,4, or 16) |
| 53               | TccR           | CCP1 and CCP2 of | utput rise time | PIC16 <b>C</b> 65  | _                     | 10   | 25  | ns    |                                    |
|                  |                |                  |                 | PIC16 <b>LC</b> 65 | —                     | 25   | 45  | ns    |                                    |
| 54               | TccF           | CCP1 and CCP2 c  | utput fall time | PIC16 <b>C</b> 65  | —                     | 10   | 25  | ns    |                                    |
|                  |                |                  |                 | PIC16 <b>LC</b> 65 | —                     | 25   | 45  | ns    |                                    |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

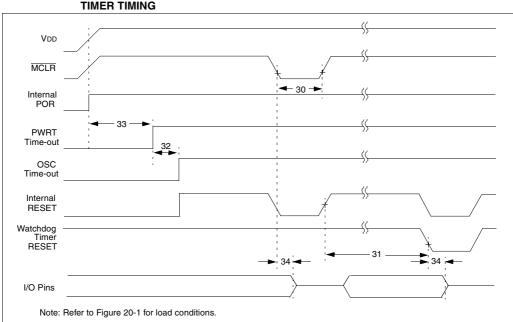
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

### 20.3 DC Characteristics: PIC16C63/65A-04 (Commercial, Industrial, Extended) PIC16C63/65A-10 (Commercial, Industrial, Extended) PIC16C63/65A-20 (Commercial, Industrial, Extended) PIC16LC63/65A-04 (Commercial, Industrial)

|        |                                    |                                                                      | rd Operat |     | -40°C        | Č ≤ T | ss otherwise stated)<br>$A \le +125^{\circ}C$ for extended,                |  |  |  |
|--------|------------------------------------|----------------------------------------------------------------------|-----------|-----|--------------|-------|----------------------------------------------------------------------------|--|--|--|
| DC CHA | RACTERISTICS                       |                                                                      |           |     | -40°0<br>0°C |       | $A \le +85^{\circ}C$ for industrial and<br>A < +70^{\circ}C for commercial |  |  |  |
|        |                                    | Operating voltage VDD range as described in DC spec Section 20.1 and |           |     |              |       |                                                                            |  |  |  |
|        |                                    | Section 20.2                                                         |           |     |              |       |                                                                            |  |  |  |
| Param  | Characteristic                     | Sym                                                                  | Min       | Тур | Max          | Units | Conditions                                                                 |  |  |  |
| No.    |                                    |                                                                      |           | †   |              |       |                                                                            |  |  |  |
|        | Input Low Voltage                  |                                                                      |           |     |              |       |                                                                            |  |  |  |
|        | I/O ports                          | VIL                                                                  |           |     |              |       |                                                                            |  |  |  |
| D030   | with TTL buffer                    |                                                                      | Vss       | -   | 0.15Vdd      | V     | For entire VDD range                                                       |  |  |  |
| D030A  |                                    |                                                                      | Vss       | -   | 0.8V         | V     | $4.5V \leq V \text{DD} \leq 5.5V$                                          |  |  |  |
| D031   | with Schmitt Trigger buffer        |                                                                      | Vss       | -   | 0.2VDD       | V     |                                                                            |  |  |  |
| D032   | MCLR, OSC1 (in RC mode)            |                                                                      | Vss       | -   | 0.2VDD       | V     |                                                                            |  |  |  |
| D033   | OSC1 (in XT, HS and LP)            |                                                                      | Vss       | -   | 0.3Vdd       | V     | Note1                                                                      |  |  |  |
|        | Input High Voltage                 |                                                                      |           |     |              |       |                                                                            |  |  |  |
|        | I/O ports                          | VIH                                                                  |           | -   |              |       |                                                                            |  |  |  |
| D040   | with TTL buffer                    |                                                                      | 2.0       | -   | Vdd          | V     | $4.5V \leq V \text{DD} \leq 5.5V$                                          |  |  |  |
| D040A  |                                    |                                                                      | 0.25VDD   | -   | Vdd          | V     | For entire VDD range                                                       |  |  |  |
|        |                                    |                                                                      | + 0.8V    |     |              |       |                                                                            |  |  |  |
| D041   | with Schmitt Trigger buffer        |                                                                      | 0.8VDD    | -   | Vdd          | v     | For entire VDD range                                                       |  |  |  |
| D042   | MCLR                               |                                                                      | 0.8VDD    | -   | VDD          | v     | i ei einite i bb i ange                                                    |  |  |  |
| D042A  | OSC1 (XT, HS and LP)               |                                                                      | 0.7VDD    | -   | VDD          | v     | Note1                                                                      |  |  |  |
| D043   | OSC1 (in RC mode)                  |                                                                      | 0.9VDD    | -   | VDD          | v     |                                                                            |  |  |  |
| D070   | PORTB weak pull-up current         | IPURB                                                                | 50        | 250 | 400          | μA    | VDD = 5V, VPIN = VSS                                                       |  |  |  |
|        | Input Leakage Current (Notes 2, 3) |                                                                      |           |     |              |       |                                                                            |  |  |  |
| D060   | I/O ports                          | lı∟                                                                  | -         | -   | ±1           | μA    | Vss $\leq$ VPIN $\leq$ VDD, Pin at hi-                                     |  |  |  |
|        |                                    |                                                                      |           |     |              |       | impedance                                                                  |  |  |  |
| D061   | MCLR, RA4/T0CKI                    |                                                                      | -         | -   | ±5           | μA    | $Vss \le VPIN \le VDD$                                                     |  |  |  |
| D063   | OSC1                               |                                                                      | -         | -   | ±5           | μΑ    | $Vss \leq VPIN \leq VDD, XT, HS and$                                       |  |  |  |
|        |                                    |                                                                      |           |     |              |       | LP osc configuration                                                       |  |  |  |
|        | Output Low Voltage                 |                                                                      |           |     |              |       |                                                                            |  |  |  |
| D080   | I/O ports                          | Vol                                                                  | -         | -   | 0.6          | V     | IOL = 8.5 mA, VDD = 4.5V,                                                  |  |  |  |
|        |                                    |                                                                      |           |     |              |       | -40°C to +85°C                                                             |  |  |  |
| D080A  |                                    |                                                                      | -         | -   | 0.6          | V     | IOL = 7.0  mA,  VDD = 4.5 V,                                               |  |  |  |
|        |                                    |                                                                      |           |     |              |       | -40°C to +125°C                                                            |  |  |  |
| D083   | OSC2/CLKOUT (RC osc config)        |                                                                      | -         | -   | 0.6          | V     | IOL = 1.6 mA, VDD = 4.5V,                                                  |  |  |  |
|        |                                    |                                                                      |           |     |              |       | -40°C to +85°C                                                             |  |  |  |
| D083A  |                                    |                                                                      | -         | -   | 0.6          | V     | IOL = 1.2  mA,  VDD = 4.5 V,                                               |  |  |  |
|        |                                    |                                                                      |           |     |              |       | -40°C to +125°C                                                            |  |  |  |

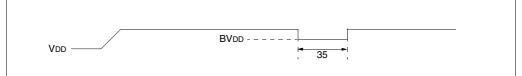
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.


\*

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

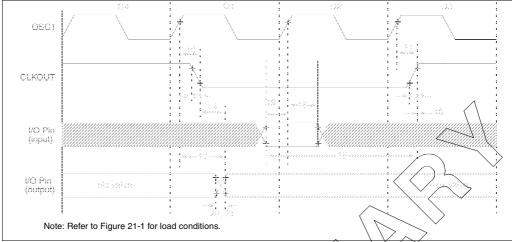


### FIGURE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

### FIGURE 20-5: BROWN-OUT RESET TIMING



### TABLE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS


| Parameter<br>No. | Sym   | Characteristic                                   | Min | Тур†      | Max | Units | Conditions                |
|------------------|-------|--------------------------------------------------|-----|-----------|-----|-------|---------------------------|
| 30               | TmcL  | MCLR Pulse Width (low)                           | 2   | —         |     | μs    | VDD = 5V, -40°C to +125°C |
| 31*              | Twdt  | Watchdog Timer Time-out Period<br>(No Prescaler) | 7   | 18        | 33  | ms    | VDD = 5V, -40°C to +125°C |
| 32               | Tost  | Oscillation Start-up Timer Period                | -   | 1024 Tosc |     | _     | TOSC = OSC1 period        |
| 33*              | Tpwrt | Power-up Timer Period                            | 28  | 72        | 132 | ms    | VDD = 5V, -40°C to +125°C |
| 34               | Tioz  | I/O Hi-impedance from MCLR Low or WDT reset      |     | _         | 2.1 | μs    |                           |
| 35               | TBOR  | Brown-out Reset Pulse Width                      | 100 | —         |     | μs    | $V$ DD $\leq$ BVDD (D005) |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

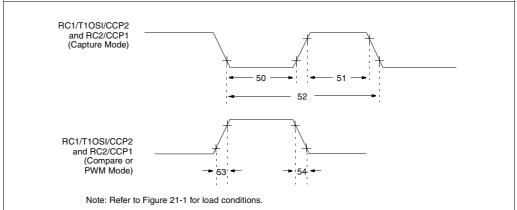
### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

### FIGURE 21-3: CLKOUT AND I/O TIMING



| TABLE 21-3: CLKOUT AND I/O TIMING F | REQUIREMENTS |
|-------------------------------------|--------------|
|-------------------------------------|--------------|

|       |             | 1                                             |                                      | $\sim \rightarrow$        | / /          |             |       |            |
|-------|-------------|-----------------------------------------------|--------------------------------------|---------------------------|--------------|-------------|-------|------------|
| Param | Sym         | Characteristic                                | <                                    | Min                       | Typt         | ∨ Max       | Units | Conditions |
| No.   |             |                                               |                                      |                           | $\checkmark$ |             |       |            |
| 10*   | TosH2ckL    | OSC1↑ to CLKOUT↓                              |                                      | )<br>/                    | 75           | 200         | ns    | Note 1     |
| 11*   | TosH2ckH    | OSC1↑ to CLKOUT↑                              |                                      | $\backslash - \checkmark$ | 75           | 200         | ns    | Note 1     |
| 12*   | TckR        | CLKOUT rise time                              | $\sim 1 M /$                         | $\searrow$                | 35           | 100         | ns    | Note 1     |
| 13*   | TckF        | CLKOUT fall time                              | $\sum$                               | > -                       | 35           | 100         | ns    | Note 1     |
| 14*   | TckL2ioV    | CLKOUT $\downarrow$ to Port out valid $\land$ | /    /                               | —                         | —            | 0.5TCY + 20 | ns    | Note 1     |
| 15*   | TioV2ckH    | Port in valid before CLKOUT                   | $///\sim$                            | Tosc + 200                | —            |             | ns    | Note 1     |
| 16*   | TckH2iol    | Port in hold after CLKOUT ↑                   | $\overline{\langle \langle \rangle}$ | 0                         | —            |             | ns    | Note 1     |
| 17*   | TosH2ioV    | OSC1 <sup>↑</sup> (Q1 cycle) to Port out val  | id 🔪                                 | _                         | 50           | 150         | ns    |            |
| 18*   | TosH2ioI    | OSC1↑ (Q2 cycle) to Port input                | PIC16CR63/R65                        | 100                       | —            |             | ns    |            |
|       |             | invalid (I/O in hold time)                    | PIC16LCR63/R65                       | 200                       | —            |             | ns    |            |
| 19*   | TioV2osH    | Port input valid to OSC11 (I/Q in             | setup time)                          | 0                         | —            |             | ns    |            |
| 20*   | TioR        | Port output rise time                         | PIC16CR63/R65                        | _                         | 10           | 40          | ns    |            |
|       |             | $\frown$                                      | PIC16LCR63/R65                       | —                         | —            | 80          | ns    |            |
| 21*   | TioF        | Port output fall time                         | PIC16CR63/R65                        | _                         | 10           | 40          | ns    |            |
|       | $\langle$   | $\langle \checkmark \land \rangle$            | PIC16LCR63/R65                       | _                         | —            | 80          | ns    |            |
| 22††* | Tinp        | INT pin high or low time                      | •                                    | Тсү                       | —            | -           | ns    |            |
| 23††* | Trbp        | RB7:RB4 change INT high or low                | time                                 | Тсү                       | —            | _           | ns    |            |
| * 1   | hose narang | eters are characterized but not test          | her                                  |                           |              |             |       |            |


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t† These parameters are asynchronous events not related to any internal clock edge.

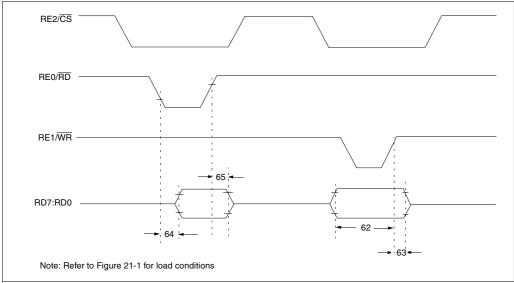
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67



### FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

### TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)


| Param<br>No. | Sym  | Characteristic   |                 |                        | Min                   | Тур† | Max | Units | Conditions                         |
|--------------|------|------------------|-----------------|------------------------|-----------------------|------|-----|-------|------------------------------------|
| 50*          | TccL | CCP1 and CCP2    | No Prescaler    |                        | 0.5TCY + 20           | —    | _   | ns    |                                    |
|              |      | input low time   | With Prescaler  | PIC16CR63/R65          | 10                    | —    | —   | ns    |                                    |
|              |      |                  |                 | PIC16LCR63/R65         | 20                    | -    | _   | ns    |                                    |
| 51*          | TccH | CCP1 and CCP2    | No Prescaler    |                        | 0.5TCY + 20           | —    | —   | ns    |                                    |
|              |      | input high time  | With Prescaler  | PIC16CR63/R65          | 10                    | _    | _   | ns    |                                    |
|              |      |                  |                 | PIC16LCR63/R65         | 20                    | -    | _   | ns    |                                    |
| 52*          | TccP | CCP1 and CCP2 ir | put period      |                        | <u>3Tcy + 40</u><br>N | -    | —   | ns    | N = prescale value<br>(1,4, or 16) |
| 53*          | TccR | CCP1 and CCP2 o  | utput rise time | PIC16CR63/R65          | —                     | 10   | 25  | ns    |                                    |
|              |      |                  |                 | PIC16LCR63/R65         | _                     | 25   | 45  | ns    |                                    |
| 54*          | TccF | CCP1 and CCP2 o  | utput fall time | PIC16 <b>CR</b> 63/R65 | —                     | 10   | 25  | ns    |                                    |
|              |      |                  |                 | PIC16LCR63/R65         | —                     | 25   | 45  | ns    |                                    |

\* These parameters are characterized but not tested.

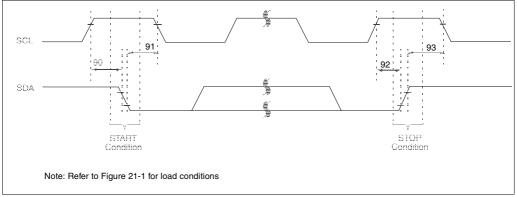
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

### FIGURE 21-8: PARALLEL SLAVE PORT TIMING (PIC16CR65)



### TABLE 21-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16CR65)


| Sym      | Characteristic                                                                             |                                                                                                                                                                  |                                                                                                                                                                                                          | Тур†                                                                                                                                                                                                | Max                                                                                                                                                                                                                                                                                                                                                  | Units                                                                                                                                                                                                                                                                                                                                                         | Conditions                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TdtV2wrH | Data in valid before $\overline{WR}^{\uparrow}$ or $\overline{CS}^{\uparrow}$ (setup time) |                                                                                                                                                                  | 20                                                                                                                                                                                                       | _                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                    | ns                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TwrH2dtl |                                                                                            | PIC16 <b>CR</b> 65                                                                                                                                               | 20                                                                                                                                                                                                       | _                                                                                                                                                                                                   | —                                                                                                                                                                                                                                                                                                                                                    | ns                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | time)                                                                                      | PIC16 <b>LCR</b> 65                                                                                                                                              | 35                                                                                                                                                                                                       | —                                                                                                                                                                                                   | —                                                                                                                                                                                                                                                                                                                                                    | ns                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TrdL2dtV | $\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid                  |                                                                                                                                                                  | -                                                                                                                                                                                                        | —                                                                                                                                                                                                   | 80                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TrdH2dtl | $\overline{RD}\uparrow$ or $\overline{CS}\uparrow$ to data–out invalid                     |                                                                                                                                                                  | 10                                                                                                                                                                                                       | —                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | TdtV2wrH<br>TwrH2dtl<br>TrdL2dtV                                                           | TdtV2wrH     Data in valid before WR↑ or CS↑ (setu       TwrH2dtl     WR↑ or CS↑ to data-in invalid (hold time)       TrdL2dtV     RD↓ and CS↓ to data-out valid | TdtV2wrH     Data in valid before WR↑ or CS↑ (setup time)       TwrH2dtl     WR↑ or CS↑ to data-in invalid (hold time)       PIC16CR65       PIC16LCR65       TrdL2dtV     RD↓ and CS↓ to data-out valid | TdtV2wrH     Data in valid before WR↑ or CS↑ (setup time)     20       TwrH2dtl     WR↑ or CS↑ to data-in invalid (hold time)     PIC16CR65     20       TrdL2dtV     RD↓ and CS↓ to data-out valid | TdtV2wrH     Data in valid before $\overline{WR}^{\uparrow}$ or $\overline{CS}^{\uparrow}$ (setup time)     20        TwrH2dtl $\overline{WR}^{\uparrow}$ or $\overline{CS}^{\uparrow}$ to data-in invalid (hold time)     PIC16 <b>CR</b> 65     20        TrdL2dtV $\overline{RD}^{\downarrow}$ and $\overline{CS}^{\downarrow}$ to data-out valid | TdtV2wrH     Data in valid before $\overline{WR}^{\uparrow}$ or $\overline{CS}^{\uparrow}$ (seture time)     20        TwrH2dtl $\overline{WR}^{\uparrow}$ or $\overline{CS}^{\uparrow}$ to data-in invalid (hold time)     PIC16 <b>CR</b> 65     20        TrdL2dtV $\overline{RD}_{\downarrow}$ and $\overline{CS}_{\downarrow}$ to data-out valid      80 | TdtV2wrH       Data in valid before $\overline{WR}$ or $\overline{CS}$ (setup time)       20        ns         TwrH2dtl $\overline{WR}$ or $\overline{CS}$ to data-in invalid (hold time)       PIC16 <b>CR</b> 65       20        ns         TrdL2dtV $\overline{RD}$ and $\overline{CS}$ to data-out valid        ns       ns         TrdL2dtV $\overline{RD}$ and $\overline{CS}$ to data-out valid         ns |

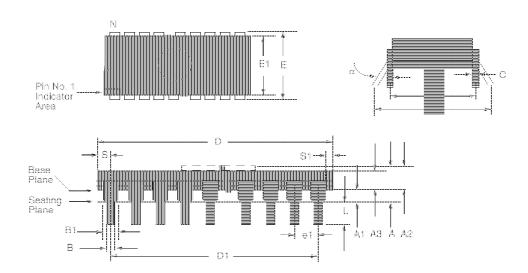
These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

### FIGURE 21-10: I<sup>2</sup>C BUS START/STOP BITS TIMING




#### I<sup>2</sup>C BUS START/STOP BITS REQUIREMENTS **TABLE 21-9:**

| Parameter<br>No. | Sym     | Characteristic  |              | Min  | Тур | Мах | Units | Conditions                                           |
|------------------|---------|-----------------|--------------|------|-----|-----|-------|------------------------------------------------------|
| 90*              | TSU:STA | START condition | 100 kHz mode | 4700 | —   | —   | ns    | Only relevant for repeated START                     |
|                  |         | Setup time      | 400 kHz mode | 600  | —   | —   | 113   | condition                                            |
| 91*              | THD:STA | START condition | 100 kHz mode | 4000 | —   | —   | ns    | After this period the first clock pulse is generated |
|                  |         | Hold time       | 400 kHz mode | 600  | —   | —   |       |                                                      |
| 92*              | TSU:STO | STOP condition  | 100 kHz mode | 4700 | —   | —   | -     |                                                      |
|                  |         | Setup time      | 400 kHz mode | 600  | —   | —   | ns    |                                                      |
| 93               | THD:STO | STOP condition  | 100 kHz mode | 4000 | —   | —   | -     |                                                      |
|                  |         | Hold time       | 400 kHz mode | 600  | —   | —   | ns    |                                                      |

These parameters are characterized but not tested.



Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Package Group: Ceramic CERDIP Dual In-Line (CDP) |        |        |           |       |       |           |
|--------------------------------------------------|--------|--------|-----------|-------|-------|-----------|
| Millimeters                                      |        |        |           |       |       |           |
| Symbol                                           | Min    | Мах    | Notes     | Min   | Мах   | Notes     |
| α                                                | 0°     | 10°    |           | 0°    | 10°   |           |
| А                                                | 4.318  | 5.715  |           | 0.170 | 0.225 |           |
| A1                                               | 0.381  | 1.778  |           | 0.015 | 0.070 |           |
| A2                                               | 3.810  | 4.699  |           | 0.150 | 0.185 |           |
| A3                                               | 3.810  | 4.445  |           | 0.150 | 0.175 |           |
| В                                                | 0.355  | 0.585  |           | 0.014 | 0.023 |           |
| B1                                               | 1.270  | 1.651  | Typical   | 0.050 | 0.065 | Typical   |
| С                                                | 0.203  | 0.381  | Typical   | 0.008 | 0.015 | Typical   |
| D                                                | 51.435 | 52.705 |           | 2.025 | 2.075 |           |
| D1                                               | 48.260 | 48.260 | Reference | 1.900 | 1.900 | Reference |
| E                                                | 15.240 | 15.875 |           | 0.600 | 0.625 |           |
| E1                                               | 12.954 | 15.240 |           | 0.510 | 0.600 |           |
| e1                                               | 2.540  | 2.540  | Reference | 0.100 | 0.100 | Reference |
| eA                                               | 14.986 | 16.002 | Typical   | 0.590 | 0.630 | Typical   |
| eB                                               | 15.240 | 18.034 |           | 0.600 | 0.710 |           |
| L                                                | 3.175  | 3.810  |           | 0.125 | 0.150 |           |
| Ν                                                | 40     | 40     |           | 40    | 40    |           |
| S                                                | 1.016  | 2.286  |           | 0.040 | 0.090 |           |
| S1                                               | 0.381  | 1.778  |           | 0.015 | 0.070 |           |

| Registers                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CCF                             | P1CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCF                             | 2CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 20, 20                                                                                           | , 00,                                                                                  | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  | , 30,                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CCF                             | PR1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04                       | 00.00                                                                                            | ~~                                                                                     | ~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CCE                             | Summary<br>PR1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 26, 28                                                                                           | , 30,                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 001                             | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          | 26. 28                                                                                           | . 30.                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CCF                             | °R2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                        | -, -                                                                                             | , ,                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  | , 30,                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CCF                             | PR2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FSR                             | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  | , 30,                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FSH                             | Indirect Addressing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                  |                                                                                        | <u>1</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IND                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,,                       | ,                                                                                                | ,,                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Indirect Addressing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 24, 26,                | 28, 30                                                                                           | , 32,                                                                                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INTO                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                                                                                  |                                                                                        | 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OPT                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 20, 00                                                                                           | , 02,                                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 25, 27,                | 29, 31                                                                                           | , 33,                                                                                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PCL                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                                                                                  |                                                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                 | Cummon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCI                             | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCL                             | ATH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 24, 26,                | 28, 30                                                                                           | , 32,                                                                                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PCL                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24, 26,                  | 28, 30                                                                                           | , 32,                                                                                  | 34<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PCL                             | ATH<br>Section<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24, 26,                  | 28, 30                                                                                           | , 32,                                                                                  | 34<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                 | ATH<br>Section<br>Summary<br>NN<br>Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24, 26,<br>24, 26,       | 28, 30<br>28, 30                                                                                 | , 32,<br>, 32,                                                                         | 34<br>48<br>34<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 | ATH<br>Section<br>Summary<br>NN<br>Diagram<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24, 26,<br>24, 26,       | 28, 30<br>28, 30                                                                                 | , 32,<br>, 32,                                                                         | 34<br>48<br>34<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PCC                             | ATH<br>Section<br>Summary<br>N<br>Diagram<br>Section<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24, 26,<br>24, 26,       | 28, 30<br>28, 30                                                                                 | , 32,<br>, 32,                                                                         | 34<br>48<br>34<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                 | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29                                                                       | , 32,<br>, 32,<br>, 31,                                                                | 34<br>48<br>34<br>47<br>47<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PCC                             | ATH<br>Section<br>Summary<br>N<br>Diagram<br>Section<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 24, 26,<br>24, 26,<br> | 28, 30<br>28, 30<br>27, 29                                                                       | , 32,<br>, 32,<br>, 31,                                                                | 34<br>48<br>34<br>47<br>47<br>33<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PCC                             | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29                                                                       | , 32,<br>, 32,<br>, 31,                                                                | 34<br>48<br>34<br>47<br>47<br>33<br>40<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PCC                             | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Summary<br>Section<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 24, 26,<br>24, 26,<br> | 28, 30<br>28, 30<br>27, 29<br>27, 29                                                             | , 32,<br>, 32,<br>, 31,<br>, 31,                                                       | 34<br>48<br>34<br>47<br>33<br>40<br>38<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PCC                             | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Section<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 24, 26,<br>24, 26,<br> | 28, 30<br>28, 30<br>27, 29<br>27, 29                                                             | , 32,<br>, 32,<br>, 31,<br>, 31,                                                       | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             |
| PCC                             | ATH<br>Section<br>Diagram<br>Section<br>Summary<br>Diagram<br>Summary<br>Diagram<br>Diagram<br>Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29                                                             | , 32,<br>, 32,<br>, 31,<br>, 31,                                                       | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                 |
| PCC<br>PIE <sup>-</sup><br>PIE2 | ATH<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29                                                             | , 32,<br>, 32,<br>, 31,<br>, 31,                                                       | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                 |
| PCC                             | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29                                                   | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,                                              | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                 |
| PCC<br>PIE <sup>-</sup><br>PIE2 | ATH<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29                                                   | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,                                              | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>44</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |
| PCC<br>PIE <sup>-</sup><br>PIE2 | ATH<br>SectionSummary<br>DiagramSectionSummary<br>DiagramSummary<br>Summary<br>Summary<br>Diagram<br>Summary<br>Summary<br>Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>27, 29                                         | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,                                              | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>45</li> <li>44</li> <li>41</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| PCC<br>PIE <sup>-</sup><br>PIE2 | ATH<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>27, 29<br>26, 28                               | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 31,                            | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>44</li> <li>41</li> <li>32</li> </ul>                                                                                                                                                                                                                                                                                                                                     |
| PCC<br>PIE<br>PIE<br>PIR        | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28                                         | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,                            | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>44</li> <li>41</li> <li>32</li> <li>46</li> </ul> |
| PCC<br>PIE<br>PIE<br>PIR        | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28                                         | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,                            | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>44</li> <li>41</li> <li>32</li> <li>46</li> <li>46</li> <li>46</li> </ul>                                                                                                                                                                                                                                                                         |
| PIE<br>PIE<br>PIR               | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28                                         | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,                            | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>44</li> <li>41</li> <li>32</li> <li>46</li> <li>46</li> <li>46</li> </ul>                                                                                                                                                                                                                                                                         |
| PCC<br>PIE<br>PIE<br>PIR        | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28<br>26, 28                               | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,                            | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>45</li> <li>46</li> <li>46</li> <li>32</li> </ul>                                                                                                                                                                                                                                                             |
| PIE<br>PIE<br>PIR               | ATH<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28<br>26, 28                               | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 30,                                     | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>45</li> <li>46</li> <li>32</li> <li>51</li> </ul>                                                                                                                                                                                                                                                                                                 |
| PIE<br>PIE<br>PIR               | ATH<br>SectionSummary<br>DiagramSectionSummary<br>SummarySectionSummary<br>SectionSummary<br>DiagramSectionSummary<br>DiagramSectionSummary<br>DiagramSectionSummary<br>Summary<br>2<br>DiagramSectionSummary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28<br>26, 28<br>26, 28                     | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,<br>, 30,                   | 34<br>48<br>34<br>47<br>33<br>40<br>38<br>33<br>45<br>45<br>33<br>45<br>45<br>33<br>44<br>41<br>32<br>46<br>46<br>32<br>51<br>32                                                                                                                                                                                                                                                                                                                                                                                                               |
| PIE<br>PIE<br>PIR<br>PIR        | ATH<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Comparent<br>Section<br>Summary<br>Comparent<br>Section<br>Summary<br>Comparent<br>Section<br>Summary<br>Comparent<br>Section<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Section<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Comparent<br>Summary<br>Summary<br>Summary<br>Comparent<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summary<br>Summar                                                               | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28<br>26, 28<br>26, 28                     | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,<br>, 30,                   | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>33</li> <li>45</li> <li>433</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>44</li> <li>41</li> <li>32</li> <li>46</li> <li>46</li> <li>32</li> <li>51</li> <li>32</li> <li>53</li> </ul>                                                                                                                                                                                                                        |
| PIE<br>PIE<br>PIR<br>PIR<br>POF | ATH<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28<br>26, 28<br>26, 28                     | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,<br>, 30,                   | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>33</li> <li>45</li> <li>433</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>45</li> <li>33</li> <li>44</li> <li>41</li> <li>32</li> <li>46</li> <li>46</li> <li>32</li> <li>51</li> <li>32</li> <li>53</li> </ul>                                                                                                                                                                                                                        |
| PIE<br>PIE<br>PIR<br>PIR        | ATH<br>Section<br>Summary<br>N<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Diagram<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Comparison<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Summary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Sumary<br>Section<br>Section<br>Sumary<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section<br>Section | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28<br>26, 28<br>26, 28<br>26, 28<br>28, 30 | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,<br>, 30,<br>, 30,          | 34<br>48<br>34<br>47<br>33<br>40<br>38<br>33<br>45<br>45<br>33<br>44<br>45<br>33<br>44<br>45<br>33<br>45<br>45<br>33<br>45<br>51<br>32<br>53<br>34                                                                                                                                                                                                                                                                                                                                                                                             |
| PIE<br>PIE<br>PIR<br>PIR<br>POF | ATH<br>Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24, 26,<br>24, 26,<br>   | 28, 30<br>28, 30<br>27, 29<br>27, 29<br>27, 29<br>26, 28<br>26, 28<br>26, 28<br>26, 28<br>28, 30 | , 32,<br>, 32,<br>, 31,<br>, 31,<br>, 31,<br>, 31,<br>, 30,<br>, 30,<br>, 30,<br>, 30, | <ul> <li>34</li> <li>48</li> <li>34</li> <li>47</li> <li>47</li> <li>33</li> <li>40</li> <li>38</li> <li>33</li> <li>45</li> <li>45</li> <li>33</li> <li>45</li> <li>46</li> <li>32</li> <li>51</li> <li>32</li> <li>53</li> <li>34</li> <li>55</li> </ul>                                                                                                                                                                                                                                                                                     |

|   | PODID                                 |
|---|---------------------------------------|
|   | PORTD                                 |
|   | Section                               |
|   | Summary 28, 30, 32                    |
| F | PORTE                                 |
|   | Section                               |
|   | Summary                               |
| F | PR2                                   |
|   | Summary                               |
|   |                                       |
| 1 | RCREG                                 |
|   | Summary                               |
| F | RCSTA                                 |
|   | Diagram 106                           |
|   | Summary                               |
| 6 | SPBRG                                 |
| ` | Summary                               |
|   | •                                     |
|   | SSPBUF                                |
|   | Section 86                            |
|   | Summary                               |
| 5 | SSPCON                                |
|   | Diagram                               |
|   | Summary                               |
|   | · · · · · · · · · · · · · · · · · · · |
|   | SSPSR                                 |
|   | Section 86                            |
| 5 | SSPSTAT 89                            |
|   | Diagram                               |
|   | Section                               |
|   | Summary                               |
|   | · · · · · · · · · · · · · · · · · · · |
|   | STATUS                                |
|   | Diagram                               |
|   | Section                               |
|   | Summary                               |
| ٦ | F1CON                                 |
|   | Diagram                               |
|   |                                       |
|   | Section                               |
|   | Summary 24, 26, 28, 30, 32            |
| 1 | F2CON                                 |
|   | Diagram75                             |
|   | Section                               |
|   | Summary                               |
| - | FMR0                                  |
|   |                                       |
| _ | Summary 24, 26, 28, 30, 32, 34        |
|   | ſMR1H                                 |
|   | Summary 24, 26, 28, 30, 32            |
| 1 | rmr1L                                 |
|   | Summary 24, 26, 28, 30, 32            |
| ٦ | ۲MR2                                  |
|   | Summary                               |
| _ | · · · · · · · · · · · · · · · · · · · |
|   | <b>FRISA</b>                          |
|   | Section                               |
|   | Summary 25, 27, 29, 31, 33            |
| ٦ | <b>FRISB</b>                          |
|   | Section                               |
|   | Summary                               |
| - | · · · · · ·                           |
|   | TRISC                                 |
|   | Section                               |
|   | Summary 25, 27, 29, 31, 33            |
| ٦ | FRISD                                 |
|   | Section                               |
|   | Summary                               |
| - | rRISE                                 |
|   |                                       |
|   | Diagram                               |
|   | Section                               |
|   | Summary                               |
| 1 | TXREG                                 |
|   | Summary                               |
|   |                                       |

| Table 18-1:                  | Cross Reference of Device Specs                                      |
|------------------------------|----------------------------------------------------------------------|
|                              | for Oscillator Configurations and                                    |
|                              | Frequencies of Operation                                             |
|                              | (Commercial Devices)                                                 |
| Table 18-2:                  | External Clock Timing                                                |
| Table 19.0                   | Requirements                                                         |
| Table 18-3:                  | CLKOUT and I/O Timing<br>Requirements190                             |
| Table 18-4:                  | Reset, Watchdog Timer,                                               |
| 1000 10 4.                   | Oscillator Start-up Timer and                                        |
|                              | Power-up Timer Requirements                                          |
| Table 18-5:                  | Timer0 and Timer1 External                                           |
|                              | Clock Requirements 192                                               |
| Table 18-6:                  | Capture/Compare/PWM                                                  |
|                              | Requirements (CCP1) 193                                              |
| Table 18-7:                  | Parallel Slave Port Requirements (PIC16C64)                          |
|                              | 194                                                                  |
| Table 18-8:                  | SPI Mode Requirements 195                                            |
| Table 18-9:                  | I <sup>2</sup> C Bus Start/Stop Bits                                 |
| Table 10 10.                 | Requirements                                                         |
| Table 18-10:                 | I <sup>2</sup> C Bus Data Requirements                               |
| Table 19-1:                  | Cross Reference of Device Specs<br>for Oscillator Configurations and |
|                              | Frequencies of Operation                                             |
|                              | (Commercial Devices)                                                 |
| Table 19-2:                  | External Clock Timing                                                |
| 10010 10 21                  | Requirements                                                         |
| Table 19-3:                  | CLKOUT and I/O Timing                                                |
|                              | Requirements                                                         |
| Table 19-4:                  | Reset, Watchdog Timer,                                               |
|                              | Oscillator Start-up Timer,                                           |
|                              | Power-up Timer, and Brown-out                                        |
|                              | Reset Requirements                                                   |
| Table 19-5:                  | Timer0 and Timer1 External                                           |
|                              | Clock Requirements                                                   |
| Table 19-6:                  | Capture/Compare/PWM<br>Requirements (CCP1)                           |
| Table 19-7:                  | Parallel Slave Port Requirements                                     |
|                              | (PIC16C64A/R64)210                                                   |
| Table 19-8:                  | SPI Mode Requirements                                                |
| Table 19-9:                  | I <sup>2</sup> C Bus Start/Stop Bits                                 |
|                              | Requirements                                                         |
| Table 19-10:                 | I <sup>2</sup> C Bus Data Requirements                               |
| Table 20-1:                  | Cross Reference of Device Specs                                      |
|                              | for Oscillator Configurations and                                    |
|                              | Frequencies of Operation                                             |
|                              | (Commercial Devices)                                                 |
| Table 20-2:                  | External Clock Timing                                                |
| Table 00.2                   | Requirements                                                         |
| Table 20-3:                  | CLKOUT and I/O Timing<br>Requirements222                             |
| Table 20-4:                  | Reset, Watchdog Timer,                                               |
| 10010 20 1.                  | Oscillator Start-up Timer and                                        |
|                              | Power-up Timer Requirements                                          |
| Table 20-5:                  | Timer0 and Timer1 External                                           |
|                              | Clock Requirements                                                   |
| Table 20-6:                  | Capture/Compare/PWM                                                  |
|                              | Requirements (CCP1 and CCP2)225                                      |
| Table 20-7:                  | Parallel Slave Port Requirements                                     |
| Table 20-8:                  | SPI Mode Requirements                                                |
| Table 20-9:                  | I <sup>2</sup> C Bus Start/Stop Bits                                 |
|                              | Requirements                                                         |
| Table 20-10:<br>Table 20-11: | i <sup>2</sup> C Bus Data Requirements                               |
| 1 abie 20-11.                | Requirements                                                         |
|                              | 104410110113                                                         |

| Table 20-12:      | USART Synchronous Receive                            |
|-------------------|------------------------------------------------------|
| Table 21-1:       | Requirements                                         |
|                   | Specs for Oscillator Configurations                  |
|                   | and Frequencies of Operation                         |
| <b>T</b> 11 01 0  | (Commercial Devices)                                 |
| Table 21-2:       | External Clock Timing                                |
| Table 21-3:       | Requirements                                         |
| Table 21-5.       | Requirements                                         |
| Table 21-4:       | Reset, Watchdog Timer, Oscillator                    |
|                   | Start-up Timer, Power-up Timer, and                  |
|                   | Brown-out Reset Requirements 239                     |
| Table 21-5:       | Timer0 and Timer1 External                           |
| Table of a        | Clock Requirements                                   |
| Table 21-6:       | Capture/Compare/PWM                                  |
| Table 21-7:       | Requirements (CCP1 and CCP2)                         |
|                   | (PIC16C65A)                                          |
| Table 21-8:       | SPI Mode Requirements                                |
| Table 21-9:       | I <sup>2</sup> C Bus Start/Stop Bits                 |
|                   | Requirements                                         |
| Table 21-10:      | I <sup>2</sup> C Bus Data Requirements 245           |
| Table 21-11:      | USART Synchronous                                    |
| Table of to       | Transmission Requirements                            |
| Table 21-12:      | USART Synchronous Receive<br>Requirements            |
| Table 22-1:       | Cross Reference of Device Specs                      |
|                   | for Oscillator Configurations and                    |
|                   | Frequencies of Operation                             |
|                   | (Commercial Devices)                                 |
| Table 22-2:       | External Clock Timing                                |
|                   | Requirements                                         |
| Table 22-3:       | CLKOUT and I/O Timing                                |
| Table 22-4:       | Requirements                                         |
| Table 22-4.       | Reset, Watchdog Timer,<br>Oscillator Start-up Timer, |
|                   | Power-up Timer, and Brown-out                        |
|                   | Reset Requirements                                   |
| Table 22-5:       | Timer0 and Timer1 External                           |
|                   | Clock Requirements 256                               |
| Table 22-6:       | Capture/Compare/PWM                                  |
| T-1-1-00 7        | Requirements (CCP1 and CCP2) 257                     |
| Table 22-7:       | Parallel Slave Port Requirements                     |
| Table 22-8:       | (PIC16CR65)258<br>SPI Mode Requirements              |
| Table 22-9:       | I <sup>2</sup> C Bus Start/Stop Bits                 |
|                   | Requirements                                         |
| Table 22-10:      | I <sup>2</sup> C Bus Data Requirements 261           |
| Table 22-11:      | USART Synchronous Transmission                       |
| <b>T</b> 11 00 10 | Requirements                                         |
| Table 22-12:      | USART Synchronous Receive                            |
| Table 23-1:       | Requirements                                         |
| 14510 20 11       | for Oscillator Configurations and                    |
|                   | Frequencies of Operation                             |
|                   | (Commercial Devices) 263                             |
| Table 23-2:       | External Clock Timing                                |
| Table CO. C       | Requirements                                         |
| Table 23-3:       | CLKOUT and I/O Timing<br>Requirements 270            |
| Table 23-4:       | Reset, Watchdog Timer,                               |
| . 4510 20 7.      | Oscillator Start-up Timer,                           |
|                   | Power-up Timer, and Brown-out                        |
|                   | Reset Requirements 271                               |
|                   |                                                      |