

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc64a-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.

PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

The **PIC16C61** device has 36 bytes of RAM and 13 I/O pins. In addition a timer/counter is available.

The **PIC16C62/62A/R62** devices have 128 bytes of RAM and 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPITM) or the two-wire Inter-Integrated Circuit (I²C) bus.

The **PIC16C63/R63** devices have 192 bytes of RAM, while the **PIC16C66** has 368 bytes. All three devices have 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I^2C) bus. The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also know as a Serial Communications Interface or SCI.

The **PIC16C64/64A/R64** devices have 128 bytes of RAM and 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, one Capture/Compare/PWM module and one serial port. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. An 8-bit Parallel Slave Port is also provided.

The **PIC16C65/65A/R65** devices have 192 bytes of RAM, while the **PIC16C67** has 368 bytes. All four devices have 33 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two Capture/Compare/PWM modules and two serial ports. The Synchronous Serial Port can be configured as either a 3-wire Serial Peripheral Interface (SPI) or the two-wire Inter-Integrated Circuit (I²C) bus. The Universal Synchronous Asynchronous Receiver Transmit-

ter (USART) is also known as a Serial Communications Interface or SCI. An 8-bit Parallel Slave Port is also provided.

The PIC16C6X device family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) mode offers a power saving mode. The user can wake the chip from SLEEP through several external and internal interrupts, and resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

A UV erasable CERDIP packaged version is ideal for code development, while the cost-effective One-Time-Programmable (OTP) version is suitable for production in any volume.

The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control to low-power remote sensors, keyboards and telecom processors. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high performance, ease-of-use, and I/O flexibility make the PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions, and co-processor applications).

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X family of microcontrollers will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for PIC16C5X can be easily ported to PIC16CXX family of devices (Appendix B).

1.2 Development Support

PIC16C6X devices are supported by the complete line of Microchip Development tools.

Please refer to Section 15.0 for more details about Microchip's development tools.

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

		PIC16C61	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
	EPROM Program Memory (x14 words)	1K	2К	—	4K	_
Memory	ROM Program Memory (x14 words)		_	2К	—	4K
	Data Memory (bytes)	36	128	128	192	192
	Timer Module(s)	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)	_	1	1	2	2
	Serial Port(s) (SPI/I ² C, USART)	_	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port	_	_	—	_	_
	Interrupt Sources	3	7	7	10	10
	I/O Pins	13	22	22	22	22
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SO	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC

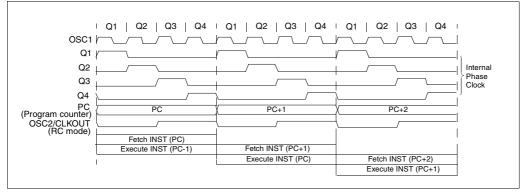
		PIC16C64A	PIC16CR64	PIC16C65A	PIC16CR65	PIC16C66	PIC16C67
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2К	_	4K	_	8K	8K
Memory	ROM Program Memory (x14 words)	—	2К	_	4K	_	_
	Data Memory (bytes)	128	128	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	1	1	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	_	Yes
	Interrupt Sources	8	8	11	11	10	11
	I/O Pins	33	33	33	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
Features	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages		40-pin DIP; 44-pin PLCC, MQFP, TQFP		40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

NOTES:

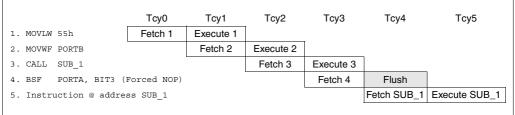
-

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clock and instruction execution flow is shown in Figure 3-5.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1).


A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-5: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.2.2 SPECIAL FUNCTION REGISTERS:

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). The registers associated with the "core" functions are described in this section and those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 4-1:	SPECIAL FUNCTION REGISTERS FOR THE PIC16C61
TADLE 4-1.	SPECIAL FUNCTION REGISTERS FOR THE PICTOCOT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)								0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						XXXX XXXX	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	_	—	—	PORTA Dat	a Latch whe	n written: PC	RTA pins wh	en read	x xxxx	u uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	-	Unimpleme	nted							—	—
08h	-	Unimpleme	nted							—	—
09h	-	Unimplemented						_	_		
0Ah ^(1,2)	PCLATH	_	_	—	Write Buffer	for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	z	DC	с	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	_	—	—	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Dat	ta Direction C	Control Regis	ster					1111 1111	1111 1111
87h	-	Unimplemented						_	—		
88h	-	Unimplemented						_	_		
89h	-	Unimpleme	nted							_	—
8Ah ^(1,2)	PCLATH	_	—	—	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u
	1	1		l	1		1			1	l

 $\label{eq:logend: condition for the set of the set of$

Shaded locations are unimplemented and read as '0'

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C61, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0	1	1	1	1		1	1	1	1	1	<u> </u>
00h ⁽¹⁾	INDF	Addressing	ddressing this location uses contents of FSR to address data memory (not a physical register)								0000 0000
01h	TMR0	Timer0 mod	dule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect dat	a memory ac	Idress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Da	ta Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins wi	nen read				xxxx xxxx	uuuu uuuu
08h	_	Unimpleme	nted							—	_
09h	—	Unimpleme	nted							—	—
0Ah ^(1,2)	PCLATH	—	—	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(5)	(5)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	_	_	—	_	_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the I	_east Signific	ant Byte of t	ne 16-bit TM	R1 register		1	xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	e 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	dule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Por	t Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	nsmit Data F	legister						0000 0000	0000 0000
1Ah	RCREG	USART Re	ceive Data R	egister						0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted							_	_

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63/R63

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The IRP and RP1 bits are reserved on the PIC16C63/R63, always maintain these bits clear.

5: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C63/R63, always maintain these bits clear.

4.2.2.4 PIE1 REGISTER

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

This register contains the individual enable bits for the peripheral interrupts.

Bit PEIE (INTCON<6>) must be set to Note: enable any peripheral interrupt.

FIGURE 4-12: PIE1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 8Ch)

RW-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—		_	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit		
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 		
bit 7-6:	Reserved:	Always ma	intain thes	e bits clear.						
bit 5-4:	Unimplem	ented: Rea	ıd as '0'							
bit 3:	 SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt 									
bit 2:	CCP1IE : C 1 = Enables 0 = Disable	s the CCP1	interrupt	bit						
bit 1:	TMR2IE : TI 1 = Enables 0 = Disable	s the TMR2	to PR2 ma	atch interru	ot					
bit 0:	TMR1IE: TI 1 = Enables 0 = Disable	s the TMR1	overflow i	nterrupt	t					

7.0 TIMER0 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

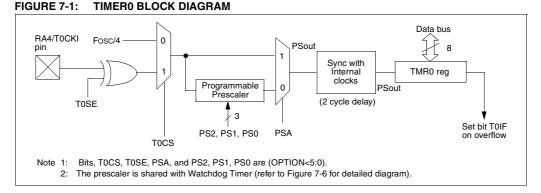
The Timer0 module has the following features:

- 8-bit timer/counter register, TMR0
 - Read and write capability
 - Interrupt on overflow from FFh to 00h
- 8-bit software programmable prescaler
- Internal or external clock select
- Edge select for external clock

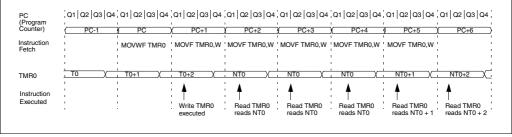
Figure 7-1 is a simplified block diagram of the Timer0 module.

Timer mode is selected by clearing bit T0CS (OPTION<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit TOCS. In this mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing bit TOSE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.


The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION<3>). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

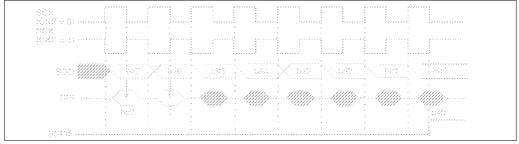
7.1 TMR0 Interrupt

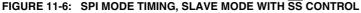

Applicable Devices

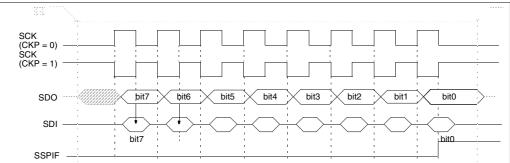
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The TMR0 interrupt is generated when the register (TMR0) overflows from FFh to 00h. This overflow sets interrupt flag bit T0IF (INTCON<2>). The interrupt can be masked by clearing enable bit T0IE (INTCON<5>). Flag bit T0IF must be cleared in software by the TImer0 interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. Figure 7-4 displays the Timer0 interrupt timing.

FIGURE 7-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALER


© 1997-2013 Microchip Technology Inc.


The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set the for synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the


point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

TABLE 11-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
SSPBUF	Synchrono	ous Serial	Port Rece	ive Buffer/	Transmit	Register			xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
TRISA	_		PORTA Da	ta Direction	Register				11 1111	11 1111
TRISC	PORTC D	ata Directi	on Regist	n Register						1111 1111
SSPSTAT	—	_	D/A	Р	S	R/W	UA	BF	00 0000	00 0000
	INTCON PIR1 PIE1 SSPBUF SSPCON TRISA TRISC	INTCON GIE PIR1 PSPIF ⁽²⁾ PIE1 PSPIE ⁽²⁾ SSPBUF Synchrond SSPCON WCOL TRISA — TRISC PORTC D	INTCON GIE PEIE PIR1 PSPIF ⁽²⁾ (3) PIE1 PSPIE ⁽²⁾ (3) SSPBUF Synchronus Serial SSPCON WCOL SSPOV TRISA — — TRISC PORTC Data Direct	INTCON GIE PEIE TOIE PIR1 PSPIF ⁽²⁾ (3) RCIF ⁽¹⁾ PIE1 PSPIE ⁽²⁾ (3) RCIE ⁽¹⁾ SSPBUF Synchron-us Serial Port Rece SSPCON WCOL SSPOV TRISA — — PORTA Da PORTA Da TRISC PORTC Data Direction Registre Porta Da Porta Da	INTCON GIE PEIE TOIE INTE PIR1 PSPIF ⁽²⁾ (3) RCIF ⁽¹⁾ TXIF ⁽¹⁾ PIE1 PSPIF ⁽²⁾ (3) RCIE ⁽¹⁾ TXIF ⁽¹⁾ PIE1 PSPIE ⁽²⁾ (3) RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPBUF Synchronous Serial Port Receive Bufferr SSPCON WCOL SSPOV SSPEN CKP TRISA — — PORTA Data Direction TRISC PORTC Data Direction Register PORTA	INTCON GIE PEIE TOIE INTE RBIE PIR1 PSPIF ⁽²⁾ (3) RCIF ⁽¹⁾ TXIF ⁽¹⁾ SSPIF PIE1 PSPIE ⁽²⁾ (3) RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPIF SSPBUF Synchron-US Serial Port Receive Buffer/Transmit SSPRON SSPCON WCOL SSPOV SSPEN CKP SSPM3 TRISA — — PORTA Data Direction Register TRISC	INTCON GIE PEIE TOIE INTE RBIE TOIF PIR1 PSPIF ⁽²⁾ (3) RCIF ⁽¹⁾ TXIF ⁽¹⁾ SSPIF CCP1IF PIE1 PSPIE ⁽²⁾ (3) RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPIE CCP1IF SSPBUF Synchronus Serial Port Receive Buffer/Transmit Register SSPR0 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 TRISA — — PORTA Data Direction Register TRISC PORTC Data Direction Register	INTCONGIEPEIETOIEINTERBIETOIFINTFPIR1PSPIF ⁽²⁾ ⁽³⁾ RCIF ⁽¹⁾ TXIF ⁽¹⁾ SSPIFCCP1IFTMR2IFPIE1PSPIE ⁽²⁾ ⁽³⁾ RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPIECCP1IETMR2IFSSPBUFSynchronus Serial Port Receive Buffer/Transmit RegisterSSPCONWCOLSSPOVSSPENCKPSSPM3SSPM2SSPM1TRISA——PORTA Data Direction RegisterTRISCPORTC Data Direction Register	INTCONGIEPEIETOIEINTERBIETOIFINTFRBIFPIR1PSPIF(2)(3)RCIF(1)TXIF(1)SSPIFCCP1IFTMR2IFTMR1IFPIE1PSPIE(2)(3)RCIE(1)TXIE(1)SSPIECCP1IETMR2IETMR1IESSPBUFSynchron-usSerial Port Receive Buffer/Transmit RegisterSSPR0SSPM2SSPM1SSPM0SSPCONWCOLSSPOVSSPENCKPSSPM3SSPM2SSPM1SSPM0TRISA——PORTA Data Direction RegisterFUNCTION RegisterFUNCTION RegisterTRISCPORTC Data Direction RegisterFUNCTION RegisterFUNCTION Register	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF 0000 000x PIR1 PSPIF ⁽²⁾ ⁽³⁾ RCIF ⁽¹⁾ TXIF ⁽¹⁾ SSPIE CCP1IE TMR2IF TMR1IE 0000 0000 PIE1 PSPIE ⁽²⁾ ⁽³⁾ RCIE ⁽¹⁾ TXIE ⁽¹⁾ SSPIE CCP1IE TMR2IF TMR1IE 0000 0000 SSPBUF Synchro

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.

Note 1: These bits are associated with the USART which is implemented on the PIC16C63/R63/65/65A/R65 only.

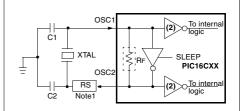
2: PSPIF and PSPIE are reserved on the PIC16C62/62A/R62/63/R63, always maintain these bits clear.

3: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

13.2 Oscillator Configurations

Applicable Devices

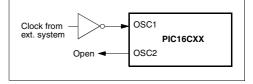
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


13.2.1 OSCILLATOR TYPES

The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor
- 13.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In LP, XT, or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 13-4). The PIC16CXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in LP, XT, or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 13-5).


FIGURE 13-4: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

See Table 13-1, Table 13-3, Table 13-2 and Table 13-4 for recommended values of C1 and C2.

- Note 1: A series resistor may be required for AT strip cut crystals.
 - 2: For the PIC16C61 the buffer is on the OSC2 pin, all other devices have the buffer on the OSC1 pin.

FIGURE 13-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

Instruction Descriptions 14.1

Add Lite	ral and	w	
[<i>label</i>] A	DDLW	k	
$0 \le k \le 25$	55		
(W) + k –	→ (W)		
C, DC, Z			
11	111x	kkkk	kkkk
added to t	he eight b	it literal 'k'	and the
1			
1			
Q1	Q2	Q3	Q4
Decode	Read literal 'k'	Process data	Write to W
After Inst	W = ruction	0x10 0x25	
	[<i>label</i>] Al $0 \le k \le 2\xi$ (W) + k - C, DC, Z 11 The conte added to the result is pl 1 1 Q1 Decode ADDLW Before In After Inst	$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	$0 \le k \le 255$ (W) + k → (W) C, DC, Z $11 111x kkkk$ The contents of the W register added to the eight bit literal 'k' result is placed in the W regist 1 1 2 2 2 2 2 3 2 2 2 3 2 2 3 2 3 2 3 3 2 3

ANDLW	AND Lite	eral with	W					
Syntax:	[<i>label</i>] A	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 25$	55						
Operation:	(W) .AND	D. (k) \rightarrow (W)					
Status Affected:	Z							
Encoding:	11	1001	kkkk	kkkk				
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal "k"	Process data	Write to W				
Example	ANDLW	0x5F						
	Before In	struction						
	After Inst		0xA3					
		W =	0x03					

ADDWF	Add W a	nd f		
Syntax:	[label] A	DDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$.7		
Operation:	(W) + (f)	\rightarrow (dest	ination)	
Status Affected:	C, DC, Z			
Encoding:	00	0111	dfff	ffff
Description:	register 'f'.	If 'd' is 0 egister. If	the W reg the result i 'd' is 1 the ter 'f'.	s stored
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Evennle	ADDUE	BOD	<u>.</u>	
Example	ADDWF		0	
	Before In	structior	ו 0x17	
		FSR =	0xC2	
	After Inst			
		W = FSR =	0xD9 0xC2	

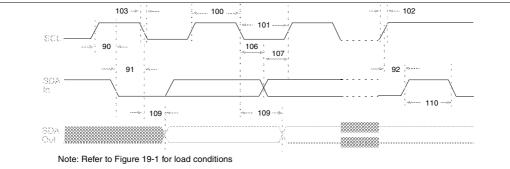
ANDWF	AND W v	vith f		
Syntax:	[<i>label</i>] Al	NDWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7		
Operation:	(W) .AND	0. (f) \rightarrow (e	destinatio	on)
Status Affected:	Z			
Encoding:	0.0	0101	dfff	ffff
Description:	AND the W is 0 the res ter. If 'd' is register 'f'.	sult is stor 1 the res	red in the	W regis-
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example	ANDWF	FSR,	1	
	Before In			
		W = FSR =	0x17 0xC2	
	After Inst		0102	
		W =	0x17	
		FSR =	0x02	

XORLW	Exclusive OR Literal with W				
Syntax:	[<i>label</i>]	XORLV	Vk		
Operands:	$0 \le k \le 255$				
Operation:	(W) .XO	$R. k \to (N$	N)		
Status Affected:	Z				
Encoding:	11	1010	kkkk	kkkk	
Description:	The conte XOR'ed v The resul ter.	vith the eig	ght bit lite	ral 'k'.	
Words:	1				
Cycles:	1				
Q Cycle Activity:	Q1	Q2	Q3	Q4	
	Decode	Read literal 'k'	Process data	Write to W	
Example:	XORLW	0xAF			
	Before Ir	nstruction	n		
		W =	0xB5		
	After Instruction				
		W =	0x1A		

XORWF	Exclusiv	e OR W	with f	
Syntax:	[label]	XORWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	27		
Operation:	(W) .XOF	$R.(f) \to (f)$	destinatio	on)
Status Affected:	Z			
Encoding:	0.0	0110	dfff	ffff
Description:	Exclusive register wi result is studied 1 the result	th registe ored in the	r 'f'. If 'd' is e W regist	s 0 the er. If 'd' is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example	XORWF	REG	1	•
	Before In	struction	1	
		REG W	0/1	AF B5
	After Inst	ruction		
		REG W	••••	1A B5

=

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


15.4 <u>Timing Parameter Symbology</u>

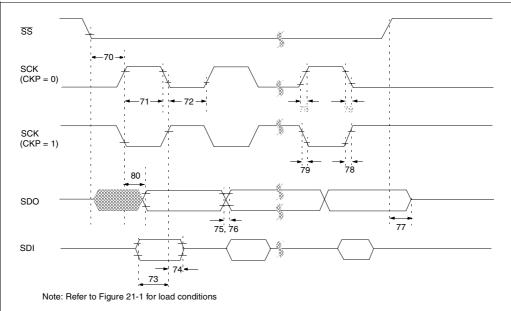
The timing parameter symbols have been created following one of the following formats:

1. TppS2pp	S	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercas	e letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	e letters and their meanings:	1	
S			
F	Fall	P	Period
Н	High	R	Rise
	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I2	² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		
FIGURE 15	5-1: LOAD CONDITIONS FOR DEVICE	TIMING SP	ECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		
	ų į		
	\leq RL		
	>	_	
	•		
	Pin CL	F	
	• • • • • • • • • • • • • • • • • • • •		···· •
	Vss		Vss
	$RL = 464\Omega$		
	CL = 50 pF for all pins except (OSC2/CLKOU	JT
	15 pF for OSC2 output		
1			

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-10: I²C BUS DATA TIMING

TABLE 19-10: I²C BUS DATA REQUIREMENTS

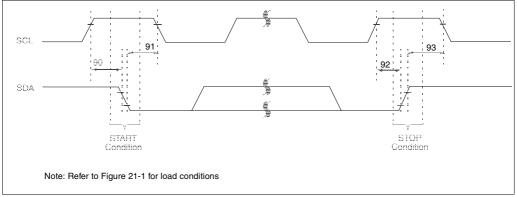

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100	Тнідн	Clock high time	100 kHz mode	4.0		μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	-	μs	Devce must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
101	TLOW	Clock low time	100 kHz mode	4.7	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102	TR	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91	THD:STA	START condition hold	100 kHz mode	4.0	_	μs	After this period the first clock
		time	400 kHz mode	0.6	_	μs	pulse is generated
106	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data input setup time	100 kHz mode	250		ns	Note 2
			400 kHz mode	100		ns	
92	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	_	ns	
110	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I^2C -bus device can be used in a standard-mode (100 kHz) I^2C -bus system, but the requirement tsu;DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I^2C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 21-8: SPI MODE REQUIREMENTS

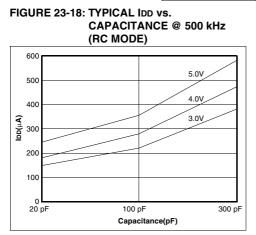

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	TCY + 20	_	—	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	—	—	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

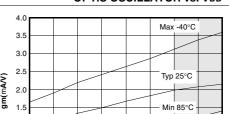
FIGURE 21-10: I²C BUS START/STOP BITS TIMING

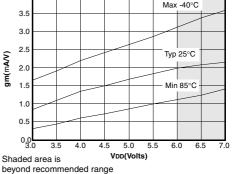


I²C BUS START/STOP BITS REQUIREMENTS **TABLE 21-9:**

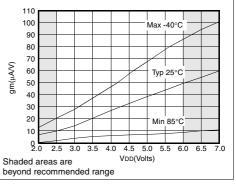
Parameter No.	Sym	Characteristic		Min	Тур	Мах	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	—	—	ns	Only relevant for repeated START
		Setup time	400 kHz mode	600	—			condition
91*	THD:STA	START condition	100 kHz mode	4000	—	—	ns	After this period the first clock
		Hold time	400 kHz mode	600	—	—	115	pulse is generated
92*	TSU:STO	STOP condition	100 kHz mode	4700	—	—	ns	
		Setup time	400 kHz mode	600	—	—	115	
93	THD:STO	STOP condition	100 kHz mode	4000	—	—	-	
		Hold time	400 kHz mode	600	—	—	ns	

These parameters are characterized but not tested.


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


TABLE 23-1: RC OSCILLATOR FREQUENCIES

Cext	Rext	Average			
Cext	nexi	Fosc @ 5V, 25°C			
22 pF	5k	4.12 MHz	± 1.4%		
	10k	2.35 MHz	± 1.4%		
	100k	268 kHz	± 1.1%		
100 pF	3.3k	1.80 MHz	± 1.0%		
	5k	1.27 MHz	± 1.0%		
	10k	688 kHz	± 1.2%		
	100k	77.2 kHz	± 1.0%		
300 pF	3.3k	707 kHz	± 1.4%		
	5k	501 kHz	± 1.2%		
	10k	269 kHz	± 1.6%		
	100k	28.3 kHz	± 1.1%		


The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V.

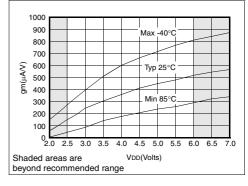
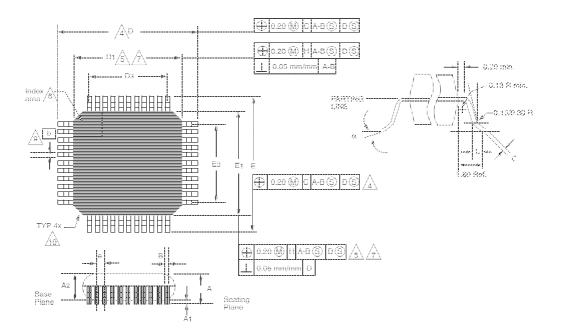
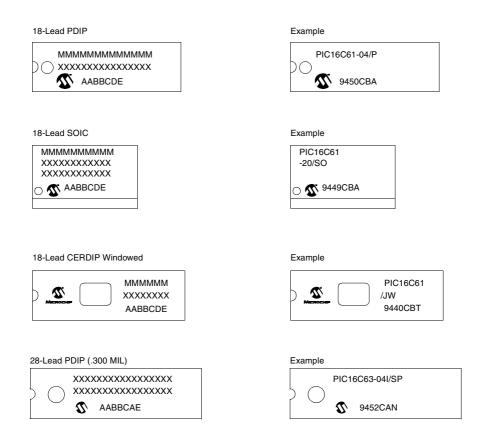

FIGURE 23-19: TRANSCONDUCTANCE(gm) OF HS OSCILLATOR vs. VDD

FIGURE 23-20: TRANSCONDUCTANCE(gm) OF LP OSCILLATOR vs. VDD


FIGURE 23-21: TRANSCONDUCTANCE(gm) OF XT OSCILLATOR vs. VDD

Data based on matrix samples. See first page of this section for details.


24.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Package Group: Plastic MQFP						
		Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	7 °		0°	7°		
А	2.000	2.350		0.078	0.093		
A1	0.050	0.250		0.002	0.010		
A2	1.950	2.100		0.768	0.083		
b	0.300	0.450	Typical	0.011	0.018	Typical	
С	0.150	0.180		0.006	0.007		
D	12.950	13.450		0.510	0.530		
D1	9.900	10.100		0.390	0.398		
D3	8.000	8.000	Reference	0.315	0.315	Reference	
E	12.950	13.450		0.510	0.530		
E1	9.900	10.100		0.390	0.398		
E3	8.000	8.000	Reference	0.315	0.315	Reference	
е	0.800	0.800		0.031	0.032		
L	0.730	1.030		0.028	0.041		
N	44	44		44	44		
CP	0.102	_		0.004	_		

24.14 Package Marking Information

Legend:	MMM	Microchip part number information	
	XXX	Customer specific information*	
	AA	Year code (last 2 digits of calender year)	
	BB	Week code (week of January 1 is week '01')	
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.	
	D ₁	Mask revision number for microcontroller	
	D ₂	Mask revision number for EEPROM	
	E	Assembly code of the plant or country of origin in which part was assembled.	
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.		

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

LIST OF EQUATION AND EXAMPLES

Example 3-1:	Instruction Pipeline Flow 18
Example 4-1:	Call of a Subroutine in Page 1
	from Page 0 49
Example 4-2:	Indirect Addressing 49
Example 5-1:	Initializing PORTA51
Example 5-2:	Initializing PORTB53
Example 5-3:	Initializing PORTC55
Example 5-4:	Read-Modify-Write Instructions on an
	I/O Port 60
Example 7-1:	Changing Prescaler (Timer0→WDT)69
Example 7-2:	Changing Prescaler (WDT→Timer0)69
Example 8-1:	Reading a 16-bit
	Free-running Timer73
Example 10-1:	Changing Between
	Capture Prescalers79
Example 10-2:	PWM Period and Duty
	Cycle Calculation81
Example 11-1:	Loading the SSPBUF
	(SSPSR) Register
Example 11-2:	Loading the SSPBUF
	(SSPSR) Register (PIC16C66/67)91
Example 12-1:	Calculating Baud Rate Error 107
Example 13-1:	Saving Status and W
	Registers in RAM139
Example 13-2:	Saving Status, W, and
	PCLATH Registers in RAM
	(All other PIC16C6X devices)

LIST OF FIGURES

Figure 3-1:	PIC16C61 Block Diagram10
Figure 3-2:	PIC16C62/62A/R62/64/64A/R64
	Block Diagram11
Figure 3-3:	PIC16C63/R63/65/65A/R65
	Block Diagram12
Figure 3-4:	PIC16C66/67 Block Diagram 13
Figure 3-5:	Clock/Instruction Cycle18
Figure 4-1:	PIC16C61 Program Memory Map
	and Stack19
Figure 4-2:	PIC16C62/62A/R62/64/64A/
	R64 Program Memory Map and Stack 19
Figure 4-3:	PIC16C63/R63/65/65A/R65 Program
	Memory Map and Stack19
Figure 4-4:	PIC16C66/67 Program Memory
	Map and Stack
Figure 4-5:	PIC16C61 Register File Map20
Figure 4-6:	PIC16C62/62A/R62/64/64A/
	R64 Register File Map21
Figure 4-7:	PIC16C63/R63/65/65A/R65
	Register File Map21
Figure 4-8:	PIC16C66/67 Data Memory Map22
Figure 4-9:	STATUS Register
	(Address 03h, 83h, 103h, 183h)35
Figure 4-10:	OPTION Register
	(Address 81h, 181h)36
Figure 4-11:	INTCON Register
	(Address 0Bh, 8Bh, 10Bh 18Bh)37
Figure 4-12:	PIE1 Register for PIC16C62/62A/R62
	(Address 8Ch)
Figure 4-13:	PIE1 Register for PIC16C63/R63/66
	(Address 8Ch)39
Figure 4-14:	PIE1 Register for PIC16C64/64A/R64
	(Address 8Ch)

Figure 4-15:	PIE1 Register for PIC16C65/65A/R65/67
	(Address 8Ch) 40
Figure 4-16:	PIR1 Register for PIC16C62/62A/R62
	(Address 0Ch) 41
Figure 4-17:	PIR1 Register for PIC16C63/R63/66
Eisere 4 10	Address 0Ch)
Figure 4-18:	PIR1 Register for PIC16C64/64A/R64
Eiguro 4 10:	(Address 0Ch)
Figure 4-19:	PIR1 Register for PIC16C65/65A/R65/67 (Address 0Ch)
Figure 4-20:	PIE2 Register (Address 8Dh)
Figure 4-21:	PIR2 Register (Address 0Dh)
Figure 4-22:	PCON Register for PIC16C62/64/65
5.	(Address 8Eh) 47
Figure 4-23:	PCON Register for PIC16C62A/R62/63/
-	R63/64A/R64/65A/R65/66/67
	(Address 8Eh) 47
Figure 4-24:	Loading of PC in Different Situations 48
Figure 4-25:	Direct/Indirect Addressing 49
Figure 5-1:	Block Diagram of the
	RA3:RA0 Pins and the RA5 Pin 51
Figure 5-2:	Block Diagram of the RA4/T0CKI Pin 51
Figure 5-3:	Block Diagram of the
	RB7:RB4 Pins for PIC16C61/62/64/65 53
Figure 5-4:	Block Diagram of the
	RB7:RB4 Pins for PIC16C62A/63/R63/
	64A/65A/R65/66/67
Figure 5-5:	Block Diagram of the
Figure F G	RB3:RB0 Pins
Figure 5-6:	PORTC Block Diagram
Figure 5-7:	PORTD Block Diagram (In I/O Port Mode)57
Figure 5-8:	PORTE Block Diagram
rigure 5 0.	(In I/O Port Mode)
Figure 5-9:	TRISE Register (Address 89h)
Figure 5-10:	Successive I/O Operation
Figure 5-11:	PORTD and PORTE as a Parallel
3	Slave Port61
Figure 5-12:	Parallel Slave Port Write Waveforms 62
Figure 5-13:	Parallel Slave Port Read Waveforms 62
Figure 7-1:	Timer0 Block Diagram 65
Figure 7-2:	Timer0 Timing: Internal Clock/No
	Prescaler 65
Figure 7-3:	Timer0 Timing: Internal
	Clock/Prescale 1:2
Figure 7-4:	TMR0 Interrupt Timing
Figure 7-5:	Timer0 Timing With External Clock
Figure 7-6:	Block Diagram of the Timer0/WDT
	Prescaler
Figure 8-1:	T1CON: Timer1 Control Register
	(Address 10h)
Figure 8-2:	Timer1 Block Diagram
Figure 9-1:	T2CON: Timer2 Control Register
Figure 9-2:	(Address 12h)
Figure 10-1:	CCP1CON Register (Address 17h) /
riguio ro r.	CCP2CON Register (Address 1Dh)
Figure 10-2:	Capture Mode Operation
.g	Block Diagram
Figure 10-3:	Compare Mode Operation
0	Block Diagram
Figure 10-4:	Simplified PWM Block Diagram
Figure 10-5:	PWM Output 80
Figure 11-1:	SSPSTAT: Sync Serial Port Status
	Register (Address 94h) 84