

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc64at-04-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	DIP Pin#	SOIC Pin#	Pin Type	Buffer Type	Description				
OSC1/CLKIN	16	16	I	ST/CMOS(1)	Oscillator crystal input/external clock source input.				
OSC2/CLKOUT	15	15	0	_	Oscillator crystal output. Connects to crystal or resonator in crysta oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate				
MCLR/VPP	4	4	I/P	ST	Master clear reset input or programming voltage input. This pin is an active low reset to the device.				
					PORTA is a bi-directional I/O port.				
RA0	17	17	I/O	TTL					
RA1	18	18	I/O	TTL					
RA2	1	1	I/O	TTL					
RA3	2	2	I/O	TTL					
RA4/T0CKI	3	3	I/O	ST	RA4 can also be the clock input to the Timer0 timer/counter. Output is open drain type.				
					PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.				
RB0/INT	6	6	I/O	TTL/ST ⁽²⁾	RB0 can also be the external interrupt pin.				
RB1	7	7	I/O	TTL					
RB2	8	8	I/O	TTL					
RB3	9	9	I/O	TTL					
RB4	10	10	I/O	TTL	Interrupt on change pin.				
RB5	11	11	I/O	TTL	Interrupt on change pin.				
RB6	12	12	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming clock.				
RB7	13	13	I/O	TTL/ST ⁽³⁾	Interrupt on change pin. Serial programming data.				
Vss	5	5	Р	-	Ground reference for logic and I/O pins.				
Vdd	14	14	Р	_	Positive supply for logic and I/O pins.				
Legend: I = input	0 = ou — = N	utput lot used) = input/outpu L = TTL input					

PIC16C61 PINOUT DESCRIPTION TABLE 3-1:

 Note
 1:
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
 2:
 This buffer is a Schmitt Trigger input when configured as the external interrupt.
 Configured as the external interrup

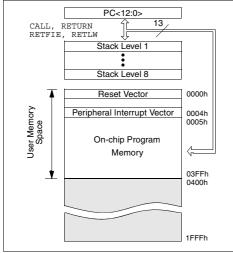
3: This buffer is a Schmitt Trigger input when used in serial programming mode.

4.0 MEMORY ORGANIZATION

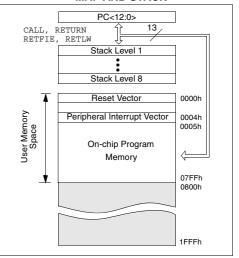
Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

4.1 Program Memory Organization


The PIC16C6X family has a 13-bit program counter capable of addressing an $8K \times 14$ program memory space. The amount of program memory available to each device is listed below:

Device	Program Memory	Address Range
PIC16C61	1K x 14	0000h-03FFh
PIC16C62	2K x 14	0000h-07FFh
PIC16C62A	2K x 14	0000h-07FFh
PIC16CR62	2K x 14	0000h-07FFh
PIC16C63	4K x 14	0000h-0FFFh
PIC16CR63	4K x 14	0000h-0FFFh
PIC16C64	2K x 14	0000h-07FFh
PIC16C64A	2K x 14	0000h-07FFh
PIC16CR64	2K x 14	0000h-07FFh
PIC16C65	4K x 14	0000h-0FFFh
PIC16C65A	4K x 14	0000h-0FFFh
PIC16CR65	4K x 14	0000h-0FFFh
PIC16C66	8K x 14	0000h-1FFFh
PIC16C67	8K x 14	0000h-1FFFh


For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

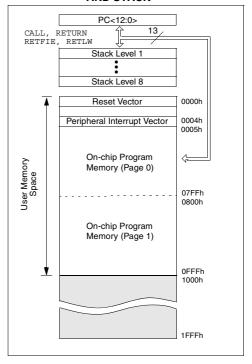

FIGURE 4-1: PIC16C61 PROGRAM MEMORY MAP AND STACK

FIGURE 4-2: PIC16C62/62A/R62/64/64A/ R64 PROGRAM MEMORY MAP AND STACK

FIGURE 4-3: PIC16C63/R63/65/65A/R65 PROGRAM MEMORY MAP AND STACK

4.2.2.1 STATUS REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The STATUS register, shown in Figure 4-9, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

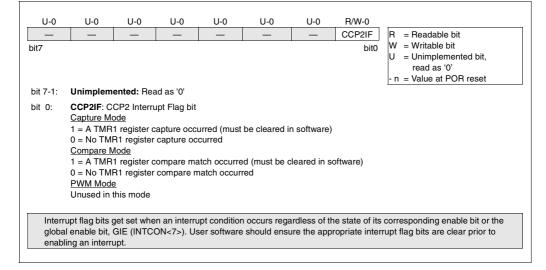
For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- Note 1: For those devices that do not use bits IRP and RP1 (STATUS<7:6>), maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit		
bit7							bit0	W = Writable bit - n = Value at POR reset x = unknown		
bit 7:	IRP: RegIster Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh)									
bit 6-5:	 t 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes. 									
bit 4:	TO : Time-or 1 = After points $0 = A WDT$	ower-up, CL		uction, or S	LEEP instruc	tion				
bit 3:	PD : Power- 1 = After po 0 = By exec	ower-up or			tion					
bit 2:	Z : Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero									
bit 1:	DC : Digit carry/borrow bit (for ADDWF, ADDLW, SUBLW, and SUBWF instructions) (For borrow the polarity is reversed). 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result									
bit 0:	 C: Carry/borrow bit (for ADDWF, ADDLW, SUBLW, and SUBWF instructions)(For borrow the polarity is reversed). 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result Note: a subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 									

FIGURE 4-9: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)


4.2.2.7 PIR2 REGISTER

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

This register contains the CCP2 interrupt flag bit.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-21: PIR2 REGISTER (ADDRESS 0Dh)

11.3.1 SSP MODULE IN SPI MODE FOR PIC16C66/67

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

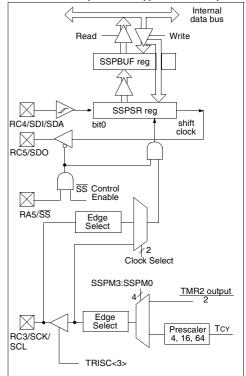
- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

Additionally a fourth pin may be used when in a slave mode of operation:

Slave Select (SS) RA5/SS

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

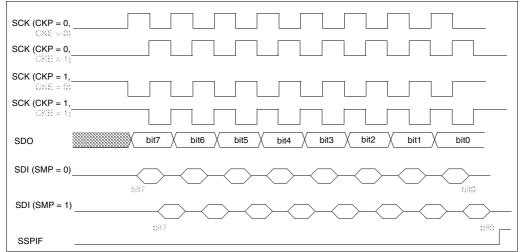
- · Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- · Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)


The SSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device. MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and interrupt flag bit SSPIF (PIR1<3>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully. When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit BF (SSPSTAT<0>) indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the SSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 11-2 shows the loading of the SSPBUF (SSPSR) for data transmission. The shaded instruction is only required if the received data is meaningful.

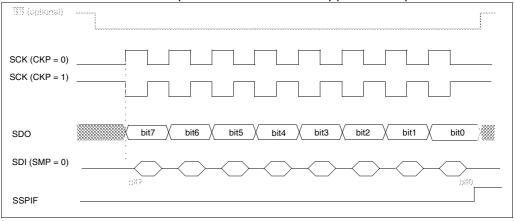
EXAMPLE 11-2: LOADING THE SSPBUF (SSPSR) REGISTER (PIC16C66/67)

LOOP	BCF BSF BTFSS	STATUS, STATUS, SSPSTAT,	RP0	;Specify Bank 1 ; ;Has data been ;received ;(transmit ;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents ; of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents ; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The block diagram of the SSP module, when in SPI mode (Figure 11-9), shows that the SSPSR is not directly readable or writable, and can only be accessed from addressing the SSPBUF register. Additionally, the SSP status register (SSPSTAT) indicates the various status conditions.


FIGURE 11-9: SSP BLOCK DIAGRAM (SPI MODE)(PIC16C66/67)

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode (SSPCON<3:0> = 04h) and the TRISA<5> bit must be set for the synchronous slave mode to be enabled. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. If the \overline{SS} pin is taken low without resetting SPI mode, the transmission will continue from the point at which it was taken high. External pull-up/ pull-down resistors may be desirable, depending on the application.


- Note: When the SPI is in Slave Mode with SS pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the SS pin is set to VDD.
- Note: If the SPI is used in Slave Mode with CKE = '1', then the SS pin control must be enabled.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 11-11: SPI MODE TIMING, MASTER MODE (PIC16C66/67)

FIGURE 11-12: SPI MODE TIMING (SLAVE MODE WITH CKE = 0) (PIC16C66/67)

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc.

The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

FIGURE 12-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	CSRC: Clo	ck Source	Select bit					<u>,</u>
	Asynchron Don't care	<u>ous mode</u>						
	Synchrono 1 = Master 0 = Slave n	mode (Clo				G)		
bit 6:	TX9 : 9-bit 1 = Selects 0 = Selects	9-bit trans	smission					
bit 5:	TXEN : Tran 1 = Transm 0 = Transm Note: SRE	iit enabled iit disabled		EN in SYI	NC mode.			
bit 4:	SYNC : US 1 = Synchr 0 = Asynch	onous mod	le					
bit 3:	Unimplem	ented: Re	ad as '0'					
bit 2:	BRGH: Hig	h Baud Ra	ate Select b	it				
	Asynchron 1 = High sp							
	Note:	experienc higher ba	e a high ra	te of recei n BRGH =	ive errors. I = 0 can sup	t is recom	mended that	ed mode (BRGH = 1) may BRGH = 0. If you desire a e errata for additional infor-
	0 = Low sp	eed						
	Synchrono Unused in							
bit 1:	TRMT : Trai 1 = TSR er 0 = TSR fu	npty	Register S	tatus bit				
bit 0:	TX9D : 9th	bit of trans	mit data. C	an be pari	ty bit.			

12.4 USART Synchronous Slave Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Synchronous Slave Mode differs from Master Mode in the fact that the shift clock is supplied externally at the CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit $\mathsf{TXIE}.$
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, enable bit SREN is a don't care in slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing enable bit CREN.

13.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 13-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 13-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

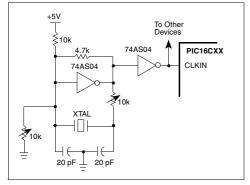
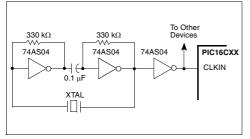
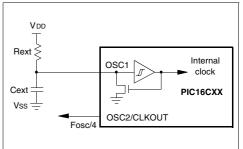



Figure 13-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 13-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

13.2.4 RC OSCILLATOR


For timing insensitive applications the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 13-8 shows how the RC combination is connected to the PIC16CXX. For Rext values below 2.2 k Ω , the oscillator operation may become unstable or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-5 for waveform).

FIGURE 13-8: RC OSCILLATOR MODE

14.0 INSTRUCTION SET SUMMARY

Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 14-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 14-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 14-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$
label	Label name
TOS	Top of Stack
PC	Program Counter
PCLATH	Program Counter High Latch
GIE	Global Interrupt Enable bit
WDT	Watchdog Timer/Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

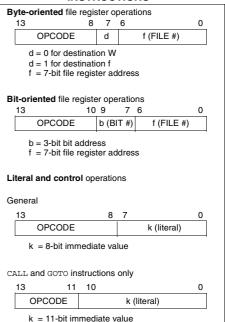
The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 14-2 lists the instructions recognized by the MPASM assembler.

Figure 14-1 shows the general formats that the instructions can have.


Note: To maintain upward compatibility with future PIC16CXX products, do not use the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS

INCFSZ	Increment f, Skip if 0	IORLW	Inclusive OR Literal with W
Syntax:	[label] INCFSZ f,d	Syntax:	[label] IORLW k
Operands:	$0 \le f \le 127$	Operands:	$0 \le k \le 255$
	d ∈ [0,1]	Operation:	(W) .OR. $k \rightarrow$ (W)
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0	Status Affected:	Z
Status Affected:	None	Encoding:	11 1000 kkkk kkkk
Encoding:	00 1111 dfff ffff	Description:	The contents of the W register is
Description:	The contents of register 'f' are incre-		OR'ed with the eight bit literal 'k'. The result is placed in the W register.
Description.	mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is	Words:	1
	placed back in register 'f'. If the result is 1, the next instruction is	Cycles:	1
	executed. If the result is 0, a NOP is exe- cuted instead making it a 2TCY instruc-	Q Cycle Activity:	Q1 Q2 Q3 Q4
	tion.		Decode Read Process Write to literal 'k' data W
Words:	1		
Cycles:	1(2)	Example	IORLW 0x35
Q Cycle Activity:	Q1 Q2 Q3 Q4	·	Before Instruction
	Decode Read Process Write to register 'f' data destination		W = 0x9A
If Skip:	(2nd Cycle)		After Instruction W = 0xBF
ii enipi	Q1 Q2 Q3 Q4		Z = 1
	No- OperationNo- OperationNo- Operation		
Example	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE •		
	$\begin{array}{rcl} Before \mbox{ Instruction} & PC & = & \mbox{ address HERE} \\ After \mbox{ Instruction} & \\ CNT & = & CNT + 1 & \\ \mbox{ if } CNT = & 0, & \\ PC & = & \mbox{ address CONTINUE} & \\ \mbox{ if } CNT \neq & 0, & \\ PC & = & \mbox{ address HERE} + 1 & \\ \end{array}$		

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

18.0 ELECTRICAL CHARACTERISTICS FOR PIC16C62A/R62/64A/R64

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +14V
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of VSS pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1. Power dissipation is calculated as follows: $Pdis = Vpp \times (Ipp - \sum Ipu) + \sum (Vpp - \sum Ipu)$	$(V_{OU}) \times (OU) + \Sigma(V_{OU} \times (OU))$

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 18-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62A-04 PIC16CR62-04 PIC16C64A-04 PIC16CR64-04	PIC16C62A-10 PIC16CR62-10 PIC16C64A-10 PIC16CR64-10	PIC16C62A-20 PIC16CR62-20 PIC16C64A-20 PIC16CR64-20	PIC16LC62A-04 PIC16LCR62-04 PIC16LC64A-04 PIC16LCR64-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq:4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 µA max. at 3.0V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VpD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.		VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

^{© 1997-2013} Microchip Technology Inc.

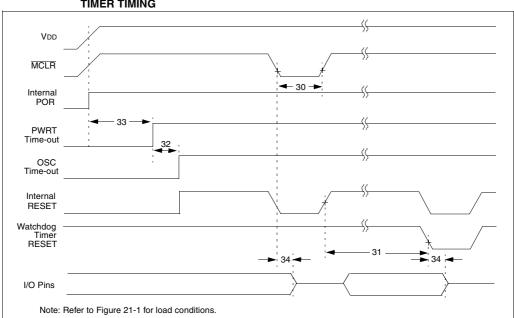
19.2 DC Characteristics: PIC16LC65-04 (Commercial, Industrial)

$ \begin{array}{c} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{DC CHARACTERISTICS} \end{array} \begin{array}{c} \mbox{Standard Operating temperature} & -40^\circ C & \leq Ta \leq +85^\circ C \mbox{ for industrial and} \\ & 0^\circ C & \leq Ta \leq +70^\circ C \mbox{ for commercial} \end{array} \end{array}$							
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	3.0	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	105	μA	LP osc configuration Fosc = 32 kHz, VDD = 4.0V, WDT disabled
D020	Power-down Current	IPD	-	7.5	800	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3, 5)		-	0.9	800	μA	VDD = 3.0V, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$
D021A			-	0.9	800	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

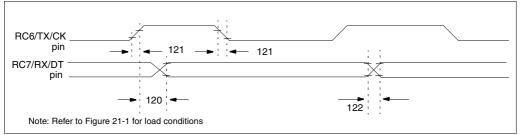
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

MCLR = VDD; WDT enabled/disabled as specified.

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.

FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 21-5: BROWN-OUT RESET TIMING

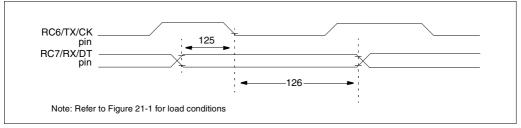

TABLE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	—		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc	I	_	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tioz	I/O Hi-impedance from MCLR Low or WDT reset	—	_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—	l	μs	V DD \leq BVDD (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 21-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

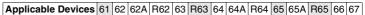

TABLE 21-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

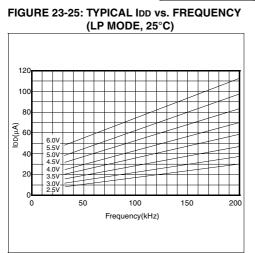
Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120*	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16CR63/R65	—	—	80	ns	
	Clock high to data out valid		PIC16LCR63/R65	—	—	100	ns	
121*	Tckrf Clock out rise time and fall time		PIC16CR63/R65	_	—	45	ns	
	(Master Mode)	PIC16LCR63/R65	—	—	50	ns		
122*	Tdtrf	Data out rise time and fall time	PIC16CR63/R65	_	—	45	ns	
			PIC16LCR63/R65	_	—	50	ns	

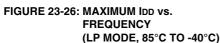
* These parameters are characterized but not tested.

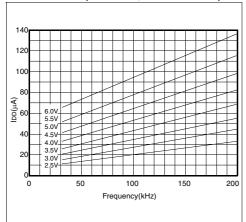
†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 21-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

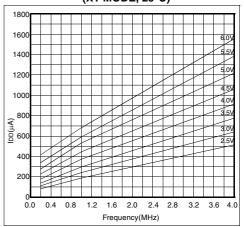

TABLE 21-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

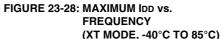

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125*	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK ↓ (DT setup time)	15	I		ns	
126*	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	-	_	ns	

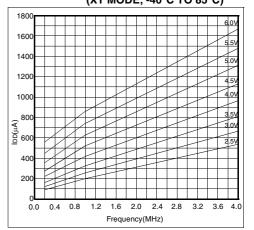

These parameters are characterized but not tested.

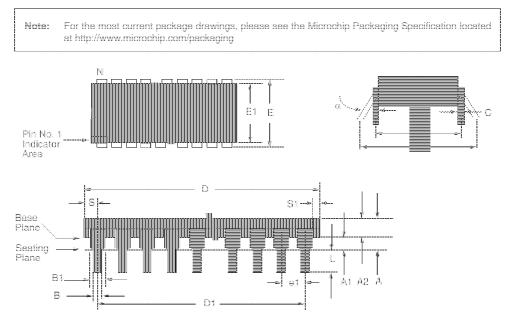

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C6X

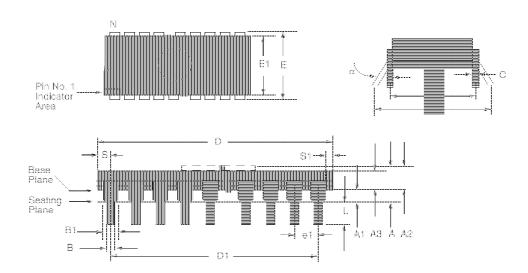







FIGURE 23-27: TYPICAL IDD vs. FREQUENCY (XT MODE, 25°C)

Data based on matrix samples. See first page of this section for details.



24.3 40-Lead Plastic Dual In-line (600 mil) (P)

Package Group: Plastic Dual In-Line (PLA)							
		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
А	_	5.080		_	0.200		
A1	0.381	_		0.015	_		
A2	3.175	4.064		0.125	0.160		
В	0.355	0.559		0.014	0.022		
B1	1.270	1.778	Typical	0.050	0.070	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	51.181	52.197		2.015	2.055		
D1	48.260	48.260	Reference	1.900	1.900	Reference	
E	15.240	15.875		0.600	0.625		
E1	13.462	13.970		0.530	0.550		
e1	2.489	2.591	Typical	0.098	0.102	Typical	
eA	15.240	15.240	Reference	0.600	0.600	Reference	
eB	15.240	17.272		0.600	0.680		
L	2.921	3.683		0.115	0.145		
N	40	40		40	40		
S	1.270	-		0.050	-		
S1	0.508	-		0.020	-		

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)							
		Millimeters		Inches			
Symbol	Min	Мах	Notes	Min	Мах	Notes	
α	0°	10°		0°	10°		
А	4.318	5.715		0.170	0.225		
A1	0.381	1.778		0.015	0.070		
A2	3.810	4.699		0.150	0.185		
A3	3.810	4.445		0.150	0.175		
В	0.355	0.585		0.014	0.023		
B1	1.270	1.651	Typical	0.050	0.065	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	51.435	52.705		2.025	2.075		
D1	48.260	48.260	Reference	1.900	1.900	Reference	
E	15.240	15.875		0.600	0.625		
E1	12.954	15.240		0.510	0.600		
e1	2.540	2.540	Reference	0.100	0.100	Reference	
eA	14.986	16.002	Typical	0.590	0.630	Typical	
eB	15.240	18.034		0.600	0.710		
L	3.175	3.810		0.125	0.150		
Ν	40	40		40	40		
S	1.016	2.286		0.040	0.090		
S1	0.381	1.778		0.015	0.070		

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent						
RE:	Reader Response							
Fror	rom: Name							
	Company							
	Address							
	City / State / ZIP / Country							
	Telephone: ()	FAX: ()						
	plication (optional):							
Woι	ould you like a reply?YN							
Dev	vice: PIC16C6X Literature Number: I	DS30234E						
Que	lestions:							
4	What are the best features of this document?							
1.	what are the best leatures of this document?							
2.	How does this document meet your hardware and soft	ware development needs?						
3.	Do you find the organization of this data sheet easy to follow? If not, why?							
4.	What additions to the data sheet do you think would en	nhance the structure and subject?						
_								
5.	What deletions from the data sheet could be made wit	hout affecting the overall usefulness?						
6	Is there any incorrect or misleading information (what a	and whore \2						
0.								
7.	How would you improve this document?							
	<i>y</i>							
8.	How would you improve our software, systems, and sil	icon products?						