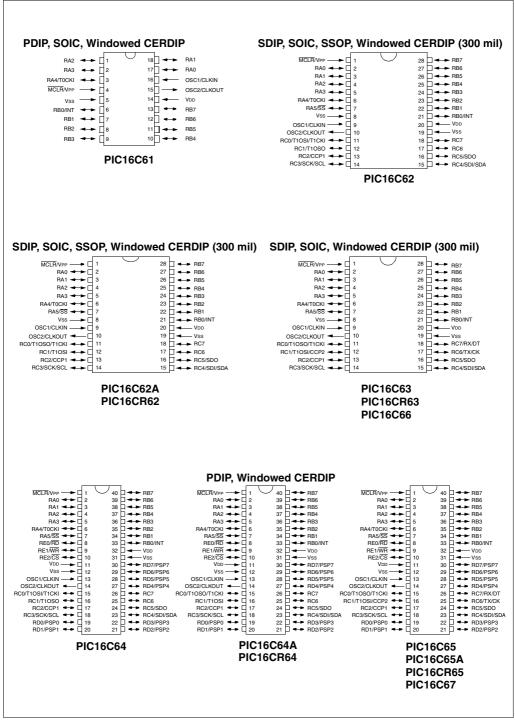


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc64at-04i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

FIGURE 4-15: PIE1 REGISTER FOR PIC16C65/65A/R65/67 (ADDRESS 8Ch)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PSPIE	—	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit
bit7							bit0	W = Writable bit
								U = Unimplemented bit,
								read as '0'
								- n = Value at POR reset
bit 7:	1 = Enable				upt Enable b	oit		
	0 = Disable							
1.1.0				•				
bit 6:	Reserved:	Always ma	aintain this	oit clear.				
bit 5:	RCIE: USA							
	1 = Enable							
	0 = Disable			•				
bit 4:	TXIE: USA							
	1 = Enable							
	0 = Disable			•				
bit 3:	SSPIE: Syr			Interrupt Er	nable bit			
	1 = Enable							
	0 = Disable		•					
bit 2:	CCP1IE: C			bit				
	1 = Enable							
	0 = Disable		•					
bit 1:	TMR2IE: T							
	1 = Enable							
	0 = Disable				•			
bit 0:	TMR1IE: T				it			
	1 = Enable							
	0 = Disable	s the TMR	I OVERTION	nterrupt				

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS (1)	bit5	TTL	Input/output or slave select input for synchronous serial port.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C61 does not have PORTA<5> or TRISA<5>, read as '0'.

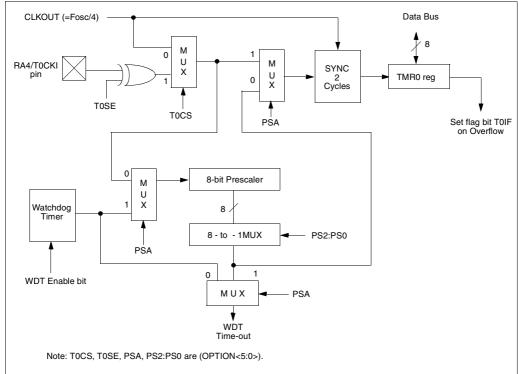
TABLE 5-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	RA5 ⁽¹⁾	RA5 ⁽¹⁾ RA4 RA3 RA2 RA1 RA0						uu uuuu
85h	TRISA	—	—	PORTA Data Direction Register ⁽¹⁾						11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C61, read as '0'.

7.3 Prescaler


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF TMR0, MOVWF TMR0, BSF TMR0, bitx) will clear the prescaler count. When assigned to the Watchdog Timer, a CLRWDT instruction will clear the Watchdog Timer and the prescaler count. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

8.0 TIMER1 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

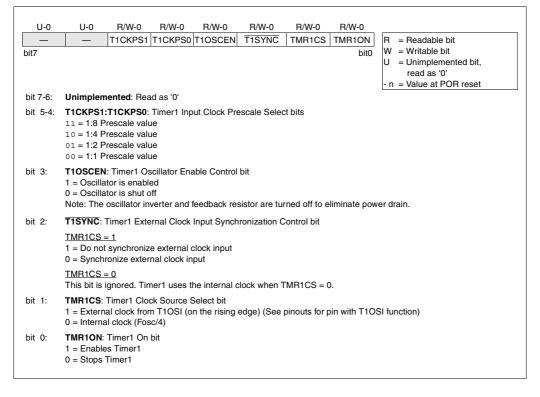
Timer1 can operate in one of two modes:

- · As a timer
- · As a counter

The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

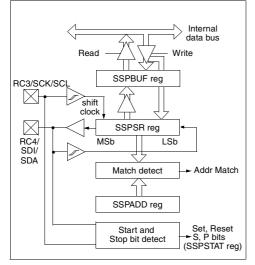
Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).


Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/R63/64A/R64/65A/R65/ R66/67, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.


FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

11.5 <u>SSP I²C Operation</u>

The SSP module in I^2C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>).

FIGURE 11-24: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I^2C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C Firmware controlled Master Mode, slave is idle

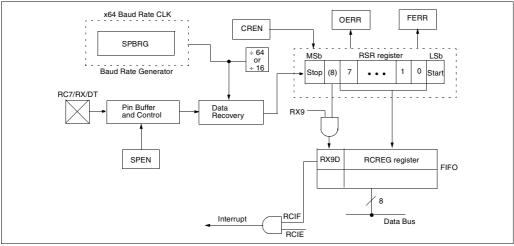
Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user first needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

12.2.2 USART ASYNCHRONOUS RECEIVER


The receiver block diagram is shown in Figure 12-10. The data comes in the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at FOSC.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

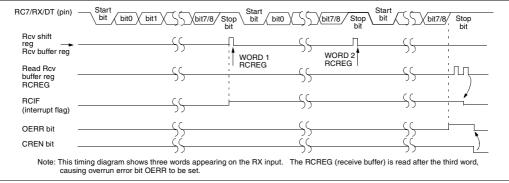

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is double buffered register, i.e., it is a two deep FIFO. It is

FIGURE 12-10: USART RECEIVE BLOCK DIAGRAM

possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear overrun bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a stop bit is detected as clear. Error bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will load bits RX9D and FERR with new values. Therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

FIGURE 12-11: ASYNCHRONOUS RECEPTION

12.4 USART Synchronous Slave Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Synchronous Slave Mode differs from Master Mode in the fact that the shift clock is supplied externally at the CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

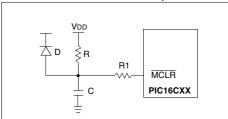
If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit $\mathsf{TXIE}.$
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION


The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, enable bit SREN is a don't care in slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

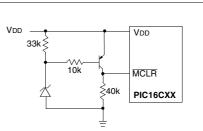

- Enable the synchronous master serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing enable bit CREN.

FIGURE 13-14: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

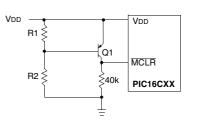

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the devices electrical specifications.
 - 3: $R1 = 100\Omega$ to 1 k Ω will limit any current flowing into MCLR from external capacitor C in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrostatic Overstress (EOS).

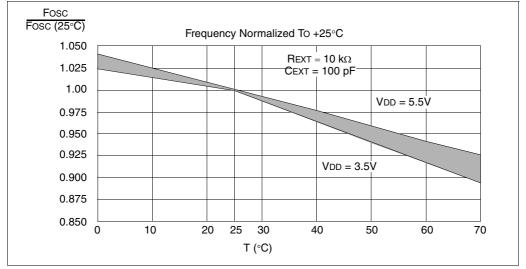
FIGURE 13-15: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

- Note 1: This circuit will activate reset when VDD goes below (Vz + 0.7V) where Vz = Zener voltage.
 - Internal brown-out detection on the PIC16C62A/R62/63/R63/64A/R64/65A/ R65/66/67 should be disabled when using this circuit.
 - 3: Resistors should be adjusted for the characteristics of the transistors.

FIGURE 13-16: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

Note 1: This brown-out circuit is less expensive, albeit less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

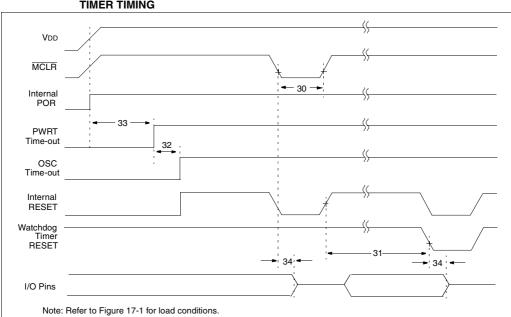
$$V_{DD} \bullet \frac{R1}{R1 + R2} = 0.7V$$


- 2: Internal brown-out detection on the PIC16C62A/R62/63/R63/64A/R64/65A/ R65/66/67 should be disabled when using this circuit.
- 3: Resistors should be adjusted for the characteristics of the transistors.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C61

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range. Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean $+3\sigma$) and (mean -3σ) respectively where σ is standard deviation.



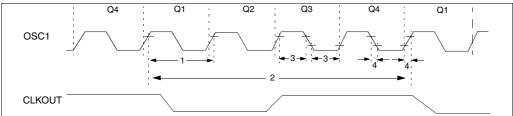
Cext	Rext	Ave Fosc @	rage 5V, 25°C
20 pF	4.7k	4.52 MHz	± 17.35%
	10k	2.47 MHz	± 10.10%
	100k	290.86 kHz	± 11.90%
100 pF	3.3k	1.92 MHz	± 9.43%
	4.7k	1.48 MHz	± 9.83%
	10k	788.77 kHz	± 10.92%
	100k	88.11 kHz	± 16.03%
300 pF	3.3k	726.89 kHz	± 10.97%
	4.7k	573.95 kHz	± 10.14%
	10k	307.31 kHz	± 10.43%
	100k	33.82 kHz	± 11.24%

TABLE 16-1: RC OSCILLATOR FREQUENCIES

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from average value for VDD = 5V.

FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	—	—	ns	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024Tosc	_	—	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34*	Tioz	I/O Hi-impedance from MCLR Low	_	—	100	ns	

These parameters are characterized but not tested.

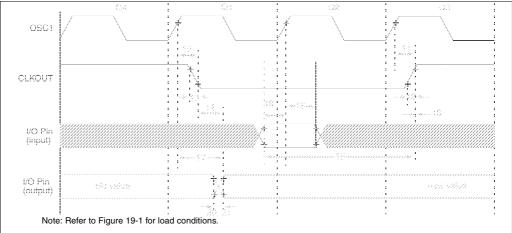
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

18.5 <u>Timing Diagrams and Specifications</u>

FIGURE 18-2: EXTERNAL CLOCK TIMING

TABLE 18-2: EXTERNAL CLOCK TIMING REQUIREMENTS

arameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency					
		(Note 1)	DC	_	4	MHz	XT and RC osc mode
			DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	-	—	ns	XT and RC osc mode
		(Note 1)	250	_	—	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	_	250	ns	HS osc mode (-20)
			5	_	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	100	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	—	-	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	_	15	ns	HS oscillator


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

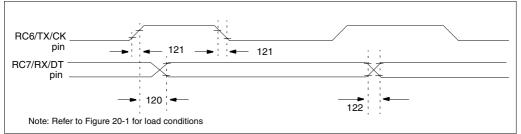
PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3:	CLKOUT AND I/O TIMING REQUIREMENTS
TADEE 13-0.	

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		-	75	200	ns	Note 1
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—	_	0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT 1		0.25Tcy + 25	_	—	ns	Note 1
16*	TckH2ioI	Port in hold after CLKOUT ↑		0	_	—	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC16 C 65	100	_	—	ns	
		input invalid (I/O in hold time)	PIC16 LC 65	200	_	_	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O	in setup time)	0	_	—	ns	
20*	TioR	Port output rise time	PIC16 C 65	—	10	25	ns	
			PIC16 LC 65	—	_	60	ns	
21*	TioF	Port output fall time	PIC16 C 65	—	10	25	ns	
			PIC16 LC 65	—	_	60	ns	
22††*	Tinp	RB0/INT pin high or low time	RB0/INT pin high or low time		—	_	ns	
23††*	Trbp	RB7:RB4 change int high or lo	w time	Тсү	_	_	ns	

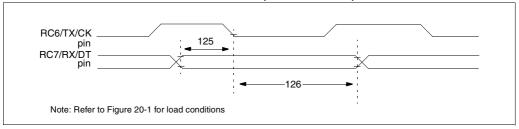

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 20-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING


TABLE 20-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic	stic		Тур†	Max	Units	Conditions
		PIC16 C 63/65A	_	—	80	ns		
	Clock high to data out valid	PIC16LC63/65A	_	—	100	ns		
121*	121* Tckrf Clock out rise time and fall time		PIC16 C 63/65A	_	—	45	ns	
		(Master Mode)	PIC16LC63/65A	_	—	50	ns	
122*	Tdtrf	Data out rise time and fall time	PIC16 C 63/65A	_	—	45	ns	
			PIC16LC63/65A	_	—	50	ns	

These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 20-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 20-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125*	TdtV2ckL	$\frac{\text{SYNC RCV (MASTER \& SLAVE)}}{\text{Data setup before CK} \downarrow (\text{DT setup time})}$	15	_	_	ns	
126*	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15		_	ns	

These parameters are characterized but not tested.

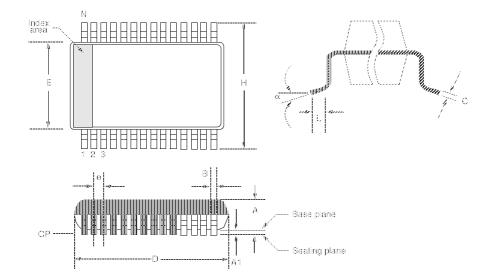
†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

21.3 DC Characteristics: PIC16CR63/R65-04 (Commercial, Industrial) PIC16CR63/R65-10 (Commercial, Industrial) PIC16CR63/R65-20 (Commercial, Industrial) PIC16LCR63/R65-04 (Commercial, Industrial)

			rd Operat				ss otherwise stated) $A \le +85^{\circ}C$ for industrial and		
DC CHA	RACTERISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial Operating voltage VDD range as described in DC spec Section 21.1 and Section 21.2							
Param No.	Characteristic	Sym	Min	Тур †	Мах	Units	Conditions		
	Input Low Voltage								
	I/O ports	VIL							
D030	with TTL buffer		Vss	-	0.15Vdd	v	For entire VDD range		
D030A			Vss	-	0.8V	v	$4.5V \le VDD \le 5.5V$		
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	v			
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	v			
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3VDD	v	Note1		
	Input High Voltage								
	I/O ports	Vін		-					
D040	with TTL buffer		2.0	-	Vdd	v	$4.5V \le V$ DD $\le 5.5V$		
D040A			0.25VDD	-	Vdd	v	For entire VDD range		
			+ 0.8V						
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range		
D042	MCLR		0.8VDD	-	Vdd	V			
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	V	Note1		
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V			
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS		
	Input Leakage Current (Notes 2, 3)								
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD, Pin at hi- impedance		
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \le VPIN \le VDD$		
D063	OSC1		-	-	±5	μΑ	Vss \leq VPIN \leq VDD, XT, HS and		
							LP osc configuration		
	Output Low Voltage						-		
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C		
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
	Output High Voltage								
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	v	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	v	IOH = -1.3 mA, VDD = 4.5 V, -40°C to +85°C		
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

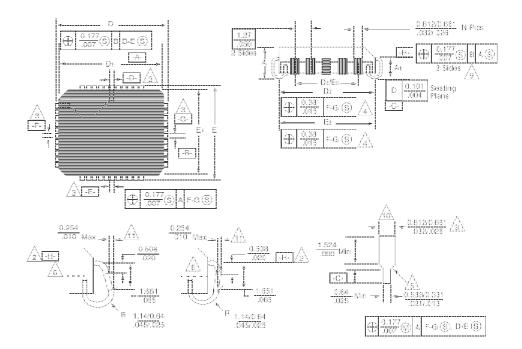

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

24.10 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Package Group: Plastic SSOP						
	Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	8°		0°	8°	
А	1.730	1.990		0.068	0.078	
A1	0.050	0.210		0.002	0.008	
В	0.250	0.380		0.010	0.015	
С	0.130	0.220		0.005	0.009	
D	10.070	10.330		0.396	0.407	
E	5.200	5.380		0.205	0.212	
е	0.650	0.650	Reference	0.026	0.026	Reference
Н	7.650	7.900		0.301	0.311	
L	0.550	0.950		0.022	0.037	
Ν	28	28		28	28	
CP	-	0.102		-	0.004	

24.11 44-Lead Plastic Leaded Chip Carrier (Square) (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Plastic Leaded Chip Carrier (PLCC)						
	Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes
А	4.191	4.572		0.165	0.180	
A1	2.413	2.921		0.095	0.115	
D	17.399	17.653		0.685	0.695	
D1	16.510	16.663		0.650	0.656	
D2	15.494	16.002		0.610	0.630	
D3	12.700	12.700	Reference	0.500	0.500	Reference
E	17.399	17.653		0.685	0.695	
E1	16.510	16.663		0.650	0.656	
E2	15.494	16.002		0.610	0.630	
E3	12.700	12.700	Reference	0.500	0.500	Reference
N	44	44		44	44	
CP	-	0.102		_	0.004	
LT	0.203	0.381		0.008	0.015	

Package Marking Information (Cont'd)

28-Lead SOIC

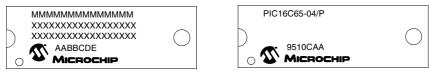
28-Lead Side Brazed Skinny Windowed

Example PIC16C66/JW \mathcal{D} 9517CAT

PIC16C62/JW

9517SBT

Example


Example

PIC16C62-20/S0111

5 9515SBA

40-Lead PDIP

Example

Legend:	MMM	Microchip part number information	
	XXX	Customer specific information*	
	AA	Year code (last 2 digits of calender year)	
	BB	Week code (week of January 1 is week '01')	
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.	
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.	
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.		

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PIC16C6X

Figure 11-2:	SSPCON: Sync Serial Port
	Control Register (Address 14h) 85
Figure 11-3:	SSP Block Diagram (SPI Mode) 86
Figure 11-4:	SPI Master/Slave Connection 87
Figure 11-5:	SPI Mode Timing, Master Mode or
	Slave Mode w/o SS Control
Figure 11-6:	SPI Mode Timing, Slave Mode with
	SS Control
Figure 11-7:	SSPSTAT: Sync Serial Port Status
	Register (Address 94h)(PIC16C66/67) 89
Figure 11-8:	SSPCON: Sync Serial Port Control
Figure 11 Or	Register (Address 14h)(PIC16C66/67) 90
Figure 11-9:	SSP Block Diagram (SPI Mode)
Figure 11-10:	(PIC16C66/67)91 SPI Master/Slave Connection
Figure 11-10.	(PIC16C66/67)
Figure 11-11:	SPI Mode Timing, Master Mode
rigule 11-11.	(PIC16C66/67)
Figure 11-12:	SPI Mode Timing (Slave Mode With
rigule 11-12.	CKE = 0) (PIC16C66/67)
Figure 11-13:	SPI Mode Timing (Slave Mode With
i iguio i i ioi	CKE = 1) (PIC16C66/67)
Figure 11-14:	Start and Stop Conditions
Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence97
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
	(Two Masters)98
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram (I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
	(7-bit Address) 101
Figure 11-26:	I ² C Waveforms for Transmission
	(7-bit Address)
Figure 11-27:	Operation of the I ² C Module in
	IDLE_MODE, RCV_MODE or
Figure 10.1	XMIT_MODE
Figure 12-1:	Control Register (Address 98h) 105
Figure 12-2:	RCSTA: Receive Status and
rigule 12-2.	Control Register (Address 18h)
Figure 12-3:	RX Pin Sampling Scheme (BRGH = 0)
. iguio 12 01	PIC16C63/R63/65/65A/R65)
Figure 12-4:	RX Pin Sampling Scheme (BRGH = 1)
.g	(PIC16C63/R63/65/65A/R65) 110
Figure 12-5:	
Figure 12-5:	RX Pin Sampling Scheme (BRGH = 1)
	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110
Figure 12-5: Figure 12-6:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110 RX Pin Sampling Scheme (BRGH = 0 or = 1)
	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)110
Figure 12-6:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111
Figure 12-6: Figure 12-7:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 112 Asynchronous Master Transmission Asynchronous Master Transmission
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113
Figure 12-6: Figure 12-7: Figure 12-8:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 112 Asynchronous Master Transmission Asynchronous Master Transmission
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 111 USART Transmit Block Diagram 113 Asynchronous Master Transmission (Back to Back) USART Receive Block Diagram 114 Asynchronous Transmission 114 Synchronous Transmission
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) USART Transmit Block Diagram 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Transmission 114 Synchronous Transmission
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13: Figure 12-14:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) USART Receive Block Diagram 114 USART Receive Block Diagram 114 Synchronous Transmission 117 Synchronous Transmission through TXEN 117 Master Mode, SREN)
Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission (Back to Back) 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception

Figure 13-2:	Configuration Word for
	PIC16C62/64/65 124
Figure 13-3:	Configuration Word for
	PIC16C62A/R62/63/R63/64A/R64/
	65A/R65/66/67 124
Figure 13-4:	Crystal/Ceramic Resonator Operation
	(HS, XT or LP OSC Configuration)
Figure 13-5:	External Clock Input Operation
rigule 15-5.	(HS, XT or LP OSC Configuration)
Einung 10.0	
Figure 13-6:	External Parallel Resonant
	Crystal Oscillator Circuit 127
Figure 13-7:	External Series Resonant
	Crystal Oscillator Circuit 127
Figure 13-8:	RC Oscillator Mode 127
Figure 13-9:	Simplified Block Diagram of
	On-chip Reset Circuit 128
Figure 13-10:	Brown-out Situations 129
Figure 13-11:	Time-out Sequence on Power-up
•	(MCLR not Tied to VDD): Case 1
Figure 13-12:	Time-out Sequence on Power-up
. iguio 10 12.	(MCLR Not Tied To VDD): Case 2
Figure 13-13:	Time-out Sequence on Power-up
rigule 15-15.	(MCLR Tied to VDD)
Einung 10 14.	
Figure 13-14:	External Power-on Reset Circuit
	(For Slow VDD Power-up) 135
Figure 13-15:	External Brown-out
	Protection Circuit 1 135
Figure 13-16:	External Brown-out
	Protection Circuit 2 135
Figure 13-17:	Interrupt Logic for PIC16C61 137
Figure 13-18:	Interrupt Logic for PIC16C6X 137
Figure 13-19:	INT Pin Interrupt Timing 138
Figure 13-20:	Watchdog Timer Block Diagram 140
Figure 13-21:	Summary of Watchdog
riguie to 21.	Timer Registers 140
Figure 12.00	
Figure 13-22:	Wake-up from Sleep Through Interrupt142
Einung 10.00	
Figure 13-23:	Typical In-circuit Serial
	Programming Connection 142
Figure 14-1:	General Format for Instructions 143
Figure 16-1:	Load Conditions for Device Timing
	Specifications 168
Figure 16-2:	External Clock Timing 169
Figure 16-3:	CLKOUT and I/O Timing 170
Figure 16-4:	Reset, Watchdog Timer, Oscillator
-	Start-up Timer and Power-up Timer
	Timing 171
Figure 16-5:	Timer0 External Clock Timings 172
Figure 17-1:	Typical RC Oscillator
rigato tr ti	Frequency vs. Temperature
Eiguro 17 0	Typical RC Oscillator
Figure 17-2:	
E' 47.0	Frequency vs. VDD
Figure 17-3:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-4:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-5:	Typical IPD vs. VDD Watchdog Timer
	Disabled 25°C 174
Figure 17-6:	
i iguio i i oi	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Ū.	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Ū.	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7: Figure 17-8:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C
Figure 17-7: Figure 17-8:	Typical IPD vs. VDD Watchdog Timer Enabled 25°C

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tei: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820