

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc64at-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C6X

Pin Name	Pin#	Pin Type	Buffer Type	Description
OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crys- tal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	I/P	ST	Master clear reset input or programming voltage input. This pin is an active low reset to the device.
				PORTA is a bi-directional I/O port.
RA0	2	I/O	TTL	
RA1	3	I/O	TTL	
RA2	4	I/O	TTL	
RA3	5	I/O	TTL	
RA4/T0CKI	6	I/O	ST	RA4 can also be the clock input to the Timer0 timer/counter. Output is open drain type.
RA5/SS	7	I/O	TTL	RA5 can also be the slave select for the synchronous serial port.
				PORTB is a bi-directional I/O port. PORTB can be software pro-
	01	1/0	TTU(CT(4)	grammed for internal weak pull-up on all inputs.
	21	1/0	111/5109	RBO can also de the external interrupt pin.
RBI	22	1/0		
RB2	23	1/0		
RB3	24	1/0		Intervent en obenge nin
	25	1/0		
RBS	26	1/0	11L TTU(0T(5)	Interrupt on change pin.
RB0	27	1/0	TTL/ST(5)	Interrupt on change pin. Serial programming clock.
RB/	28	1/0	112/5109	Interrupt on change pin. Serial programming data.
RC0/T1OSO ⁽¹⁾ /T1CKI	11	I/O	ST	RC0 can also be the Timer1 oscillator output ⁽¹⁾ or Timer1 clock input.
RC1/T1OSI ⁽¹⁾ /CCP2 ⁽²⁾	12	I/O	ST	RC1 can also be the Timer1 oscillator input ⁽¹⁾ or Capture2 input/Compare2 output/PWM2 output ⁽²⁾ .
RC2/CCP1	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 out- put/PWM1 output.
RC3/SCK/SCL	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK ⁽²⁾	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit ⁽²⁾ or Synchronous Clock ⁽²⁾ .
RC7/RX/DT ⁽²⁾	18	I/O	ST	RC7 can also be the USART Asynchronous Receive ⁽²⁾ or Synchronous $\operatorname{Data}^{(2)}$.
Vss	8,19	Р	_	Ground reference for logic and I/O pins.
Vdd	20	Р	—	Positive supply for logic and I/O pins.
Legend: I = input O =	= output	l.	/O = input/outpu	t P = power
	- Not used	г	TI – TTI input	ST - Sobmitt Trigger input

TABLE 3-2: PIC16C62/62A/R62/63/R63/66 PINOUT DESCRIPTION

Note 1: Pin functions T1OSO and T1OSI are reversed on the PIC16C62.

2: The USART and CCP2 are not available on the PIC16C62/62A/R62.

3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: This buffer is a Schmitt Trigger input when configured as the external interrupt.

5: This buffer is a Schmitt Trigger input when used in serial programming mode.

4.2.2 SPECIAL FUNCTION REGISTERS:

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. The special function registers can be classified into two sets (core and peripheral). The registers associated with the "core" functions are described in this section and those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 4-1:	SPECIAL	FUNCTION	REGISTERS	FOR	THE	PIC16C61

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	—	PORTA Dat	a Latch whe	n written: PC	RTA pins wh	en read	x xxxx	u uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wh	nen read				xxxx xxxx	uuuu uuuu
07h	—	Unimpleme	nted							—	—
08h	-	Unimpleme	nted		—	—					
09h	—	Unimpleme	nted		—	—					
0Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	—	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	—	PORTA Dat	a Direction F	Register			1 1111	1 1111
86h	TRISB	PORTB Dat	ta Direction C	Control Regis	ster					1111 1111	1111 1111
87h	-	Unimpleme	nted							—	—
88h	-	Unimpleme	nted							—	—
89h	-	Unimpleme	nted							—	—
8Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	er 5 bits of th	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	_	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0-00 000x	0-00 000u

 $\label{eq:logend: condition} \ensuremath{\mathsf{Legend: }} x = \mathsf{unknown}, u = \mathsf{unchanged}, q = \mathsf{value} \ensuremath{\, depends} \ensuremath{\, on \, condition}, \ensuremath{\, - \, = \, unimplemented \, locations \, read \, as \, '0'.$

Shaded locations are unimplemented and read as '0'

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved on the PIC16C61, always maintain these bits clear.

IADLE	4-3:	SPECIA	SPECIAL FUNCTION REGISTERS FOR THE PICTOCO3/R03										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾		
Bank 0													
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000		
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu		
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000		
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu		
04h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	ər		1	1	1	xxxx xxxx	uuuu uuuu		
05h	PORTA	—	_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu		
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu		
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu		
08h	—	Unimpleme	nted							-	-		
09h	—	Unimpleme	nted		-	-							
0Ah ^(1,2)	PCLATH	—	Write Buffer for the upper 5 bits of the Program Counter										
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u		
0Ch	PIR1	(5)	(5)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000		
0Dh	PIR2	_	_	_		_	_	_	CCP2IF	0	0		
0Eh	TMR1L	Holding reg	ister for the I	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu		
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu		
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu		
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000		
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000		
13h	SSPBUF	Synchronou	us Serial Por	t Receive Bu	iffer/Transmit	Register				xxxx xxxx	uuuu uuuu		
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000		
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu		
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu		
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000		
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x		
19h	TXREG	USART Tra	nsmit Data F	legister						0000 0000	0000 0000		
1Ah	RCREG	USART Red	ceive Data R	egister						0000 0000	0000 0000		
1Bh	CCPR2L	Capture/Co	mpare/PWM	2 (LSB)						xxxx xxxx	uuuu uuuu		
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu		
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000		
1Eh-1Fh	—	Unimpleme	nted							—	—		

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63/R63

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The IRP and RP1 bits are reserved on the PIC16C63/R63, always maintain these bits clear.

5: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C63/R63, always maintain these bits clear.

NOTES:

-

NOTES:

-

11.2 <u>SPI Mode for PIC16C62/62A/R62/63/</u> R63/64/64A/R64/65/65A/R65

This section contains register definitions and operational characteristics of the SPI module for the PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16CR63, PIC16C64A, PIC16CR64, PIC16CR64, PIC16C65, PIC16C65A, PIC16CR65.

FIGURE 11-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0							
—		D/A	Р	S	R/W	UA	BF	R = Readable bit						
bit7							bit0	W = Writable bit						
								as '0'						
								- n =Value at POR reset						
bit 7-6:	Unimp	emented	Read as	'0'										
bit 5:	D / A : Data/Address bit (I ² C mode only) 1 = Indicates that the last byte received or transmitted was data													
	 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 													
hit 4.	 U = indicates that the last byte received or transmitted was address P: Stop bit (I²C mode only. This bit is cleared when the SSP module is disabled. SSPEN is cleared) 													
ыт 4.	 P: Stop bit (I⁺C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared) 1 = Indicates that a stop bit has been detected last (this bit is '0' on RESET) 													
	0 = Stop bit was not detected last													
bit 3:	S: Start bit (I ² C mode only. This bit is cleared when the SSP module is disabled, SSPEN is cleared)													
	1 = Indicates that a start bit has been detected last (this bit is '0' on RESET)													
hit 2.	e − eta R/W· B	ead/Write	bit inform	ation (I ² C n	node only)									
DR E.	This bit	holds the	R/W bit i	nformation	following the	alast addre	ess match. Th	nis bit is valid from the address						
	match t	o the next	start bit, s	stop bit, or	ACK bit.									
	1 = Rea 0 = Wri	ad te												
hit 1·		 date Addr	ess (10-hi	t I ² C mode	only)									
2.1.11	1 = Indi	cates that	the user i	needs to up	date the add	dress in the	SSPADD reg	gister						
	0 = Adc	lress does	s not need	to be upda	ited									
bit 0:	BF: But	fer Full St	atus bit											
	Receive	e (SPI and	I I ² C mode	es)										
	1 = Rec 0 - Rec	ceive com	plete, SSP	'BUF is tull SSPRLIE is	emntv									
	Transm	it (I ² C mo	de only)	001 001 13	Subry									
	1 = Trai	nsmit in pr	ogress, S	SPBUF is f	ull									
	0 = Trai	nsmit com	plete, SSF	PBUF is err	pty									

11.4 <u>I²C[™] Overview</u>

This section provides an overview of the Inter-Integrated Circuit (I²C) bus, with Section 11.5 discussing the operation of the SSP module in I^2C mode.

The I^2C bus is a two-wire serial interface developed by the Philips[®] Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. The enhanced specification (fast mode) is also supported. This device will communicate with both standard and fast mode devices if attached to the same bus. The clock will determine the data rate.

The I²C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master" which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-3 defines some of the I²C bus terminology. For additional information on the I²C interface specification, refer to the Philips document "*The I²C bus and how to use it.*"#939839340011, which can be obtained from the Philips Corporation.

In the I^2C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from/write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of as operating in either of these two relations:

- · Master-transmitter and Slave-receiver
- · Slave-transmitter and Master-receiver

In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I^2C bus is limited only by the maximum bus loading specification of 400 pF.

11.4.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. The START and STOP conditions. The master generates these conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

FIGURE 11-14: START AND STOP CONDITIONS

Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

TABLE 11-3: I²C BUS TERMINOLOGY

11.5.1 SLAVE MODE

PIC16C6X

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-4 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.5.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The

address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-16). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT-<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 11-4: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received				Set bit SSPIF			
BF	SSPOV	$SSPSR \to SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)			
0	0	Yes	Yes	Yes			
1	0	No	No	Yes			
1	1	No	No	Yes			
0	1	No	No	Yes			

12.4 USART Synchronous Slave Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Synchronous Slave Mode differs from Master Mode in the fact that the shift clock is supplied externally at the CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

12.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit $\mathsf{TXIE}.$
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

12.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, enable bit SREN is a don't care in slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN, and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit RCIE.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing enable bit CREN.

PIC16C6X

COMF	Complement f	DECFSZ	Decrement f, Skip if 0						
Syntax:	[label] COMF f,d	Syntax:	[label] DECFSZ f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$(\bar{f}) \rightarrow (destination)$	Operation:	(f) - 1 \rightarrow (destination);						
Status Affected:	Z		skip if result = 0						
Encoding:	00 1001 dfff ffff	Status Affected:	None						
Description:	The contents of register 'f' are comple-	Encoding:	00 1011 dfff ffff						
	W. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed						
Words:	1		back in register 'f'. If the result is 1, the next instruction, is						
Cycles:	1		executed. If the result is 0, then a NOP is executed instead making it a 2Tcy instruc-						
Q Cycle Activity:	Q1 Q2 Q3 Q4		tion.						
	Decode Read Process Write to	Words:	1						
	r data decimation	Cycles:	1(2)						
		Q Cycle Activity:	Q1 Q2 Q3 Q4						
Example	COMF REGI, 0 Before Instruction		Decode Read register 'f' data Verte to destination						
	REG1 = 0x13	If Skip:	(2nd Cycle)						
	REG1 = 0x13		Q1 Q2 Q3 Q4						
	W = 0xEC		No- OperationNo- OperationNo- Operation						
DECF	Decrement f	Example							
Syntax:	[<i>label</i>] DECF f,d	Example	GOTO LOOP						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		CONTINUE • •						
Operation:	(f) - 1 \rightarrow (destination)		Before Instruction						
Status Affected:	Z		PC = address HERE						
Encoding:	00 0011 dfff ffff		CNT = CNT - 1						
Description:	Desware and register If If Islin is O the								
	result is stored in the W register If 'd' is		if $CNT = 0$,						
	result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		if CNT = 0, PC = address CONTINUE if CNT ≠ 0.						
Words:	result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1		$\begin{array}{rcl} \mbox{if CNT} = & 0, \\ PC & = & \mbox{address CONTINUE} \\ \mbox{if CNT} \neq & 0, \\ PC & = & \mbox{address HERE+1} \end{array}$						
Words: Cycles:	1 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.		if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1						
Words: Cycles: Q Cycle Activity:	1 percentent register 1. If d is 0 ine result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		$\begin{array}{rcl} \text{if CNT} = & 0, \\ \text{PC} & = & \text{address CONTINUE} \\ \text{if CNT} \neq & 0, \\ \text{PC} & = & \text{address HERE+1} \end{array}$						
Words: Cycles: Q Cycle Activity:	Decode Read register Process data Write to destination		if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1						
Words: Cycles: Q Cycle Activity: Example	Decrement register 1 m d is of the d is 1 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1 Q1 Q2 Q3 Q4 Decode Read Process Write to register 'f'. DECF CNT, 1		if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1						
Words: Cycles: Q Cycle Activity: Example	Decrement register 1 m d is 0 me result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 2 2 2 2 2 2 2 3 2 4 2 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 2 3 2 4 2 3 2 4 4 3 2 4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 4 3 2 4 4 3 3 2 4 4 3 3 2 4 4 3 3 2 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 3 4 4 3 3 3 3 3 4 4 3 3 3 3 3 3 3 4 4 3 3 3 3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3		if CNT = 0, PC = address continue if CNT ≠ 0, PC = address HERE+1						
Words: Cycles: Q Cycle Activity: Example	Decrement register 1 rd is 0 me result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 $\begin{array}{c c} Q1 & Q2 & Q3 & Q4 \\\hline \hline Q3 & Q4 \\\hline \hline Q4 & Q4 \\\hline Q4 & Q4 \\\hline$		if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1						
Words: Cycles: Q Cycle Activity: Example	Decrement register 1 rd is 0 me result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 $\frac{Q1}{Q2} \qquad Q3 \qquad Q4$ $\boxed{\begin{array}{c} Q2 \qquad Q3 \qquad Q4} \\ \hline \hline \\ \hline $		if CNT = 0, PC = address continue if CNT ≠ 0, PC = address HERE+1						
Words: Cycles: Q Cycle Activity: Example	Decrement register 1.1 rd is 0 me result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'. 1 1 Q1 Q2 Q3 Q4 Decode Read Process Write to data destination DECF CNT, 1 Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00		if CNT = 0, PC = address CONTINUE if CNT ≠ 0, PC = address HERE+1						

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 16-8: MAXIMUM IPD vs. VDD WATCHDOG ENABLED*

*IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

DC CHA	RACTERISTICS	$\begin{array}{l lllllllllllllllllllllllllllllllllll$								
Param	Characteristic	Sym	Min	Тур +	Max	Units	Conditions			
110.	Capacitive Loading Specs on Output			1						
	Pins									
D100	OSC2 pin	Cosc2	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.			
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF				
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF				

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameters	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		—	75	200	ns	Note 1
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		—	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		—	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out valid		—		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT	↑	Tosc + 200		—	ns	Note 1
16*	TckH2ioI	Port in hold after CLKOUT \uparrow		0		—	ns	Note 1
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out	—	50	150	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC16 C 62/64	100		—	ns	
		input invalid (I/O in hold time)	PIC16 LC 62/64	200		—	ns	
19*	TioV2osH	Port input valid to OSC1 [↑] (I/O in setup time)		0		_	ns	
20*	TioR	Port output rise time	PIC16 C 62/64	_	10	40	ns	
			PIC16 LC 62/64	—		80	ns	
21*	TioF	Port output fall time	PIC16 C 62/64	—	10	40	ns	
			PIC16 LC 62/64	—		80	ns	
22††*	Tinp	INT pin high or low time		Тсү	_	_	ns	
23††*	Trbp	RB7:RB4 change INT high or	low time	Тсү	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

these parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices	61	62	62A	B62	63	B63	64	64A	B64	65	65A	B65	66	67
	• •		UL , .		00		• •	• • • •		~~			00	•••

1		Standa	rd Onerat	ina (Condition	ne (unli	ess otherwise stated)		
		Onerating temperature -40° C < Ta < $\pm 125^{\circ}$ C for extended							
							\leq TA \leq 195°C for inductrial and		
DC CH/	DC CHARACTERISTICS				-40	$-40 \text{ C} \leq 14 \leq +80 \text{ C}$ for commercial			
		Oneratio		Voo		$0 C \leq 1A \leq +70 C$ for continential			
		Operating voltage VDD range as described in DC spec Section 18.1 and							
_	<u>.</u>	Section	18.2	_		•• •• ••			
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions		
No.				1					
	Output High Voltage								
D090	I/O ports (Note 3)	VOH	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V,		
							-40°C to +85°C		
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V,		
							-40°C to +125°C		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	v	IOH = -1.3 mA. VDD = 4.5V.		
							-40°C to +85°C		
D092A			Vpp-0.7	-	-	v	IOH = -1.0 mA VDD = 4.5V		
						-	-40°C to +125°C		
D150*	Open-Drain High Voltage	VOD	-	-	14	v	RA4 pin		
	Capacitive Loading Specs on Out-					-	· · · · · P ···		
	nut Pins								
D100	OSC2 nin	Cosca	_	_	15	nF	In XT HS and I P modes when		
0100	0002 pm	00302	_	-	15	рі	external clock is used to drive		
DIAI		0.0			50	- 5	0301.		
0101	All I/O pins and USU2 (In RC mode)	00	-	-	50	p⊢			
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16CR63/R65	10	—	—	ns	
				PIC16LCR63/R65	20	—	_	ns	
51*	51* TccH CCP1		No Prescaler	Prescaler		—	_	ns	
		input high time	With Prescaler	PIC16 CR 63/R65	10		_	ns	
				PIC16LCR63/R65	20		_	ns	
52*	TccP	CCP1 and CCP2 ir	nput period		<u>3Tcy + 40</u> N		-	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 output rise time		PIC16 CR 63/R65	—	10	25	ns	
				PIC16LCR63/R65	—	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16 CR 63/R65	—	10	25	ns	
				PIC16LCR63/R65	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

22.5 <u>Timing Diagrams and Specifications</u>

FIGURE 22-2: EXTERNAL CLOCK TIMING

TABLE 22-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	—	—	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	—	—	ns	XT oscillator
	TosH	Low Time	2.5	-	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—	—	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

24.2 28-Lead Plastic Dual In-line (300 mil) (SP)

Package Group: Plastic Dual In-Line (PLA)						
	Millimeters			Inches		
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
A	3.632	4.572		0.143	0.180	
A1	0.381	_		0.015	_	
A2	3.175	3.556		0.125	0.140	
В	0.406	0.559		0.016	0.022	
B1	1.016	1.651	Typical	0.040	0.065	Typical
B2	0.762	1.016	4 places	0.030	0.040	4 places
B3	0.203	0.508	4 places	0.008	0.020	4 places
С	0.203	0.331	Typical	0.008	0.013	Typical
D	34.163	35.179		1.385	1.395	
D1	33.020	33.020	Reference	1.300	1.300	Reference
E	7.874	8.382		0.310	0.330	
E1	7.112	7.493		0.280	0.295	
e1	2.540	2.540	Typical	0.100	0.100	Typical
eA	7.874	7.874	Reference	0.310	0.310	Reference
eB	8.128	9.652		0.320	0.380	
L	3.175	3.683		0.125	0.145	
N	28	28		28	28	
S	0.584	1.220		0.023	0.048	

24.14 Package Marking Information

Legend:	MMM	Microchip part number information		
	XXX			
	AA	Year code (last 2 digits of calender year)		
	BB	Week code (week of January 1 is week '01')		
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.		
	D ₁	Mask revision number for microcontroller		
	D ₂	Mask revision number for EEPROM		
	E	Assembly code of the plant or country of origin in which part was assembled.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.			

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Cont'd)

28-Lead SOIC

28-Lead Side Brazed Skinny Windowed

Example PIC16C66/JW \mathcal{D} 9517CAT

PIC16C62/JW

9517SBT

Example

Example

PIC16C62-20/S0111

5 9515SBA

40-Lead PDIP

Example

Legend:	MMM	Microchip part number information			
	XXX	Customer specific information*			
	AA	Year code (last 2 digits of calender year)			
	BB	Week code (week of January 1 is week '01')			
	С	Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A.			
	D ₁ E	Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled.			
Note:	In the even line, it will b available ch	ent the full Microchip part number cannot be marked on one Il be carried over to the next line thus limiting the number of characters for customer specific information.			

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.