



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 4MHz                                                                      |
| Connectivity               | I²C, SPI, UART/USART                                                      |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 33                                                                        |
| Program Memory Size        | 7KB (4K x 14)                                                             |
| Program Memory Type        | OTP                                                                       |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 192 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 6V                                                                 |
| Data Converters            | -                                                                         |
| Oscillator Type            | External                                                                  |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                           |
| Mounting Type              | Through Hole                                                              |
| Package / Case             | 40-DIP (0.600", 15.24mm)                                                  |
| Supplier Device Package    | 40-PDIP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc65a-04-p |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## PIC16C6X

#### Pin Diagrams (Cont.'d)



|                      |         |                    |                                             |                           |                |              |                 |               | (                  | ,                        |                                                |
|----------------------|---------|--------------------|---------------------------------------------|---------------------------|----------------|--------------|-----------------|---------------|--------------------|--------------------------|------------------------------------------------|
| Address              | Name    | Bit 7              | Bit 6                                       | Bit 5                     | Bit 4          | Bit 3        | Bit 2           | Bit 1         | Bit 0              | Value on:<br>POR,<br>BOR | Value on<br>all other<br>resets <sup>(3)</sup> |
| Bank 1               |         |                    |                                             |                           |                |              |                 |               |                    |                          |                                                |
| 80h <sup>(1)</sup>   | INDF    | Addressing         | this location                               | uses conter               | nts of FSR to  | address data | a memory (ne    | ot a physical | register)          | 0000 0000                | 0000 0000                                      |
| 81h                  | OPTION  | RBPU               | INTEDG                                      | TOCS                      | TOSE           | PSA          | PS2             | PS1           | PS0                | 1111 1111                | 1111 1111                                      |
| 82h <sup>(1)</sup>   | PCL     | Program Co         | ounter's (PC)                               | Least Sigr                | nificant Byte  |              |                 |               |                    | 0000 0000                | 0000 0000                                      |
| 83h <sup>(1)</sup>   | STATUS  | IRP <sup>(5)</sup> | RP1 <sup>(5)</sup>                          | RP0                       | TO             | PD           | Z               | DC            | с                  | 0001 1xxx                | 000q quuu                                      |
| 84h <sup>(1)</sup>   | FSR     | Indirect data      | a memory ac                                 | dress pointe              | ər             |              |                 |               |                    | xxxx xxxx                | uuuu uuuu                                      |
| 85h                  | TRISA   | -                  | —                                           | PORTA Dat                 | ta Direction R | legister     |                 |               |                    | 11 1111                  | 11 1111                                        |
| 86h                  | TRISB   | PORTB Dat          | ta Direction F                              | Register                  |                |              |                 |               |                    | 1111 1111                | 1111 1111                                      |
| 87h                  | TRISC   | PORTC Da           | PORTC Data Direction Register 1111 1111 111 |                           |                |              |                 |               |                    |                          | 1111 1111                                      |
| 88h                  | _       | Unimpleme          | Unimplemented —                             |                           |                |              |                 |               |                    | _                        |                                                |
| 89h                  | -       | Unimpleme          | Unimplemented -                             |                           |                |              |                 |               |                    |                          | —                                              |
| 8Ah <sup>(1,2)</sup> | PCLATH  | —                  | —                                           | —                         | Write Buffer   | for the uppe | r 5 bits of the | e Program C   | ounter             | 0 0000                   | 0 0000                                         |
| 8Bh <sup>(1)</sup>   | INTCON  | GIE                | PEIE                                        | TOIE                      | INTE           | RBIE         | TOIF            | INTF          | RBIF               | 0000 000x                | 0000 000u                                      |
| 8Ch                  | PIE1    | (6)                | (6)                                         | —                         | -              | SSPIE        | CCP1IE          | TMR2IE        | TMR1IE             | 00 0000                  | 00 0000                                        |
| 8Dh                  | -       | Unimpleme          | nted                                        |                           |                |              |                 |               |                    | —                        | —                                              |
| 8Eh                  | PCON    | _                  | _                                           | _                         | -              | -            | _               | POR           | BOR <sup>(4)</sup> | dd                       | uu                                             |
| 8Fh                  | _       | Unimpleme          | nted                                        |                           |                |              |                 |               |                    | _                        | _                                              |
| 90h                  | _       | Unimpleme          | nted                                        |                           |                |              |                 |               |                    | _                        | _                                              |
| 91h                  | _       | Unimpleme          | nted                                        |                           |                |              |                 |               |                    | _                        | _                                              |
| 92h                  | PR2     | Timer2 Peri        | iod Register                                |                           |                |              |                 |               |                    | 1111 1111                | 1111 1111                                      |
| 93h                  | SSPADD  | Synchronou         | us Serial Por                               | t (I <sup>2</sup> C mode) | Address Reg    | gister       |                 |               |                    | 0000 0000                | 0000 0000                                      |
| 94h                  | SSPSTAT | —                  | —                                           | D/A                       | Р              | S            | R/W             | UA            | BF                 | 00 0000                  | 00 0000                                        |
| 95h-9Fh              | _       | Unimpleme          | nted                                        |                           | ·              | •            |                 |               |                    | —                        | _                                              |

| TABLE 4-2: | SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62 | (Cont.'d) |
|------------|-----------------------------------------------------|-----------|
|            |                                                     |           |

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

#### 4.2.2.2 OPTION REGISTER

#### Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB. Note: To achieve a 1:1 prescaler assignment for TMR0 register, assign the prescaler to the Watchdog Timer.

#### R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RBPU INTEDG TOCS T0SE PSA PS2 PS1 PS0 R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' n = Value at POR reset bit 7: RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values INTEDG: Interrupt Edge Select bit bit 6: 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5: TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) TOSE: TMR0 Source Edge Select bit bit 4. 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin PSA: Prescaler Assignment bit bit 3: 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0: PS2:PS0: Prescaler Rate Select bits Bit Value TMR0 Rate WDT Rate 000 1:1 1:2 001 1:2 1 · 4 1:4 010 1:8 1:8 011 1:16 100 1:32 1:16 1:32 101 1:64 1:64 110 1:128 1:128 111 1:256

#### FIGURE 4-10: OPTION REGISTER (ADDRESS 81h, 181h)

#### 4.2.2.3 INTCON REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.

#### Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

#### FIGURE 4-11: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh 18Bh)

| B/W-0                      | B/W-0                                                                                                                                                                                                                                                                       | B/W-0                                      | B/W-0                                         | B/W-0                                   | B/W-0                    | B/W-0        | B/W-x          |                                                                                                      |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------|--|--|
| GIE                        | PEIE                                                                                                                                                                                                                                                                        | TOIE                                       | INTE                                          | RBIE                                    | TOIF                     | INTE         | RBIF           | R = Readable bit                                                                                     |  |  |
| bit7                       | <u> </u>                                                                                                                                                                                                                                                                    | <u> </u>                                   | l                                             |                                         |                          | 1            | bitO           | W = Writable bit<br>U = Unimplemented bit,<br>read as '0'<br>- n = Value at POR reset<br>x = unknown |  |  |
| bit 7:                     | GIE: <sup>(1)</sup> Global Interrupt Enable bit<br>1 = Enables all un-masked interrupts<br>0 = Disables all interrupts                                                                                                                                                      |                                            |                                               |                                         |                          |              |                |                                                                                                      |  |  |
| bit 6:                     | PEIE: <sup>(2)</sup> Peripheral Interrupt Enable bit<br>1 = Enables all un-masked peripheral interrupts<br>0 = Disables all peripheral interrupts                                                                                                                           |                                            |                                               |                                         |                          |              |                |                                                                                                      |  |  |
| bit 5:                     | <b>TOIE:</b> TMR0 Overflow Interrupt         1 = Enables the TMR0 overflow interrupt         0 = Disables the TMR0 overflow interrupt                                                                                                                                       |                                            |                                               |                                         |                          |              |                |                                                                                                      |  |  |
| bit 4:                     | INTE: RB0/INT External Interrupt Enable bit<br>1 = Enables the RB0/INT external interrupt<br>0 = Disables the RB0/INT external interrupt                                                                                                                                    |                                            |                                               |                                         |                          |              |                |                                                                                                      |  |  |
| bit 3:                     | <b>RBIE:</b> RB I<br>1 = Enable<br>0 = Disable                                                                                                                                                                                                                              | Port Chang<br>s the RB po<br>s the RB p    | e Interrupt<br>ort change<br>ort change       | Enable bit<br>interrupt<br>interrupt    |                          |              |                |                                                                                                      |  |  |
| bit 2:                     | <b>TOIF:</b> TMR<br>1 = TMR0<br>0 = TMR0                                                                                                                                                                                                                                    | 0 Overflow<br>register ove<br>register did | Interrupt Flerflowed (m<br>not overflo        | ag bit<br>ust be cleai<br>w             | red in softwa            | re)          |                |                                                                                                      |  |  |
| bit 1:                     | INTF: RB0<br>1 = The RE<br>0 = The RE                                                                                                                                                                                                                                       | /INT Exterr<br>30/INT exte<br>30/INT exte  | nal Interrupt<br>rnal interru<br>rnal interru | Flag bit<br>ot occurred<br>ot did not o | (must be cle<br>ccur     | ared in soft | ware)          |                                                                                                      |  |  |
| bit 0:                     | <b>RBIF:</b> RB I<br>1 = At leas<br>0 = None o                                                                                                                                                                                                                              | Port Chang<br>t one of the<br>of the RB7:I | e Interrupt<br>RB7:RB4<br>RB4 pins ha         | Flag bit<br>bins change<br>we change    | ed state (see<br>d state | Section 5.2  | 2 to clear the | interrupt)                                                                                           |  |  |
| Note 1:                    | For the PIC16C61/62/64/65, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally be re-enabled by the RETFIE instruction in the user's Interrupt Service Routine. Refer to Section 13.5 for a detailed description.                    |                                            |                                               |                                         |                          |              |                |                                                                                                      |  |  |
| 2:                         | I NE PEIE I                                                                                                                                                                                                                                                                 | DIT (DITG) IS I                            | unimplemer                                    | nted on the                             | PIC16C61, r              | ead as '0'.  |                |                                                                                                      |  |  |
| Interri<br>globa<br>enabli | Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. |                                            |                                               |                                         |                          |              |                |                                                                                                      |  |  |

| R/W-0                                                                                                                                                                                                                                                                       | R/W-0                                                                                                                                                                                                                                                                                                                                                                   | U-0                                  | U-0                                      | R/W-0                              | R/W-0                | R/W-0   | R/W-0          |                    |                                                                                                 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------|----------------------|---------|----------------|--------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| PSPIF<br>bit7                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                       | _                                    | _                                        | SSPIF                              | CCP1IF               | TMR2IF  | TMR1IF<br>bit0 | R<br>W<br>U<br>- n | = Readable bit<br>= Writable bit<br>= Unimplemented bit,<br>read as '0'<br>= Value at POR reset |  |  |  |
| oit 7:                                                                                                                                                                                                                                                                      | PSPIF: Parallel Slave Port Interrupt Flag bit<br>1 = A read or a write operation has taken place (must be cleared in software)<br>0 = No read or write operation has taken place                                                                                                                                                                                        |                                      |                                          |                                    |                      |         |                |                    |                                                                                                 |  |  |  |
| bit 6:                                                                                                                                                                                                                                                                      | Reserved:                                                                                                                                                                                                                                                                                                                                                               | Always ma                            | aintain this l                           | oit clear.                         |                      |         |                |                    |                                                                                                 |  |  |  |
| bit 5-4:                                                                                                                                                                                                                                                                    | Unimplem                                                                                                                                                                                                                                                                                                                                                                | ented: Rea                           | ad as '0'                                |                                    |                      |         |                |                    |                                                                                                 |  |  |  |
| bit 3:                                                                                                                                                                                                                                                                      | SSPIF: Synchronous Serial Port Interrupt Flag bit<br>1 = The transmission/reception is complete (must be cleared in software)<br>0 = Waiting to transmit/receive                                                                                                                                                                                                        |                                      |                                          |                                    |                      |         |                |                    |                                                                                                 |  |  |  |
| bit 2:                                                                                                                                                                                                                                                                      | CCP1IF: CCP1 Interrupt Flag bit<br><u>Capture Mode</u><br>1 = A TMR1 register capture occurred (must be cleared in software)<br>0 = No TMR1 register capture occurred<br><u>Compare Mode</u><br>1 = A TMR1 register compare match occurred (must be cleared in software)<br>0 = No TMR1 register compare match occurred<br><u>PWM Mode</u><br><u>Unued to this mode</u> |                                      |                                          |                                    |                      |         |                |                    |                                                                                                 |  |  |  |
| bit 1:                                                                                                                                                                                                                                                                      | <b>TMR2IF</b> : T<br>1 = TMR2 1<br>0 = No TM                                                                                                                                                                                                                                                                                                                            | MR2 to PR<br>to PR2 mat<br>R2 to PR2 | 2 Match Int<br>ch occurred<br>match occu | errupt Flag<br>d (must be<br>irred | bit<br>cleared in so | ftware) |                |                    |                                                                                                 |  |  |  |
| bit 0:                                                                                                                                                                                                                                                                      | TMR1IF: TMR1 Overflow Interrupt Flag bit         1 = TMR1 register overflow occurred (must be cleared in software)         0 = No TMR1 register occurred                                                                                                                                                                                                                |                                      |                                          |                                    |                      |         |                |                    |                                                                                                 |  |  |  |
| Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. |                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                          |                                    |                      |         |                |                    |                                                                                                 |  |  |  |

#### FIGURE 4-18: PIR1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 0Ch)

#### 4.3 PCL and PCLATH

#### Applicable Devices

#### 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 4-24 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0>  $\rightarrow$  PCH). The lower example in the figure in shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  $\rightarrow$  PCH).

#### FIGURE 4-24: LOADING OF PC IN DIFFERENT SITUATIONS



#### 4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 word block). Refer to the application note "Implementing a Table Read" (AN556).

#### 4.3.2 STACK

The PIC16CXX family has an 8 deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or a POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflows or stack underflow conditions.
- Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address

#### 4.4 Program Memory Paging

#### Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PIC16C6X devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction the upper two bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).

Note: PIC16C6X devices with 4K or less of program memory ignore paging bit PCLATH<4>. The use of PCLATH<4> as a general purpose read/write bit is not recommended since this may affect upward compatibility with future products. Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that the PCLATH is saved and restored by the interrupt service routine (if interrupts are used).

#### EXAMPLE 4-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

| ORG 0x5 | 00        |                                                      |
|---------|-----------|------------------------------------------------------|
| BSF     | PCLATH, 3 | ;Select page 1 (800h-FFFh)                           |
| BCF     | PCLATH,4  | ;Only on >4K devices                                 |
| CALL    | SUB1_P1   | ;Call subroutine in                                  |
|         | :         | ;page 1 (800h-FFFh)                                  |
|         | :         |                                                      |
|         | :         |                                                      |
| ORG 0x9 | 00        |                                                      |
| SUB1_P1 | :         | ;called subroutine                                   |
|         | :         | ;page 1 (800h-FFFh)                                  |
|         | :         |                                                      |
| RETURN  |           | ;return to Call subroutine<br>;in page 0 (000h-7FFh) |

#### 4.5 Indirect Addressing, INDF and FSR Registers

| Applicable | e Devices |
|------------|-----------|
|            |           |

| 61 | 62 | 62A | R62 | 63 | R63 | 64 | 64A | R64 | 65 | 65A | R65 | 66 | 67 |
|----|----|-----|-----|----|-----|----|-----|-----|----|-----|-----|----|----|
|----|----|-----|-----|----|-----|----|-----|-----|----|-----|-----|----|----|

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-25.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-2.

#### EXAMPLE 4-2: INDIRECT ADDRESSING

| NEXT     | movlw<br>movwf<br>clrf<br>incf<br>btfss | 0x20<br>FSR<br>INDF<br>FSR,F<br>FSR,4 | ;initialize pointer<br>; to RAM<br>;clear INDF register<br>;inc pointer<br>;all done? |
|----------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|
|          | goto                                    | NEXT                                  | ;NO, clear next                                                                       |
| CONTINUE |                                         |                                       |                                                                                       |
|          | :                                       |                                       | ;YES, continue                                                                        |

#### FIGURE 4-25: DIRECT/INDIRECT ADDRESSING



#### 6.0 OVERVIEW OF TIMER MODULES

#### Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

All PIC16C6X devices have three timer modules except for the PIC16C61, which has one timer module. Each module can generate an interrupt to indicate that an event has occurred (i.e., timer overflow). Each of these modules are detailed in the following sections. The timer modules are:

- Timer0 module (Section 7.0)
- Timer1 module (Section 8.0)
- Timer2 module (Section 9.0)

#### 6.1 <u>Timer0 Overview</u>

#### Applicable Devices

#### 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. TMR0 can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

#### 6.2 <u>Timer1 Overview</u>

| _  |                  |   |
|----|------------------|---|
|    |                  |   |
|    |                  |   |
| IЛ |                  | • |
|    |                  | - |
| ~  | plicable Devices | 3 |

#### 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

TImer1 also has a prescaler option which allows TMR1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. TMR1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit compare and must be synchronized to the device.

#### 6.3 <u>Timer2 Overview</u>

#### Applicable Devices

#### 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer2 is an 8-bit timer with a programmable prescaler and a programmable postscaler, as well as an 8-bit Period Register (PR2). Timer2 can be used with the CCP module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16.

The postscaler allows TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

#### 6.4 <u>CCP Overview</u>

| _ |           |         |
|---|-----------|---------|
| Δ | nnlicable | Devices |
| ~ | ppiloubic | Devices |

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The CCP module(s) can operate in one of three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs, an interrupt can be generated and the output pin CCPx can be forced to a given state (High or Low) and Timer1 can be reset. This depends on control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.

#### 8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

#### Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

If control bit  $\overline{T1SYNC}$  (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and generate an interrupt on overflow which will wake the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair, TMR1L and TMR1H (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

### 8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit  $\overline{T1SYNC}$  is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters (45 - 47).

#### 8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

#### EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

| ;  | All Int  | errupts  | are  | disabled                |
|----|----------|----------|------|-------------------------|
|    | MOVF     | TMR1H,   | W    | ;Read high byte         |
|    | MOVWF    | TMPH     |      | ;                       |
|    | MOVF     | TMR1L,   | W    | ;Read low byte          |
|    | MOVWF    | TMPL     |      | ;                       |
|    | MOVF     | TMR1H,   | W    | ;Read high byte         |
|    | SUBWF    | TMPH,    | W    | ;Sub 1st read           |
|    |          |          |      | ;with 2nd read          |
|    | BTFSC    | STATUS   | Z    | ;is result = 0          |
|    | GOTO     | CONTINU  | JE   | ;Good 16-bit read       |
| ;  | TMR1L ma | y have r | olle | d over between the read |
| ;  | of the h | igh and  | low  | bytes. Reading the high |
| ;  | and low  | bytes no | w w  | ill read a good value.  |
|    | MOVF     | TMR1H,   | W    | ;Read high byte         |
|    | MOVWF    | TMPH     |      | ;                       |
|    | MOVF     | TMR1L,   | W    | ;Read low byte          |
|    | MOVWF    | TMPL     |      | ;                       |
| ;  | Re-ena   | ble Inte | rrup | ot (if required)        |
| CC | ONTINUE  |          |      | ;Continue with          |
|    | :        |          |      | ;your code              |

#### 8.4 Timer1 Oscillator

#### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

A crystal oscillator circuit is built in-between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must allow a software time delay to ensure proper oscillator start-up.

#### TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

| Osc Type                                                                                                                                                                                                                                                                                                 | Freq         | C1                         | C2           |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|--------------|--|--|--|--|--|--|
| LP                                                                                                                                                                                                                                                                                                       | 32 kHz       | 32 kHz 33 pF               |              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | 100 kHz      | 15 pF                      | 15 pF        |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | 200 kHz      | 15 pF                      | 15 pF        |  |  |  |  |  |  |
| These values are for design guidance only.                                                                                                                                                                                                                                                               |              |                            |              |  |  |  |  |  |  |
| Crystals Tested:                                                                                                                                                                                                                                                                                         |              |                            |              |  |  |  |  |  |  |
| 32.768 kHz                                                                                                                                                                                                                                                                                               | $\pm$ 20 PPM |                            |              |  |  |  |  |  |  |
| 100 kHz                                                                                                                                                                                                                                                                                                  | Epson C-2 1  | Epson C-2 100.00 KC-P ± 20 |              |  |  |  |  |  |  |
| 200 kHz                                                                                                                                                                                                                                                                                                  | STD XTL 20   | 0.000 kHz                  | $\pm$ 20 PPM |  |  |  |  |  |  |
| <ul> <li>Note 1: Higher capacitance increases the stability of oscillator but also increases the stat-up time.</li> <li>2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components</li> </ul> |              |                            |              |  |  |  |  |  |  |

#### FIGURE 11-13: SPI MODE TIMING (SLAVE MODE WITH CKE = 1) (PIC16C66/67)



| Address               | Name    | Bit 7                | Bit 6                         | Bit 5    | Bit 4      | Bit 3       | Bit 2    | Bit 1  | Bit 0  | Valu<br>Pow<br>Re | Value on<br>Power-on<br>Reset |      | Value on all other resets |  |
|-----------------------|---------|----------------------|-------------------------------|----------|------------|-------------|----------|--------|--------|-------------------|-------------------------------|------|---------------------------|--|
| 0Bh,8Bh,<br>10Bh,18Bh | INTCON  | GIE                  | PEIE                          | TOIE     | INTE       | RBIE        | T0IF     | INTF   | RBIF   | 0000              | 000x                          | 0000 | 000u                      |  |
| 0Ch                   | PIR1    | PSPIF <sup>(1)</sup> | (2)                           | RCIF     | TXIF       | SSPIF       | CCP1IF   | TMR2IF | TMR1IF | 0000              | 0000                          | 0000 | 0000                      |  |
| 8Ch                   | PIE1    | PSPIE <sup>(1)</sup> | (2)                           | RCIE     | TXIE       | SSPIE       | CCP1IE   | TMR2IE | TMR1IE | 0000              | 0000                          | 0000 | 0000                      |  |
| 13h                   | SSPBUF  | Synchron             | ous Serial                    | Port Rec | eive Buffe | r/Transmit  | Register |        |        | xxxx              | xxxx                          | uuuu | uuuu                      |  |
| 14h                   | SSPCON  | WCOL                 | SSPOV                         | SSPEN    | CKP        | SSPM3       | SSPM2    | SSPM1  | SSPM0  | 0000              | 0000                          | 0000 | 0000                      |  |
| 85h                   | TRISA   | _                    |                               | PORTA D  | Data Direc | tion regist | er       |        |        | 11                | 1111                          | 11   | 1111                      |  |
| 87h                   | TRISC   | PORTC D              | PORTC Data Direction register |          |            |             |          |        |        |                   | 1111                          | 1111 | 1111                      |  |
| 94h                   | SSPSTAT | SMP                  | CKE                           | D/A      | Р          | S           | R/W      | UA     | BF     | 0000              | 0000                          | 0000 | 0000                      |  |

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16C66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

Г

#### FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

| SPEN       RX9       SREN       CREN       —       FERR       OERR       RX9D       R       = Readable bit         bit7       bit0       If = Readable bit       If = Writable bit       If =                                                    | R/W-0  | R/W-0                                               | R/W-0                                                     | R/W-0                            | U-0         | R-0         | R-0          | R-x         |       |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------|-----------------------------------------------------------|----------------------------------|-------------|-------------|--------------|-------------|-------|----------------------|
| bit7 bit8 bit0 W = Writable bit<br>W = Writable bit<br>U = Uunimplemented<br>bit, read as '0'<br>- n = 'value at POR reset<br>x = unknown<br>bit 7: SPEN: Serial Port Enable bit<br>(Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7.6> are set)<br>1 = Serial port disabled<br>bit 6: RX9: 9-bit Receive Enable bit<br>1 = Selects 9-bit reception<br>0 = Selects 8-bit reception<br>0 = Selects 8-bit reception<br>bit 5: SREN: Single Receive Enable bit<br>Asynchronous mode<br>Don't care<br>Synchronous mode - master<br>1 = Enables single receive<br>This bit is cleared after reception is complete.<br>Synchronous mode - slave<br>Unused in this mode<br>bit 4: CREN: Continuous receive<br>0 = Disables continuous receive<br>bit 3: Unimplemented: Read as '0'<br>bit 2: FERF: Framing Error bit<br>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)<br>0 = No framing error<br>bit 0: RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                     | SPEN   | RX9                                                 | SREN                                                      | CREN                             | —           | FERR        | OERR         | RX9D        | R     | = Readable bit       |
| bit 7:       SPEN: Serial Port Enable bit<br>(Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set)<br>1 = Serial port enabled<br>0 = Serial port disabled         bit 6:       RX9: 9-bit Receive Enable bit<br>1 = Selects 9-bit reception<br>0 = Selects 8-bit reception         bit 5:       SREN: Single Receive Enable bit<br>1 = Enables single receive<br>0 = Don't care         Synchronous mode<br>Don't care       Synchronous mode - master<br>1 = Enables single receive<br>0 = Disables single receive<br>This bit is cleared after reception is complete.         Synchronous mode<br>Dunts of this mode       Synchronous mode - slave<br>Unused in this mode         bit 4:       CREN: Continuous Receive Enable bit<br>Asynchronous mode<br>Disables continuous receive<br>0 = Disables continuous receive<br>0 = Disables continuous receive         bit 4:       CREN: Continuous Receive Enable bit<br>Asynchronous mode<br>1 = Enables continuous receive<br>Synchronous mode         bit 3:       Unimplemented: Read as '0'         bit 4:       CREN: Continuous receive<br>Synchronous receive         bit 3:       Unimplemented: Read as '0'         bit 2:       FERR: Framing Error bit<br>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)<br>0 = No traming error         bit 1:       OERR: Overrun Error bit<br>1 = Overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit) | bit7   |                                                     |                                                           |                                  |             |             |              | bit0        | W     | = Writable bit       |
| -n = Value at POR reset         x = unknown         bit 7:       SPEN: Serial Port Enable bit         (Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set)         1 = Serial port enabled         0 = Serial port enabled         0 = Selects 8-bit Receive Enable bit         1 = Selects 9-bit reception         0 = Selects 8-bit reception         0 = Selects 8-bit reception         bit 5:       SREN: Single Receive Enable bit         Asynchronous mode         Don't care         Synchronous mode - master         1 = Enables single receive         0 = Disables single receive         0 = Disables single receive         Unused in this mode         bit 4:       CREN: Continuous Receive Enable bit         Asynchronous mode         1 = Enables continuous receive         0 = Disables continuous receive         0 = Disables continuous receive         Synchronous mode         1 = Enables continuous receive         0 = Disables continuous receive         0 = Disables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 4:       FERR: Framing Error bit         1 = Framing error (Can be updated by reading RCREG register and receive next valid byte) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>bit. read as '0'</td>                                                                                                                                        |        |                                                     |                                                           |                                  |             |             |              |             | 0     | bit. read as '0'     |
| k       = unknown         bit 7:       SPEN: Serial Port Enable bit<br>(Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set)<br>1 = Serial port disabled         bit 6:       RX9: 9-bit Receive Enable bit<br>1 = Selects 9-bit reception<br>0 = Selects 8-bit reception         bit 5:       SREN: Single Receive Enable bit<br>Asynchronous mode<br>Don't care         Synchronous mode - master<br>1 = Enables single receive<br>0 = Disables single receive<br>This bit is cleared after reception is complete.<br>Synchronous mode - slave<br>Unused in this mode         bit 4:       CREN: Continuous Receive Enable bit<br>Asynchronous mode<br>0 = Disables continuous receive         bit 4:       CREN: Continuous receive<br>0 = Disables continuous receive<br>0 = Disables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 2:       FERR: Framing Error bit<br>1 = Framing error bit<br>1 = Framing error bit<br>1 = Overrun error         bit 1:       OERR: Overrun Error bit<br>1 = Overrun error         bit 1:       OERR: Overrun Error bit<br>1 = Overrun error                                                                                                                                                                                                                                                                                                                                                                |        |                                                     |                                                           |                                  |             |             |              |             | - n   | = Value at POR reset |
| bit 7: SPEN: Serial Port Enable bit<br>(Configures RC7/RX/DT and RC6/TX/CK pins as serial port pins when bits TRISC<7:6> are set)<br>1 = Serial port enabled<br>0 = Serial port disabled<br>bit 6: RX9: 9-bit reception<br>0 = Selects 8-bit reception<br>bit 5: SREN: Single Receive Enable bit<br><u>Asynchronous mode</u><br>Don't care<br><u>Synchronous mode - master</u><br>1 = Enables single receive<br>Don't care<br><u>Synchronous mode - master</u><br>1 = Enables single receive<br>This bit is cleared after reception is complete.<br><u>Synchronous mode - slave</u><br>Unused in this mode<br>bit 4: CREN: Continuous Receive Enable bit<br><u>Asynchronous mode</u><br>1 = Enables continuous receive<br>0 = Disables continuous receive<br>0 = Disables continuous receive<br>0 = Disables continuous receive<br>1 = Enables continuous receive<br>0 = Disables continuous receive<br>bit 3: Unimplemented: Read as '0'<br>bit 2: FERR: Framing Error bit<br>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)<br>0 = No framing error<br>bit 1: OERR: Overrun Error bit<br>1 = Overrun error (Can be cleared by clearing bit CREN)<br>0 = No overrun error<br>bit 0: RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                        |        |                                                     |                                                           |                                  |             |             |              |             | х     | = unknown            |
| bit 6:       RX9: 9-bit Receive Enable bit         1 = Selects 9-bit reception       0         0 = Selects 8-bit reception       0         bit 5:       SREN: Single Receive Enable bit         Asynchronous mode       Don't care         Synchronous mode - master       1         1 = Enables single receive       0         0 = Disables single receive       This bit is cleared after reception is complete.         Synchronous mode - slave       Unused in this mode         Unused in this mode       Unused in this mode         bit 4:       CREN: Continuous Receive Enable bit         Asynchronous mode       1 = Enables continuous receive         0 = Disables continuous receive       0         0 = Disables continuous receive       Synchronous mode         1 = Enables continuous receive       Synchronous mode         1 = Enables continuous receive       Synchronous mode         1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)       0         0 = Disables continuous receive       Synchronous mode         1 = Enables continuous receive       Synchronous mode         1 = Enables continuous receive       Synchronous mode         1 = Framing Error bit       1 = Framing Error bit         1 = Framing error (Can be updated by reading RCREG reg                                                                                                                                                                                         | bit 7: | SPEN: Ser<br>(Configure<br>1 = Serial<br>0 = Serial | rial Port En<br>s RC7/RX/I<br>port enable<br>port disable | able bit<br>DT and RC<br>d<br>ed | 6/TX/CK     | oins as ser | ial port pin | s when bits | TRIS  | C<7:6> are set)      |
| 1 = Selects 9-bit reception         0 = Selects 8-bit reception         bit 5:       SREN: Single Receive Enable bit         Asynchronous mode<br>Don't care         Synchronous mode - master         1 = Enables single receive         0 = Disables single receive         This bit is cleared after reception is complete.         Synchronous mode - slave<br>Unused in this mode         bit 4:       CREN: Continuous Receive Enable bit         Asynchronous mode<br>1 = Enables continuous receive<br>0 = Disables continuous receive         Synchronous mode<br>1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)<br>0 = Disables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 3:       FERR: Framing Error bit<br>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)<br>0 = No framing error         bit 1:       OERR: Overrun Error bit<br>1 = Overrun error (Can be cleared by clearing bit CREN)<br>0 = No overrun error         bit 1:       OERR: Overrun Error bit<br>1 = Overrun error         1 = No overrun error       Deared by clearing bit CREN)<br>0 = No overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                   | bit 6: | <b>RX9</b> : 9-bit                                  | Receive Er                                                | nable bit                        |             |             |              |             |       |                      |
| <ul> <li>bit 5: SREN: Single Receive Enable bit</li> <li>Asynchronous mode<br/>Don't care</li> <li>Synchronous mode - master</li> <li>1 = Enables single receive</li> <li>0 = Disables single receive</li> <li>0 = Disables single receive</li> <li>This bit is cleared after reception is complete.</li> <li>Synchronous mode - slave</li> <li>Unused in this mode</li> <li>bit 4: CREN: Continuous Receive Enable bit</li> <li>Asynchronous mode</li> <li>1 = Enables continuous receive</li> <li>0 = Disables continuous receive</li> <li>1 = Enables continuous receive</li> <li>bit 3: Unimplemented: Read as '0'</li> <li>bit 2: FERR: Framing Error bit</li> <li>1 = Framing error</li> <li>bit 1: OERR: Overrun Error bit</li> <li>1 = Overrun error</li> <li>bit 1: OERR: Overrun Error bit</li> <li>1 = Overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |        | 1 = Selects                                         | s 9-bit rece                                              | ption                            |             |             |              |             |       |                      |
| <ul> <li>bit 5: SREN: Single Receive Enable bit <ul> <li>Asynchronous mode</li> <li>Don't care</li> <li>Synchronous mode - master</li> <li>1 = Enables single receive</li> <li>0 = Disables single receive</li> <li>This bit is cleared after reception is complete.</li> <li>Synchronous mode - slave</li> <li>Unused in this mode</li> </ul> </li> <li>bit 4: CREN: Continuous Receive Enable bit <ul> <li>Asynchronous mode</li> <li>1 = Enables continuous receive</li> <li>0 = Disables continuous receive</li> <li>0 = Disables continuous receive</li> <li>0 = Disables continuous receive</li> <li>bit 3: Unimplemented: Read as '0'</li> </ul> </li> <li>bit 4: FERR: Framing Error bit <ul> <li>1 = Framing error</li> <li>bit 1: OERR: Overrun Error bit</li> <li>1 = Overrun error (Can be updated by reading RCREG register and receive next valid byte)</li> <li>0 = No framing error</li> </ul> </li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 0 = Selects                                         | s 8-bit rece                                              | ption                            |             |             |              |             |       |                      |
| Asynchronous mode         Don't care         Synchronous mode - master         1 = Enables single receive         0 = Disables single receive         This bit is cleared after reception is complete.         Synchronous mode - slave         Unused in this mode         bit 4:       CREN: Continuous Receive Enable bit         Asynchronous mode         1 = Enables continuous receive         0 = Disables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 4:       FERR: Framing Error bit         1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)         0 = No framing error         bit 1:       OERR: Overrun Error bit         1 = Overrun error (Can be cleared by clearing bit CREN)         0 = No overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit 5: | SREN: Sin                                           | gle Receiv                                                | e Enable bi                      | t           |             |              |             |       |                      |
| Synchronous mode - master         1 = Enables single receive         0 = Disables single receive         This bit is cleared after reception is complete.         Synchronous mode - slave         Unused in this mode         bit 4:       CREN: Continuous Receive Enable bit         Asynchronous mode         1 = Enables continuous receive         0 = Disables continuous receive         Synchronous mode         1 = Enables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 4:       FERR: Framing Error bit         1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)         0 = No framing error         bit 1:       OERR: Overrun Error bit         1 = Overrun error       Icared by clearing bit CREN)         0 = No overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit) <td></td> <td>Asynchron<br/>Don't care</td> <td><u>ous mode</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                            |        | Asynchron<br>Don't care                             | <u>ous mode</u>                                           |                                  |             |             |              |             |       |                      |
| <ul> <li>1 = Enables single receive</li> <li>0 = Disables single receive</li> <li>This bit is cleared after reception is complete.</li> <li>Synchronous mode - slave</li> <li>Unused in this mode</li> <li>bit 4: CREN: Continuous Receive Enable bit</li> <li>Asynchronous mode</li> <li>1 = Enables continuous receive</li> <li>0 = Disables continuous receive until enable bit CREN is cleared (CREN overrides SREN)</li> <li>0 = Disables continuous receive</li> <li>bit 3: Unimplemented: Read as '0'</li> <li>bit 2: FERR: Framing Error bit</li> <li>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)</li> <li>0 = No framing error</li> <li>bit 1: OERR: Overrun Error bit</li> <li>1 = Overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Synchrono                                           | ous mode -                                                | master                           |             |             |              |             |       |                      |
| <ul> <li>bit di is cleared after reception is complete.</li> <li>Synchronous mode - slave<br/>Unused in this mode</li> <li>bit 4: CREN: Continuous Receive Enable bit</li> <li>Asynchronous mode<br/>1 = Enables continuous receive<br/>0 = Disables continuous receive</li> <li>Synchronous mode<br/>1 = Enables continuous receive</li> <li>Synchronous mode<br/>1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)<br/>0 = Disables continuous receive</li> <li>bit 3: Unimplemented: Read as '0'</li> <li>bit 3: Unimplemented: Read as '0'</li> <li>bit 2: FERR: Framing Error bit<br/>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)<br/>0 = No framing error</li> <li>bit 1: OERR: Overrun Error bit<br/>1 = Overrun error (Can be cleared by clearing bit CREN)<br/>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 1 = Enable                                          | s single real                                             | ceive                            |             |             |              |             |       |                      |
| Synchronous mode - slave<br>Unused in this mode         bit 4:       CREN: Continuous Receive Enable bit         Asynchronous mode         1 = Enables continuous receive         0 = Disables continuous receive         Synchronous mode         1 = Enables continuous receive         Synchronous mode         1 = Enables continuous receive         Synchronous mode         1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)         0 = Disables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 2:       FERR: Framing Error bit         1 = Framing error       Can be updated by reading RCREG register and receive next valid byte)         0 = No framing error       0         bit 1:       OERR: Overrun Error bit         1 = Overrun error (Can be cleared by clearing bit CREN)         0 = No overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 0 = Disable                                         | es single re                                              | ceive<br>er recention            | is comple   | ote         |              |             |       |                      |
| bit 4:       CREN: Continuous Receive Enable bit         Asynchronous mode       1 = Enables continuous receive         0 = Disables continuous receive       0 = Disables continuous receive         Synchronous mode       1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)         0 = Disables continuous receive       0         bit 3:       Unimplemented: Read as '0'         bit 2:       FERR: Framing Error bit         1 = Framing error       1 = Framing error         bit 1:       OERR: Overrun Error bit         1 = Overrun error       1 = Overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | Synchrono                                           | us mode -                                                 | slave                            | lo compi    |             |              |             |       |                      |
| bit 4:       CREN: Continuous Receive Enable bit         Asynchronous mode       1 = Enables continuous receive         0 = Disables continuous receive       Synchronous mode         1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)       0 = Disables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 2:       FERR: Framing Error bit         1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)         0 = No framing error         bit 1:       OERR: Overrun Error bit         1 = Overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Unused in                                           | this mode                                                 |                                  |             |             |              |             |       |                      |
| Asynchronous mode         1 = Enables continuous receive         0 = Disables continuous receive         Synchronous mode         1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)         0 = Disables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 2:       FERR: Framing Error bit         1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)         0 = No framing error         bit 1:       OERR: Overrun Error bit         1 = Overrun error (Can be cleared by clearing bit CREN)         0 = No overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bit 4: | CREN: Co                                            | ntinuous R                                                | eceive Ena                       | ble bit     |             |              |             |       |                      |
| <ul> <li>1 = Enables continuous receive</li> <li>0 = Disables continuous receive</li> <li>Synchronous mode</li> <li>1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)</li> <li>0 = Disables continuous receive</li> <li>bit 3: Unimplemented: Read as '0'</li> <li>bit 2: FERR: Framing Error bit</li> <li>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)</li> <li>0 = No framing error</li> <li>bit 1: OERR: Overrun Error bit</li> <li>1 = Overrun error (Can be cleared by clearing bit CREN)</li> <li>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | Asynchron                                           | ous mode                                                  |                                  |             |             |              |             |       |                      |
| <ul> <li>bit 3: Unimplemented: Read as '0'</li> <li>bit 2: FERR: Framing Error bit<br/>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)<br/>0 = No framing error</li> <li>bit 1: OERR: Overrun Error bit<br/>1 = Overrun error (Can be cleared by clearing bit CREN)<br/>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 1 = Enable                                          | s continuo                                                | us receive                       |             |             |              |             |       |                      |
| Synchronous mode         1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)         0 = Disables continuous receive         bit 3:       Unimplemented: Read as '0'         bit 2:       FERR: Framing Error bit         1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)         0 = No framing error         bit 1:       OERR: Overrun Error bit         1 = Overrun error (Can be cleared by clearing bit CREN)         0 = No overrun error         bit 0:       RX9D: 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 0 = Disable                                         | es continuo                                               | us receive                       |             |             |              |             |       |                      |
| <ul> <li>bit 3: Unimplemented: Read as '0'</li> <li>bit 2: FERR: Framing Error bit<br/>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)<br/>0 = No framing error</li> <li>bit 1: OERR: Overrun Error bit<br/>1 = Overrun error (Can be cleared by clearing bit CREN)<br/>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | Synchronc                                           | ous mode                                                  |                                  | ntil on ohl |             | lia alaarad  |             |       |                      |
| <ul> <li>bit 3: Unimplemented: Read as '0'</li> <li>bit 2: FERR: Framing Error bit <ol> <li>= Framing error (Can be updated by reading RCREG register and receive next valid byte)</li> <li>= No framing error</li> </ol> </li> <li>bit 1: OERR: Overrun Error bit <ol> <li>= Overrun error (Can be cleared by clearing bit CREN)</li> <li>= No overrun error</li> </ol> </li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 0 = Disable                                         | es continuo                                               | us receive t                     |             |             | NIS Cleared  |             | ennue | S SHEN)              |
| <ul> <li>bit 2: FERR: Framing Error bit<br/>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)<br/>0 = No framing error</li> <li>bit 1: OERR: Overrun Error bit<br/>1 = Overrun error (Can be cleared by clearing bit CREN)<br/>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bit 3: | Unimplem                                            | ented: Rea                                                | ad as '0'                        |             |             |              |             |       |                      |
| <ul> <li>1 = Framing error (Can be updated by reading RCREG register and receive next valid byte)</li> <li>0 = No framing error</li> <li>bit 1: OERR: Overrun Error bit</li> <li>1 = Overrun error (Can be cleared by clearing bit CREN)</li> <li>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit 2: | FERR: Fra                                           | ming Error                                                | bit                              |             |             |              |             |       |                      |
| <ul> <li>0 = No framing error</li> <li>bit 1: OERR: Overrun Error bit</li> <li>1 = Overrun error (Can be cleared by clearing bit CREN)</li> <li>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 1 = Framin                                          | g error (Ca                                               | n be updat                       | ed by read  | ding RCRE   | G register   | and receive | next  | valid byte)          |
| <ul> <li>bit 1: OERR: Overrun Error bit</li> <li>1 = Overrun error (Can be cleared by clearing bit CREN)</li> <li>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 0 = No frar                                         | ning error                                                |                                  |             |             |              |             |       |                      |
| <ul> <li>0 = No overrun error</li> <li>bit 0: RX9D: 9th bit of received data (Can be parity bit)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit 1: | OERR: Ov                                            | errun Error                                               | bit                              |             |             |              |             |       |                      |
| bit 0: <b>RX9D</b> : 9th bit of received data (Can be parity bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 1 = Overru<br>0 = No over                           | m error (Ca<br>errun error                                | n pe cleare                      | u by clear  | ning bit CR | EN)          |             |       |                      |
| bit 0. The strok of received data (Call be party bit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hit 0. |                                                     | hit of rocoi                                              | vod data (C                      | an ha na    | rity hit)   |              |             |       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIE U. | 11730. 901                                          | DIL UI IECEI                                              | veu uaia (C                      | an be pa    |             |              |             |       |                      |

| Increment f, Skip if 0                                                                      |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IORLW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Inclusive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OR Lite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eral with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [ label ]                                                                                   | INCFSZ                                                                                                                                                                                                                                                                                                                                                         | f,d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Syntax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [ label ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IORLW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| $0 \le f \le 12$                                                                            | .7                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Operands:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0 \le k \le 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| $d \in [0,1]$                                                                               |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (W) .OR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k \rightarrow (W)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| (f) + 1 $\rightarrow$                                                                       | (destinat                                                                                                                                                                                                                                                                                                                                                      | ion),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Status Affected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Nono                                                                                        | suit – U                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Encoding:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kkkk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 00                                                                                          | 1111                                                                                                                                                                                                                                                                                                                                                           | dfff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ffff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The conte<br>OR'ed with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nts of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W register<br>t bit literal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r is<br>'k'. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| The conte<br>mented. If                                                                     | nts of regi:<br>'d' is 0 the                                                                                                                                                                                                                                                                                                                                   | ster 'f' are<br>e result is p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | incre-<br>placed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Manda.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | result is pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | aced in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ie W regist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| the W regi<br>placed bac                                                                    | ster. If 'd' i<br>ck in reaist                                                                                                                                                                                                                                                                                                                                 | s 1 the res<br>er 'f'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sult is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | words:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| If the result is 1, the next instruction is<br>executed. If the result is 0, a NOP is exe-  |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cycles:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| cuted instead making it a 2Tcy instruc-<br>tion.                                            |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q Cycle Activity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| 1                                                                                           |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Decode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Read<br>literal 'k'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Process<br>data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Write to<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 1(2)                                                                                        |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| C Q1 Q2 Q3 Q4                                                                               |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Decode Read Process                                                                         |                                                                                                                                                                                                                                                                                                                                                                | Write to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Before In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | struction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ΟχΘΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                             | register 'f'                                                                                                                                                                                                                                                                                                                                                   | data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | After Inst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| (2nd Cyc                                                                                    | le)                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W = 0xBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Q1                                                                                          | Q2                                                                                                                                                                                                                                                                                                                                                             | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| No-<br>Operation                                                                            | No-<br>Operation                                                                                                                                                                                                                                                                                                                                               | No-<br>Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No-<br>Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| HERE<br>CONTINU<br>Before In<br>PC<br>After Inst<br>CNT<br>if CNT<br>if CNT<br>PC<br>if CNT | INCFS<br>GOTO<br>UE •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                | ress HERE<br>T + 1<br>ress CONT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NT, 1<br>DP<br>INUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                                                                                             | Increment<br>[ label ]<br>$0 \le f \le 12$<br>$d \in [0,1]$<br>(f) + 1 $\rightarrow$<br>skip if ress<br>None<br>00<br>The contermented. If<br>the W regipted back<br>If the result<br>executed. cuted instation.<br>1<br>1(2)<br>Q1<br>Decode<br>(2nd Cyce<br>Q1<br>No-<br>Operation<br>HERE<br>CONTINU<br>Before Inn<br>PC<br>After Instation<br>if CNT<br>PC | Increment f, Skip<br>[ label ] INCFSZ<br>$0 \le f \le 127$<br>$d \in [0,1]$<br>(f) + 1 $\rightarrow$ (destinat<br>skip if result = 0<br>None<br>00 1111<br>The contents of regis<br>mented. If 'd' is 0 the<br>the W register. If 'd' is<br>placed back in regist<br>If the result is 1, the<br>executed. If the result<br>cuted instead making<br>tion.<br>1<br>1(2)<br>Q1 Q2<br>Decode Read<br>register 'f'<br>(2nd Cycle)<br>Q1 Q2<br>Decode Read<br>register 'f'<br>(2nd Cycle)<br>Q1 Q2<br>No-<br>Operation Operation<br>HERE INCFS<br>GOTO<br>CONTINUE<br>•<br>•<br>•<br>Before Instruction<br>CNT = CNT<br>if CNT= 0,<br>PC = addi<br>if CNT≠ 0,<br>PC = addi | Increment f, Skip if 0<br>[ label] INCFSZ f,d<br>$0 \le f \le 127$<br>$d \in [0,1]$<br>(f) + 1 -> (destination),<br>skip if result = 0<br>None<br>00 1111 dfff<br>The contents of register 'f' are<br>mented. If 'd' is 0 the result is p<br>the W register. If 'd' is 1 the result is 0, the result is 1, the next instru-<br>executed. If the result is 0, the Next<br>cuted instead making it a 2Tcv<br>tion.<br>1<br>1(2)<br>Q1 Q2 Q3<br>Decode Read<br>register 'f' Process<br>data<br>(2nd Cycle)<br>Q1 Q2 Q3<br>No-<br>Operation Operation Operation<br>HERE INCFSZ CL<br>CONTINUE •<br>•<br>Before Instruction<br>PC = address HERE<br>After Instruction<br>CNT = CNT + 1<br>if CNT= 0,<br>PC = address CONT<br>if CNT = 0,<br>PC = address HERE | Increment f, Skip if 0[ label ] INCFSZ f,d $0 \le f \le 127$ $d \in [0,1]$ (f) + 1 $\rightarrow$ (destination), skip if result = 0None $00$ $00$ $1111$ dffffffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the Wregister. If 'd' is 1 the result is placed back in register 'f'.If the result is 1, the next instruction is executed instead making it a 2TCY instruction.11(2)Q1Q2Q3Q4DecodeRead<br>register 'f'ProcessWrite to<br>destination(2nd Cycle)Q1Q1Q2Q3Q4No-<br>OperationNo-<br>OperationHEREINCFSZ<br>GOTO<br>LOOPHEREINCFSZ<br>GOTO<br>LOOPCONTINUE •<br>•••Before Instruction<br>PC=After Instruction<br>CNT =CNT + 1<br>if CNT = 0,<br>PCPC=address HERE + 1 | Increment f, Skip if 0IORLW $[ label ]$ INCFSZ f,dSyntax: $0 \le f \le 127$ Operands:Operands: $d \in [0,1]$ Operation),Skip if result = 0NoneStatus Affected: $00$ 1111dfff $00$ 1111dfffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd is 1 the result is placed back in register 'f'.Words:If the result is 1, the next instruction is executed in the executed in the ward is 0, a NOP is executed in the executed is 0, a NOP is executed in the versite is 0, a NOP is executed in the register 'f'.Words:11(2)Q1Q2Q3Q4 $Q1$ Q2Q3Q4Example $(2nd Cycle)$ Q1Q2Q3Q4 $Q1$ Q2Q3Q4ExampleHEREINCFSZCNT, 1GOTOLOOP $CONTINUE \cdot$ Before InstructionPC=address HEREAfter InstructionCNT =CNT + 1. $PC$ =address CONTINUE. $PC$ =address SCONTINUE. $PC$ =address HERE + 1. | Increment f, Skip if 0IORLWInclusive $[label]$ INCFSZ f,dSyntax: $[label]$ $0 \leq f \leq 127$ $d \in [0,1]$ Operands: $0 \leq k \leq 26$ $0 \in [0,1]$ Operation),Skip if result = 0Operation: $(W)$ .OR.None $0 \circ 1111$ dfffffffDecoding: $11$ $0 \circ 1111$ dfffffffDescription:The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register 'f'.Description:The contents of register 'f'.If the result is 0, a NOP is executed instead making it a 2TCY instruction.Q1Q2Q3Q4 $1$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $0 \circ 112$ $1(2)$ <td>Increment f, Skip if 0Inclusive OR Litter<math>[label]</math>INCFSZ f,dSyntax:<math>[label]</math>IORLW<math>0 \le f \le 127</math><math>d \in [0,1]</math>Operation<math>0 \le k \le 255</math><math>d \in [0,1]</math>Operation<math>0 \le k \le 255</math>Operation:(W) .OR. <math>k \rightarrow (W)</math><math>(f) + 1 \rightarrow (destination), skip if result = 0</math>None<math>0 \le k \le 255</math>Operation:(W) .OR. <math>k \rightarrow (W)</math><math>0 \circ 1111</math>dfffffffInclusive OR LitterZThe contents of register 'f are incremented. If d' is 0 the result is placed in the W register. If d' is 1 the result is placed in the W register. If d' is 1 the result is placed in the weight secuted instead making it a 2TCY instruction.Description:The contents of the eight result is placed in the eight result is placed back in register 'f.11(2)Q1Q2Q3Q4<math>Q = Q1</math>Q2Q3Q4<math>Q = CQ3</math><math>Q = CQ3</math><math>Q = Q1</math>Q2Q3Q4<math>Q = CQ3</math><math>Q = Q3</math><math>Q = Q1</math>Q2Q3Q4<math>Q = CQ3</math><math>Q = Q3</math><math>Q = Q1</math>Q2Q3Q4<math>Q = CQ3</math><math>Q = Q3</math><math>Q = Q1</math>Q2Q3Q4<math>Q = Q3</math><math>Q = Q3</math><math>Q = Q1</math>Q2Q3Q4<math>Q = Z = Z</math><math>Q = Z = Z</math><math>Q = Q1</math>Q2Q3Q4<math>Q = Z = Z</math><math>Z = Z</math><math>Q = Q2</math><math>Q =</math></td> <td>Increment f, Skip if 0<math>[label]</math>INCFSZ f,d<math>[label]</math>INCFSZ f,d<math>0 \le f \le 127</math><math>0 \le f \le 127</math><math>d \in [0,1]</math>(f) + 1 <math>\rightarrow</math> (destination),<br/>skip if result = 0None<math>0 \le 1111</math><math>dfff</math><math>111</math><math>dfff</math>ffffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed in the W register if' d' is 1 the result is placed in the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, and Destinon11(2)Q1Q1Q2Q3Q4<math>Decode</math><math>Read</math><math>Pcodes</math><math>Read</math><math>Process</math>Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q2Q3Q4<math>W = 0xBF</math>Z<math>Z = 1</math></td> | Increment f, Skip if 0Inclusive OR Litter $[label]$ INCFSZ f,dSyntax: $[label]$ IORLW $0 \le f \le 127$ $d \in [0,1]$ Operation $0 \le k \le 255$ $d \in [0,1]$ Operation $0 \le k \le 255$ Operation:(W) .OR. $k \rightarrow (W)$ $(f) + 1 \rightarrow (destination), skip if result = 0$ None $0 \le k \le 255$ Operation:(W) .OR. $k \rightarrow (W)$ $0 \circ 1111$ dfffffffInclusive OR LitterZThe contents of register 'f are incremented. If d' is 0 the result is placed in the W register. If d' is 1 the result is placed in the W register. If d' is 1 the result is placed in the weight secuted instead making it a 2TCY instruction.Description:The contents of the eight result is placed in the eight result is placed back in register 'f.11(2)Q1Q2Q3Q4 $Q = Q1$ Q2Q3Q4 $Q = CQ3$ $Q = CQ3$ $Q = Q1$ Q2Q3Q4 $Q = CQ3$ $Q = Q3$ $Q = Q1$ Q2Q3Q4 $Q = CQ3$ $Q = Q3$ $Q = Q1$ Q2Q3Q4 $Q = CQ3$ $Q = Q3$ $Q = Q1$ Q2Q3Q4 $Q = Q3$ $Q = Q3$ $Q = Q1$ Q2Q3Q4 $Q = Z = Z$ $Q = Z = Z$ $Q = Q1$ Q2Q3Q4 $Q = Z = Z$ $Z = Z$ $Q = Q1$ Q2Q3Q4 $Q = Z = Z$ $Z = Z$ $Q = Q1$ Q2Q3Q4 $Q = Z = Z$ $Z = Z$ $Q = Q1$ Q2Q3Q4 $Q = Z = Z$ $Z = Z$ $Q = Q2$ $Q =$ | Increment f, Skip if 0 $[label]$ INCFSZ f,d $[label]$ INCFSZ f,d $0 \le f \le 127$ $0 \le f \le 127$ $d \in [0,1]$ (f) + 1 $\rightarrow$ (destination),<br>skip if result = 0None $0 \le 1111$ $dfff$ $111$ $dfff$ ffffThe contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed in the W register if' d' is 1 the result is placed in the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, a NOP is executed. If the result is 0, and Destinon11(2)Q1Q1Q2Q3Q4 $Decode$ $Read$ $Pcodes$ $Read$ $Process$ Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q1Q2Q3Q2Q3Q4 $W = 0xBF$ Z $Z = 1$ |  |  |  |  |

|                   | ~ 4 | 00  | 001   | DOO  | 00    | DOO        | 04  | ~ 4 A |      | 05     |       | DOF     | 00 | 07  |
|-------------------|-----|-----|-------|------|-------|------------|-----|-------|------|--------|-------|---------|----|-----|
|                   | 61  | 6.7 | 6.71  | 06.7 | 6.3   | 26.3       | 6/  | 6/1/1 |      | hh     | 660   |         | hh | h / |
| AUDILADIE DEVILES |     |     | U/ A  | 1102 | (), ) | 1 1 ( ), ) |     | 044   | 1104 | ( ). ) | U. 7A | 1 1().) |    |     |
|                   | ••• |     | · · · |      | ~~    |            | ••• | •     |      | ~~     |       |         |    | ••• |

|        |                                    | Standa                                                                | d Operat    | ina Ca          | nditiona | Junior   | a otherwise stated)                               |  |  |  |
|--------|------------------------------------|-----------------------------------------------------------------------|-------------|-----------------|----------|----------|---------------------------------------------------|--|--|--|
|        |                                    | Operatir                                                              | na temperat | niy cu<br>atura | -40°C    |          | $< \pm 125^{\circ}$ C for extended                |  |  |  |
|        |                                    | Operation                                                             | ig temper   | ature           | -40°C    | /~<br>∠/ | $\leq +125$ C for industrial and                  |  |  |  |
| DC CHA | ARACTERISTICS                      |                                                                       |             |                 | -40 0    | ^<br>∠   | $1 \leq +00$ C for commercial                     |  |  |  |
|        |                                    | 0                                                                     |             |                 |          |          |                                                   |  |  |  |
|        |                                    | Operating voltage volumentge as described in DC spec Section 15.1 and |             |                 |          |          |                                                   |  |  |  |
|        |                                    | Section                                                               | 15.2.       |                 |          | r        |                                                   |  |  |  |
| Param  | Characteristic                     | Sym                                                                   | Min         | Typ†            | Max      | Units    | Conditions                                        |  |  |  |
| No.    |                                    |                                                                       |             |                 |          |          |                                                   |  |  |  |
|        | Output High Voltage                |                                                                       |             |                 |          |          |                                                   |  |  |  |
| D090   | I/O ports (Note 3)                 | Vон                                                                   | Vpp-0.7     | -               | -        | v        | IOH = -3.0  mA                                    |  |  |  |
| 2000   |                                    | 1011                                                                  | 100 0.1     |                 |          |          | $V_{DD} = 4.5V - 40^{\circ}C t_{0} + 85^{\circ}C$ |  |  |  |
|        |                                    |                                                                       |             |                 |          | v        |                                                   |  |  |  |
| DU90A  |                                    |                                                                       | VDD-0.7     | -               | -        | v        | 10H = -2.5  mA,                                   |  |  |  |
|        |                                    |                                                                       |             |                 |          |          | $VDD = 4.5V, -40^{\circ}C t0 + 125^{\circ}C$      |  |  |  |
| D092   | OSC2/CLKOUT (RC osc config)        |                                                                       | VDD-0.7     | -               | -        | V        | IOн = -1.3 mA,                                    |  |  |  |
|        |                                    |                                                                       |             |                 |          |          | VDD = 4.5V, -40°C to +85°C                        |  |  |  |
| D092A  |                                    |                                                                       | VDD-0.7     | -               | -        | V        | IOH = -1.0 mA,                                    |  |  |  |
|        |                                    |                                                                       |             |                 |          |          | VDD = 4.5V, -40°C to +125°C                       |  |  |  |
| D150*  | Open-Drain High Voltage            | VOD                                                                   | -           | -               | 14       | V        | RA4 pin                                           |  |  |  |
|        | Capacitive Loading Specs on        |                                                                       |             |                 |          |          |                                                   |  |  |  |
|        | Output Pins                        |                                                                       |             |                 |          |          |                                                   |  |  |  |
| D100   | OSC2 pin                           | Cosca                                                                 |             |                 | 15       | nF       | In XT HS and LP modes when                        |  |  |  |
| 0100   | 0002 pm                            | 00302                                                                 |             |                 | 15       | рі       | avtornal clock is used to drive                   |  |  |  |
|        |                                    |                                                                       |             |                 |          |          |                                                   |  |  |  |
|        |                                    |                                                                       |             |                 |          | _        | 0301.                                             |  |  |  |
| D101   | All I/O pins and OSC2 (in RC mode) | CIO                                                                   |             |                 | 50       | pF       |                                                   |  |  |  |

The parameters are characterized but not tested.

\*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

### 16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C61

The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.

In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range. Note: The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean  $+3\sigma$ ) and (mean  $-3\sigma$ ) respectively where  $\sigma$  is standard deviation.





| Cext   | Rext | Ave<br>Fosc @ | rage<br>5V, 25°C |
|--------|------|---------------|------------------|
| 20 pF  | 4.7k | 4.52 MHz      | ± 17.35%         |
|        | 10k  | 2.47 MHz      | ± 10.10%         |
|        | 100k | 290.86 kHz    | ± 11.90%         |
| 100 pF | 3.3k | 1.92 MHz      | ± 9.43%          |
|        | 4.7k | 1.48 MHz      | ± 9.83%          |
|        | 10k  | 788.77 kHz    | ± 10.92%         |
|        | 100k | 88.11 kHz     | ± 16.03%         |
| 300 pF | 3.3k | 726.89 kHz    | ± 10.97%         |
|        | 4.7k | 573.95 kHz    | ± 10.14%         |
|        | 10k  | 307.31 kHz    | ± 10.43%         |
|        | 100k | 33.82 kHz     | ± 11.24%         |

| TARI E 16-1. | BC OSCILLATOR EREQUENCIES  |
|--------------|----------------------------|
| IADLE 10-1.  | RC USCILLAI UN FREQUENCIES |

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is  $\pm 3$  standard deviation from average value for VDD = 5V.

## PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

#### FIGURE 19-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING



#### TABLE 19-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

| Parameter | Sym      | Characteristic                                     |                   | Min | Typ† | Max | Units | Conditions |
|-----------|----------|----------------------------------------------------|-------------------|-----|------|-----|-------|------------|
| No.       |          |                                                    |                   |     |      |     |       |            |
| 120       | TckH2dtV | SYNC XMIT (MASTER & SLAVE)                         | PIC16 <b>C</b> 65 |     | _    | 80  | ns    |            |
|           |          | Clock high to data out valid                       | PIC16LC65         |     | _    | 100 | ns    |            |
| 121       | Tckrf    | Clock out rise time and fall time<br>(Master Mode) | PIC16 <b>C</b> 65 |     | -    | 45  | ns    |            |
|           |          |                                                    | PIC16LC65         |     | -    | 50  | ns    |            |
| 122       | Tdtrf    | Data out rise time and fall time                   | PIC16 <b>C</b> 65 |     | -    | 45  | ns    |            |
|           |          |                                                    | PIC16LC65         | _   | _    | 50  | ns    |            |

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### FIGURE 19-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING



#### TABLE 19-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

| Parameter<br>No. | Sym      | Characteristic                                                                 | Min | Typ† | Мах | Units | Conditions |
|------------------|----------|--------------------------------------------------------------------------------|-----|------|-----|-------|------------|
| 125              | TdtV2ckL | SYNC RCV (MASTER & SLAVE)<br>Data setup before CK $\downarrow$ (DT setup time) | 15  |      | _   | ns    |            |
| 126              | TckL2dtl | Data hold after CK $\downarrow$ (DT hold time)                                 | 15  | _    | —   | ns    |            |

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

# PIC16C6X

#### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67





#### TABLE 20-8: SPI MODE REQUIREMENTS

| Parameter<br>No. | Sym                   | Characteristic                                                        | Min      | Тур† | Max | Units | Conditions |
|------------------|-----------------------|-----------------------------------------------------------------------|----------|------|-----|-------|------------|
| 70*              | TssL2scH,<br>TssL2scL | $\overline{SS}\downarrow$ to SCK $\downarrow$ or SCK $\uparrow$ input | Тсү      | _    | _   | ns    |            |
| 71*              | TscH                  | SCK input high time (slave mode)                                      | TCY + 20 | _    | _   | ns    |            |
| 72*              | TscL                  | SCK input low time (slave mode)                                       | TCY + 20 | _    | _   | ns    |            |
| 73*              | TdiV2scH,<br>TdiV2scL | Setup time of SDI data input to SCK edge                              | 50       | _    | —   | ns    |            |
| 74*              | TscH2diL,<br>TscL2diL | Hold time of SDI data input to SCK edge                               | 50       | _    | _   | ns    |            |
| 75*              | TdoR                  | SDO data output rise time                                             | _        | 10   | 25  | ns    |            |
| 76*              | TdoF                  | SDO data output fall time                                             | —        | 10   | 25  | ns    |            |
| 77*              | TssH2doZ              | SS↑ to SDO output hi-impedance                                        | 10       | _    | 50  | ns    |            |
| 78*              | TscR                  | SCK output rise time (master mode)                                    | —        | 10   | 25  | ns    |            |
| 79*              | TscF                  | SCK output fall time (master mode)                                    | —        | 10   | 25  | ns    |            |
| 80*              | TscH2doV,<br>TscL2doV | SDO data output valid after SCK edge                                  | _        | _    | 50  | ns    |            |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

#### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

#### 22.2 DC Characteristics: PIC16LC66/67-04 (Commercial, Industrial)

| DC CHA       | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}$ C $\leq TA \leq +85^{\circ}$ C for industrial and $0^{\circ}$ C $\leq TA \leq +70^{\circ}$ C for commercial |               |      |      |     |       |                                                                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------|-----|-------|-----------------------------------------------------------------|
| Param<br>No. | Characteristic                                                                                                                                                                                         | Sym           | Min  | Тур† | Max | Units | Conditions                                                      |
| D001         | Supply Voltage                                                                                                                                                                                         | Vdd           | 2.5  | -    | 6.0 | V     | LP, XT, RC osc configuration (DC - 4 MHz)                       |
| D002*        | RAM Data Retention<br>Voltage (Note 1)                                                                                                                                                                 | Vdr           | -    | 1.5  | -   | V     |                                                                 |
| D003         | VDD start voltage to<br>ensure internal Power-on<br>Reset signal                                                                                                                                       | VPOR          | -    | Vss  | -   | V     | See section on Power-on Reset for details                       |
| D004*        | VDD rise rate to ensure<br>internal Power-on Reset<br>signal                                                                                                                                           | SVDD          | 0.05 | -    | -   | V/ms  | See section on Power-on Reset for details                       |
| D005         | Brown-out Reset Voltage                                                                                                                                                                                | BVDD          | 3.7  | 4.0  | 4.3 | V     | BODEN configuration bit is enabled                              |
| D010         | Supply Current (Note 2, 5)                                                                                                                                                                             | IDD           | -    | 2.0  | 3.8 | mA    | XT, RC osc configuration<br>Fosc = 4 MHz, VDD = 3.0V (Note 4)   |
| D010A        |                                                                                                                                                                                                        |               | -    | 22.5 | 48  | μA    | LP osc configuration<br>Fosc = 32 kHz, VDD = 3.0V, WDT disabled |
| D015*        | Brown-out Reset Current<br>(Note 6)                                                                                                                                                                    | $\Delta$ IBOR | -    | 350  | 425 | μA    | BOR enabled, VDD = 5.0V                                         |
| D020         | Power-down Current                                                                                                                                                                                     | IPD           | -    | 7.5  | 30  | μA    | VDD = 3.0V, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$       |
| D021         | (Note 3, 5)                                                                                                                                                                                            |               | -    | 0.9  | 5   | μA    | VDD = $3.0V$ , WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$     |
| D021A        |                                                                                                                                                                                                        |               | -    | 0.9  | 5   | μA    | VDD = $3.0V$ , WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$   |
| D023*        | Brown-out Reset Current<br>(Note 6)                                                                                                                                                                    | $\Delta$ IBOR | -    | 350  | 425 | μA    | BOR enabled, VDD = 5.0V                                         |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

#### 24.6 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Package Group: Ceramic CERDIP Dual In-Line (CDP) |        |             |           |        |       |           |  |
|--------------------------------------------------|--------|-------------|-----------|--------|-------|-----------|--|
|                                                  |        | Millimeters |           | Inches |       |           |  |
| Symbol                                           | Min    | Max         | Notes     | Min    | Max   | Notes     |  |
| α                                                | 0°     | 10°         |           | 0°     | 10°   |           |  |
| А                                                |        | 5.080       |           | _      | 0.200 |           |  |
| A1                                               | 0.381  | 1.778       |           | 0.015  | 0.070 |           |  |
| A2                                               | 3.810  | 4.699       |           | 0.150  | 0.185 |           |  |
| A3                                               | 3.810  | 4.445       |           | 0.150  | 0.175 |           |  |
| В                                                | 0.355  | 0.585       |           | 0.014  | 0.023 |           |  |
| B1                                               | 1.270  | 1.651       | Typical   | 0.050  | 0.065 | Typical   |  |
| С                                                | 0.203  | 0.381       | Typical   | 0.008  | 0.015 | Typical   |  |
| D                                                | 22.352 | 23.622      |           | 0.880  | 0.930 |           |  |
| D1                                               | 20.320 | 20.320      | Reference | 0.800  | 0.800 | Reference |  |
| E                                                | 7.620  | 8.382       |           | 0.300  | 0.330 |           |  |
| E1                                               | 5.588  | 7.874       |           | 0.220  | 0.310 |           |  |
| e1                                               | 2.540  | 2.540       | Reference | 0.100  | 0.100 | Reference |  |
| eA                                               | 7.366  | 8.128       | Typical   | 0.290  | 0.320 | Typical   |  |
| eB                                               | 7.620  | 10.160      |           | 0.300  | 0.400 |           |  |
| L                                                | 3.175  | 3.810       |           | 0.125  | 0.150 |           |  |
| N                                                | 18     | 18          |           | 18     | 18    |           |  |
| S                                                | 0.508  | 1.397       |           | 0.020  | 0.055 |           |  |
| S1                                               | 0.381  | 1.270       |           | 0.015  | 0.050 |           |  |

### 24.10 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Package Group: Plastic SSOP |        |             |           |        |       |           |  |  |
|-----------------------------|--------|-------------|-----------|--------|-------|-----------|--|--|
|                             |        | Millimeters |           | Inches |       |           |  |  |
| Symbol                      | Min    | Max         | Notes     | Min    | Мах   | Notes     |  |  |
| α                           | 0°     | 8°          |           | 0°     | 8°    |           |  |  |
| А                           | 1.730  | 1.990       |           | 0.068  | 0.078 |           |  |  |
| A1                          | 0.050  | 0.210       |           | 0.002  | 0.008 |           |  |  |
| В                           | 0.250  | 0.380       |           | 0.010  | 0.015 |           |  |  |
| С                           | 0.130  | 0.220       |           | 0.005  | 0.009 |           |  |  |
| D                           | 10.070 | 10.330      |           | 0.396  | 0.407 |           |  |  |
| E                           | 5.200  | 5.380       |           | 0.205  | 0.212 |           |  |  |
| е                           | 0.650  | 0.650       | Reference | 0.026  | 0.026 | Reference |  |  |
| Н                           | 7.650  | 7.900       |           | 0.301  | 0.311 |           |  |  |
| L                           | 0.550  | 0.950       |           | 0.022  | 0.037 |           |  |  |
| Ν                           | 28     | 28          |           | 28     | 28    |           |  |  |
| CP                          | -      | 0.102       |           | -      | 0.004 |           |  |  |

-----