

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc65a-04-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.2.3 INTCON REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-11: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh 18Bh)

R/W-0 GIE	R/W-0 PEIE	R/W-0 T0IE	R/W-0 INTE	R/W-0 RBIE	R/W-0 T0IF	R/W-0 INTF	R/W-x RBIF	R = Readable bit
bit7	1 212	TOLE	INTE	TIDIL	1011		bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset x = unknown
bit 7:	GIE: ⁽¹⁾ Glo 1 = Enable 0 = Disable	s all un-ma	sked interri					
bit 6:	PEIE: ⁽²⁾ Pe 1 = Enable 0 = Disable	s all un-ma	sked peripl	neral interru	ipts			
bit 5:		s the TMR	Interrupt E 0 overflow ii 0 overflow i	nterrupt				
bit 4:	1 = Enable	s the RB0/	nal Interrup INT externa INT externa					
bit 3:		s the RB p	e Interrupt ort change ort change	interrupt				
bit 2:	TOIF: TMR 1 = TMR0 0 = TMR0	register ove	erflowed (m	ust be clea	red in softwa	re)		
bit 1:		30/INT exte	rnal interru		(must be cle ccur	ared in soft	ware)	
bit 0:		t one of the	RB7:RB4		ed state (see d state	Section 5.2	to clear the	interrupt)
	be re-enab description	led by the 1 1.	RETFIE ins	truction in t	he user's Inte	errupt Servi		red, the GIE bit may unintentionally Refer to Section 13.5 for a detailed
	The PEIE I	bit (bit6) is			PIC16C61, r			
globa		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to

5.2 PORTB and TRISB Register

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s).

EXAMPLE 5-2: INITIALIZING PORTB

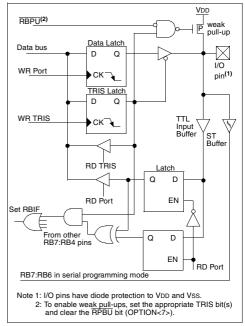
BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overrightarrow{\text{RBPU}}$ (OPTION<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are also disabled on a Power-on Reset.

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB port change interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, Application Note, *"Implementing Wake-up on Key Stroke"* (AN552).

Note:	For PIC16C61/62/64/65, if a change on the
	I/O pin should occur when a read operation
	is being executed (start of the Q2 cycle),
	then interrupt flag bit RBIF may not get set.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

FIGURE 5-3: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C61/62/64/65

8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and generate an interrupt on overflow which will wake the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair, TMR1L and TMR1H (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters (45 - 47).

8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

;	All Int	errupts	are	disabled
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
	MOVF	TMR1H,	W	;Read high byte
	SUBWF	TMPH,	W	;Sub 1st read
				;with 2nd read
	BTFSC	STATUS	, Z	;is result = 0
	GOTO	CONTINU	JE	;Good 16-bit read
;	TMR1L mag	y have r	olle	d over between the read
;	of the h	igh and	low	bytes. Reading the high
;	and low	bytes no	w w	ill read a good value.
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
;	Re-enal	ole Inte	rrup	ot (if required)
C	ONTINUE			;Continue with
	:			;your code

8.4 <u>Timer1 Oscillator</u>

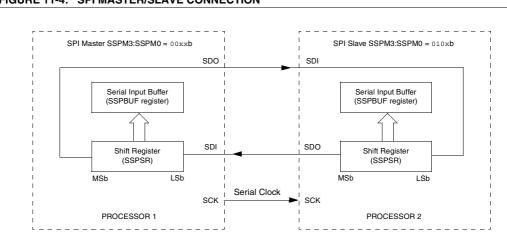
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

A crystal oscillator circuit is built in-between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must allow a software time delay to ensure proper oscillator start-up.

TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2								
LP	32 kHz	33 pF	33 pF								
	100 kHz	15 pF	15 pF								
	200 kHz	15 pF	15 pF								
These values are for design guidance only.											
Crystals Tested:											
32.768 kHz	Epson C-00	1R32.768K-A	\pm 20 PPM								
100 kHz	Epson C-2 1	00.00 KC-P	\pm 20 PPM								
200 kHz	STD XTL 20	0.000 kHz	\pm 20 PPM								
of o time 2: Sind cha reso	scillator but al b. ce each reson racteristics, th onator/crystal	lso increases ator/crystal ha le user should	 Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropri- 								


To enable the serial port, SSP enable bit SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear enable bit SSPEN, re-initialize SSPCON register, and then set enable bit SSPEN. This configures the SDI, SDO, SCK, and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if implemented)

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and SS could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-4 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

FIGURE 11-4: SPI MASTER/SLAVE CONNECTION

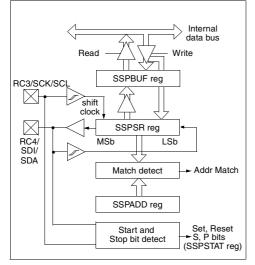
The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the software protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched interrupt flag bit SSPIF (PIR1<3>) is set.

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-5 and Figure 11-6 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or TCY)
- Fosc/16 (or 4 TCY)
- Fosc/64 (or 16 TCY)
- Timer2 output/2


This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

11.5 <u>SSP I²C Operation</u>

The SSP module in I^2C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing. Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSP-CON<5>).

FIGURE 11-24: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I^2C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled
- I²C Firmware controlled Master Mode, slave is idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer. The SSPSTAT register is read only.

The SSPBUF is the register to which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user first needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

11.5.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the l^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master mode the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master and slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

11.5.3 MULTI-MASTER MODE

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- · Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buffe	r/Transmit	Register			xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C	mode) Ad	ldress Re	gister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽³⁾	CKE ⁽³⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	7h TRISC PORTC Data Direction register									1111 1111	1111 1111

TABLE 11-5: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'.

Shaded cells are not used by SSP module in SPI mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16C66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

3: The SMP and CKE bits are implemented on the PIC16C66/67 only. All other PIC16C6X devices have these two bits unimplemented, read as '0'. NOTES:

-

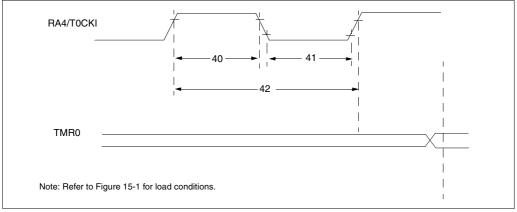
TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode	e	Status	Notes
Operands				MSb		LSb		Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS							
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS							
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
	ĸ		· ·	11	TOTO	ĸĸĸĸ	кккк	~	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.


SUBWF	Subtract	W from f		
Syntax:	[label]	SUBWF	f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$,		
Operation:	(f) - (W) \rightarrow	(destina	tion)	
Status Affected:	C, DC, Z			
Encoding:	00	0010	dfff	ffff
Description:	Subtract (2' ister from re stored in the result is sto	egister 'f'. l e W regist	f 'd' is 0 the er. If 'd' is 1	result is the
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example 1:	SUBWF	reg1,1		
	Before Ins	truction		
	REG1	=	3	
	W C	=	2 ?	
	Z	=	?	
	After Instru	uction		
	REG1	=	1	
	W C	=	2 1; result is	nositive
	z	=	0	poolavo
Example 2:	Before Ins	truction		
	REG1	=	2	
	W C	=	2 ?	
	Z	=	?	
	After Instru	uction		
	REG1	=	0	
	W C	=	2 1; result is	7010
	z	=	1	2010
Example 3:	Before Ins	truction		
	REG1	=	1	
	W C	=	2 ?	
	z	=	?	
	After Instru	uction		
	REG1	=	0xFF	
	W C	=	2 0; result is	negative
	z	=	0	guivo

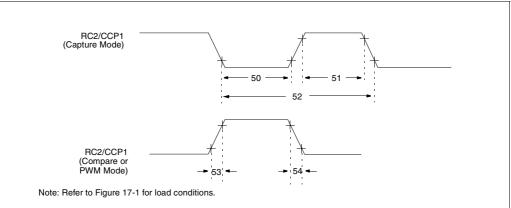
SWAPF	Swap Ni	bbles in	f	
Syntax:	[label]	SWAPF 1	,d	
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27		
Operation:	· · ·	ightarrow (destin $ ightarrow$ (destin		
Status Affected:	None			
Encoding:	0 0	1110	dfff	ffff
Description:	'f' are excl placed in '	r and lower nanged. If W register. in register	'd' is 0 the If 'd' is 1 t	e result is
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process data	Write to destination
Example	SWAPF	REG,	0	
	Before In	struction		
		REG1	= 0x/	A5
	After Inst	truction		
		REG1 W	= 0x/ = 0x5	.0

TRIS	Load TR	IS Regis	ster				
Syntax:	[label]	TRIS	f				
Operands:	$5 \leq f \leq 7$						
Operation:	$(W) \rightarrow TI$	RIS regis	ster f;				
Status Affected:	None						
Encoding:	00	0000	0110	Offf			
Description:	The instruction is supported for code compatibility with the PIC16C5X prod- ucts. Since TRIS registers are read- able and writable, the user can directly address them.						
Words:	1						
Cycles:	1						
Example							
	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.						

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

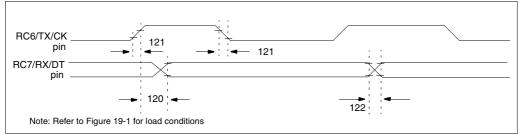
TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_	_		Must also meet
			With Prescaler	10	—	_	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	—	—		Must also meet
			With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	TCY + 40	_	_		N = prescale value
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N	_	_	ns	(2, 4,, 256)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1	No Prescaler		0.5TCY + 20	_	-	ns	
		input low time	With Prescaler	PIC16 C 62/64	10	_		ns	
				PIC16 LC 62/64	20	_	_	ns	
51*	TccH	CCP1	No Prescaler		0.5Tcy + 20	_	_	ns	
		input high time	With Prescaler	PIC16 C 62/64	10	_	_	ns	
				PIC16 LC 62/64	20	_	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	-		ns	N = prescale value (1,4 or 16)
53	TccR	CCP1 output rise time	9	PIC16 C 62/64	_	10	25	ns	
				PIC16 LC 62/64	_	25	45	ns	
54	TccF	CCP1 output fall time		PIC16 C 62/64	_	10	25	ns	
				PIC16LC62/64	_	25	45	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 19-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

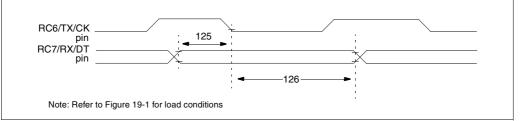


TABLE 19-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16 C 65		—	80	ns	
		Clock high to data out valid	PIC16 LC 65	-	—	100	ns	
121	Tckrf	Clock out rise time and fall time	PIC16 C 65		—	45	ns	
		(Master Mode)	PIC16 LC 65	-	—	50	ns	
122	Tdtrf	Data out rise time and fall time	PIC16 C 65	_	—	45	ns	
			PIC16LC65	_	—	50	ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before CK \downarrow (DT setup time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_		ns	

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

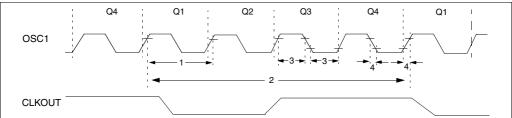
Applicable Devices	61	62	62A	B62	63	B63	64	64A	R64	65	65A	B65	66	67

		Standa	rd Operat	ing C	ondition	s (unle	ss otherwise stated)
		Operatir	ng temper	ature	-40°	Ć≤T	$A \le +125^{\circ}C$ for extended,
	RACTERISTICS				-40°	C ≤T	$A \le +85^{\circ}C$ for industrial and
	RACIERISTICS				0°C	≤ 1	$A \le +70^{\circ}C$ for commercial
		Operatir Section	• •	Vdd	range as	describ	ed in DC spec Section 20.1 and
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions
No.				†			
	Output High Voltage						
D090	I/O ports (Note 3)	Vон	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +85°С
D090A			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С
D150*	Open-Drain High Voltage	Vod	-	-	14	V	RA4 pin
	Capacitive Loading Specs on Out- put Pins						
D100	OSC2 pin	Cosc ₂	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	All I/O pins and OSC2 (in RC mode)	Cio	-	-	50	pF	
D102	SCL, SDA in I ² C mode	Cb	-	-	400	pF	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.


 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

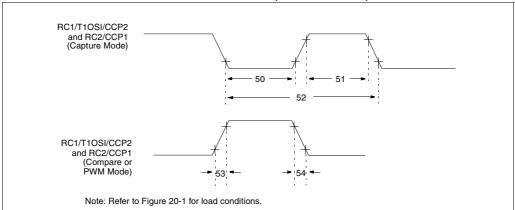
3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

20.5 <u>Timing Diagrams and Specifications</u>

FIGURE 20-2: EXTERNAL CLOCK TIMING

TABLE 20-2: EXTERNAL CLOCK TIMING REQUIREMENTS


Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	I	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250		—	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	_	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

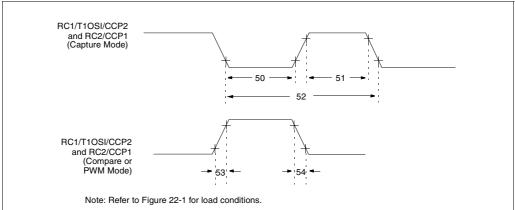
FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16 C 63/65A	10	—		ns	
				PIC16LC63/65A	20	—		ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5TCY + 20	-		ns	
		input high time	With Prescaler	PIC16 C 63/65A	10	—		ns	
				PIC16 LC 63/65A	20	-		ns	
52*	TccP	CCP1 and CCP2 ir	nput period		<u>3Tcy + 40</u> N			ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 of	utput rise time	PIC16 C 63/65A	_	10	25	ns	
				PIC16 LC 63/65A	_	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16 C 63/65A	—	10	25	ns	
				PIC16 LC 63/65A	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

21.4 Timing Parameter Symbology

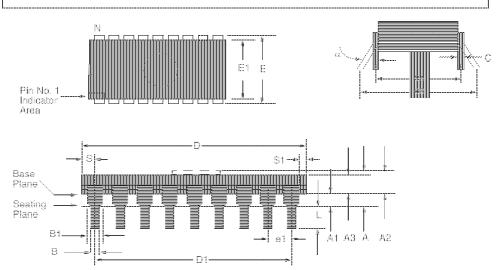
The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
т			
F	Frequency	Т	Time
Lowerca	ase letters (pp) and their meanings:	L	
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	ss	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperca	ase letters and their meanings:		
S	-		
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	v	Valid
L	Low	z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
	(I ² C specifications only)	2011	
CC			
HD	Hold	SU	Setup
ST	Tiold	30	Selup
DAT	DATA input hold	STO	STOP condition
STA	START condition	310	
1			
FIGURE 2	21-1: LOAD CONDITIONS FOR DEVIC	E TIMING S	PECIFICATIONS
	Load condition 1		Load condition 2
	VDD/2		
	φ	Γ	
	2		
	\geq RL	F	Pin CL
			•
			Vss
		RL = 464Ω	
	•		
	Vss	•	for all pins except OSC2/CLKOUT but including D and E outputs as ports
Note 1:	PORTD and PORTE are not imple-		
	mented on the PIC16CR63.	15 pF	for OSC2 output

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

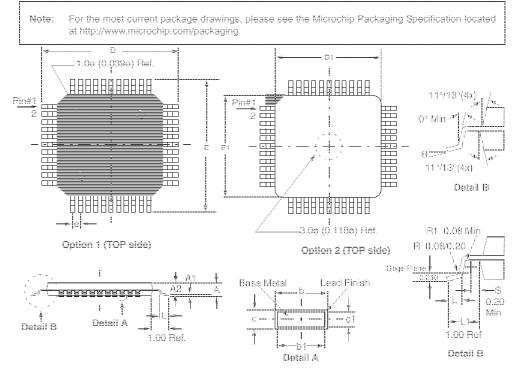
FIGURE 22-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 22-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)


Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns	
		input low time	With Prescaler	PIC16 C 66/67	10	_		ns	
				PIC16LC66/67	20	—		ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5TCY + 20	-		ns	
		input high time	With Prescaler	PIC16 C 66/67	10	—		ns	
				PIC16LC66/67	20	-		ns	
52*	TccP	CCP1 and CCP2 ir	nput period		<u>3Tcy + 40</u> N	—		ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 of	utput rise time	PIC16 C 66/67	_	10	25	ns	
				PIC16LC66/67	_	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16 C 66/67	—	10	25	ns	
				PIC16LC66/67	—	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


24.6 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Pa	ckage Group: (Ceramic CERDIP	Dual In-Line (C	DP)	
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	_	5.080		_	0.200	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	22.352	23.622		0.880	0.930	
D1	20.320	20.320	Reference	0.800	0.800	Reference
E	7.620	8.382		0.300	0.330	
E1	5.588	7.874		0.220	0.310	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	7.366	8.128	Typical	0.290	0.320	Typical
eB	7.620	10.160		0.300	0.400	
L	3.175	3.810		0.125	0.150	
Ν	18	18		18	18	
S	0.508	1.397		0.020	0.055	
S1	0.381	1.270		0.015	0.050	

24.13 44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form) (TQ)

		Packag	e Group: Plast	ic TQFP				
		Millimeters		Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
A	1.00	1.20		0.039	0.047			
A1	0.05	0.15		0.002	0.006			
A2	0.95	1.05		0.037	0.041			
D	11.75	12.25		0.463	0.482			
D1	9.90	10.10		0.390	0.398			
E	11.75	12.25		0.463	0.482			
E1	9.90	10.10		0.390	0.398			
L	0.45	0.75		0.018	0.030			
е	0.80	BSC		0.03	1 BSC			
b	0.30	0.45		0.012	0.018			
b1	0.30	0.40		0.012	0.016			
С	0.09	0.20		0.004	0.008			
c1	0.09	0.16		0.004	0.006			
Ν	44	44		44	44			
Θ	0°	7 °		0°	7 °			

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.

3: This outline conforms to JEDEC MS-026.

APPENDIX F: PIC16/17 MICROCONTROLLERS

F.1 PIC12CXXX Family of Devices

		PIC12C508	PIC12C509	PIC12C671	PIC12C672
lock	Maximum Frequency of Operation (MHz)	4	4	4	4
emory	EPROM Program Memory	512 x 12	1024 x 12	1024 x 14	2048 x 14
emory	Data Memory (bytes)	25	41	128	128
	Timer Module(s)	TMR0	TMR0	TMR0	TMR0
eripherals	A/D Converter (8-bit) Channels		_	4	4
	Wake-up from SLEEP on pin change	Yes	Yes	Yes	Yes
	I/O Pins	5	5	5	5
	Input Pins	1	1	1	1
atures	Internal Pull-ups	Yes	Yes	Yes	Yes
	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5	2.5-5.5
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes
	Number of Instructions	33	33	35	35
	Packages	8-pin DIP, SOIC	8-pin DIP, SOIC	8-pin DIP, SOIC	8-pin DIP, SOIC

All PIC12C5XX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC12C5XX devices use serial programming with data pin GP1 and clock pin GP0.

F.2 PIC14C000 Family of Devices

		PIC14C000
Clock	Maximum Frequency of Operation (MHz)	20
Memory	EPROM Program Memory (x14 words)	4K
	Data Memory (bytes)	192
	Timer Module(s)	TMR0 ADTMR
Peripherals	Serial Port(s) (SPI/I ² C, USART)	I ² C with SMBus Support
Features	Slope A/D Converter Channels	8 External; 6 Internal
	Interrupt Sources	11
	I/O Pins	22
	Voltage Range (Volts)	2.7-6.0
	In-Circuit Serial Programming	Yes
	Additional On-chip Features	Internal 4MHz Oscillator, Bandgap Reference,Temperature Sensor, Calibration Factors, Low Voltage Detector, SLEEP, HIBERNATE, Comparators with Programmable References (2)
	Packages	28-pin DIP (.300 mil), SOIC, SSOP