

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc65at-04i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16C6X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C6X family of devices, there are four device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**64. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**64. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C6X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

ROM devices do not allow serialization information in the program memory space. The user may have this information programmed in the data memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

FIGURE 3-2: PIC16C62/62A/R62/64/64A/R64 BLOCK DIAGRAM

4.2.2.3 INTCON REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The INTCON Register is a readable and writable register which contains the various enable and flag bits for the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

FIGURE 4-11: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh 18Bh)

B/W-0	B/W-0	B/W-0	B/W-0	B/W-0	B/W-0	B/W-0	B/W-x						
GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTE	RBIF	R = Readable bit					
bit7	<u> </u>	<u> </u>	1			1	bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset x = unknown					
bit 7:	GIE: ⁽¹⁾ Glo 1 = Enable 0 = Disable	bal Interrup s all un-ma s all interru	ot Enable bi sked interru upts	t ıpts									
bit 6:	bit 6: PEIE : ⁽²⁾ Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts												
bit 5:	 TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt 												
bit 4:	INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt												
bit 3:	RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt												
bit 2:	TOIF: TMR 1 = TMR0 0 = TMR0	0 Overflow register ove register did	Interrupt Flerflowed (m not overflo	ag bit ust be cleai w	red in softwa	re)							
bit 1:	INTF: RB0 1 = The RE 0 = The RE	/INT Exterr 30/INT exte 30/INT exte	nal Interrupt rnal interru rnal interru	Flag bit ot occurred ot did not o	(must be cle ccur	ared in soft	ware)						
bit 0:	RBIF: RB I 1 = At leas 0 = None o	Port Chang t one of the of the RB7:I	e Interrupt RB7:RB4 RB4 pins ha	Flag bit bins change we change	ed state (see d state	Section 5.2	2 to clear the	interrupt)					
Note 1:	For the PIC be re-enab description	C16C61/62/ led by the I	64/65, if an RETFIE ins	interrupt o truction in t	ccurs while the user's Inte	ne GIE bit is errupt Servi	s being clear ce Routine. I	ed, the GIE bit may unintentionally Refer to Section 13.5 for a detailed					
2:	I NE PEIE I	DIT (DITG) IS I	unimplemer	nted on the	PIC16C61, r	ead as '0'.							
Interri globa enabli	Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.												

4.2.2.8 PCON REGISTER

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The Power Control register (PCON) contains a flag bit to allow differentiation between a Power-on Reset to an external MCLR reset or WDT reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Poweron Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

FIGURE 4-22: PCON REGISTER FOR PIC16C62/64/65 (ADDRESS 8Eh)

FIGURE 4-23: PCON REGISTER FOR PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67 (ADDRESS 8Eh)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. An example would be in master mode where you are only sending data (to a display driver), then both SDI and \overline{SS} could be used as general purpose outputs by clearing their corresponding TRIS register bits.

Figure 11-10 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application firmware. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- · Master sends dummy data Slave sends data

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2) is to broadcast data by the firmware protocol.

In master mode the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SCK output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor" mode.

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched the interrupt flag bit SSPIF (PIR1<3>) is set.

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 11-11, Figure 11-12, and Figure 11-13 where the MSB is transmitted first. In master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 5 MHz. When in slave mode the external clock must meet the minimum high and low times.

In sleep mode, the slave can transmit and receive data and wake the device from sleep.

FIGURE 11-10: SPI MASTER/SLAVE CONNECTION (PIC16C66/67)

FIGURE 11-27: OPERATION OF THE I²C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE

IDLE_MODE (7-bit): if (Addr_match) { Set interrupt;	
else if (R/₩ = 0) set RCV_MODE; }	
RCV_MODE: if ((SSPBUF=Full) OR (SSPOV = 1)) { Set SSPOV; Do not acknowledge; }	
else { transfer SSPSK \rightarrow SSPBUF; send $\overline{ACK} = 0;$ }	
Receive 8-bits in SSPSR; Set interrupt;	
XMIT_MODE: While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low; Send byte; Set interrupt; if (ACK Received = 1) { End of transmission; Go back to IDLE_MODE;	
else if (ACK Received = 0) Go back to XMIT_MODE; IDLE_MODE (10-Bit): If (High_byte_addr_match AND (R/W = 0)) { PRIOR_ADDR_MATCH = FALSE; Set interrupt; if ((SSPBUF = Full) OR ((SSPOV = 1)) { Set SSPOV; Do not acknowledge; } else { Set UA = 1; Send ĀCK = 0; While (SSPADD not updated) Hold SCL low; Clear UA = 0; Receive Low_addr_byte; Set interrupt; Set UA = 1; If (Low_byte_addr_match) { PRIOR_ADDR_MATCH = TRUE; Send ĀCK = 0; while (SSPADD not updated) Hold SCL low; Clear UA = 0; Set UA = 1; If (Low_byte_addr_match) { PRIOR_ADDR_MATCH = TRUE; Send ĀCK = 0; while (SSPADD not updated) Hold SCL low; Clear UA = 0; Set RCV_MODE; }	
} else if (High_byte_addr_match AND (RW = 1) {	
} else PRIOR_ADDR_MATCH = FALSE; }	

IORWF	Inclusive OR W with f										
Syntax:	[label]	IORWF	f,d								
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27									
Operation:	(W) .OR.	$(f) \rightarrow (d)$	estinatio	on)							
Status Affected:	Z										
Encoding:	00	0100	dfff	ffff							
Description:	Inclusive (ter 'f'. If 'd' W register back in re	OR the W is 0 the re r. If 'd' is 1 gister 'f'.	register esult is pl the resu	with regis- aced in the It is placed							
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read register 'f'	Process data	Write to destination							
Example	IORWF		RESULT	, 0							
	Before In	struction	1								
		RESULT	= 0x	13							
	After Inst	ruction	= 0x	91							
		RESULT	= 0x	13							
		W	= 0x	93							
		Z	= 1								

MOVLW	Move Literal to W										
Syntax:	[label]	MOVLW	/ k								
Operands:	$0 \le k \le 25$	55									
Operation:	$k \to (W)$										
Status Affected:	None										
Encoding:	11	00xx	kkkk	kkkk							
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.										
Words:	1										
Cycles:	1										
Q Cycle Activity:	Q1	Q2	Q3	Q4							
	Decode	Read literal 'k'	Process data	Write to W							
Example	MOVLW After Inst	0x5A									
		W =	0x5A								

-

MOVF	Move f									
Syntax:	[label]	MOVF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in [0,1] \end{array}$	7								
Operation:	$(f) \rightarrow (des$	stination)							
Status Affected:	Z									
Encoding:	00	1000	dfff	ffff						
Description:	The contents of register 1 is moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register re since status flag Z is affected.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Example	MOVF	FSR,	0							
After Instruction W = value in FSR register Z = 1										

MOVWF	Move W to f								
Syntax:	[label]	MOVW	F f						
Operands:	$0 \le f \le 12$.7							
Operation:	$(W) \rightarrow (f)$								
Status Affected:	None								
Encoding:	00	0000	lfff	ffff					
Description:	Move data 'f'.	from W r	egister to	register					
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write register 'f'					
Example	MOVWF	OPTIC	DN_REG						
	Before In	struction OPTION	= 0xFf	F					
	After last	W	= 0x4F	=					
	Aller Inst	OPTION	= 0x4F	=					
		W	= 0x4F	=					
		W	= 0x4F	=					

RETLW Return with Literal in W		RETURN	Return from Subroutine								
Syntax:	[label]	RETLW	k		Syntax:	[label]	RETUR	N			
Operands:	$0 \le k \le 2$	55			Operands:	None					
Operation:	$k \rightarrow (W);$				Operation:	$TOS \rightarrow F$	ъС				
	$TOS \rightarrow F$	ъС			Status Affected:	None					
Status Affected:	None				Encodina:	00	0000	0000	1000		
Encoding:	11	01xx	kkkk	kkkk	Description:	Return fro	m subrout	ine. The st	ne stack is		
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the				POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.						
	instruction	iress). This I.	s is a two o	cycle	Words:	1					
Words:	1				Cycles:	2					
Cycles:	2				Q Cycle Activity:	Q1	Q2	Q3	Q4		
Q Cycle Activity:	_ Q1	Q2	Q3	Q4	1st Cycle	Decode	No- Operation	No- Operation	Pop from the Stack		
1st Cycle De	Decode	Read literal 'k'	No- Operation	Write to W, Pop from the	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation		
2nd Cycle	No-	No-	No-	No-	Example	RETURN					
Zha Oyoic	Operation	Operation	Operation	Operation		After Interrupt					
Example	CALL TABL	E ;W con ;offse ;W now	tains tabl t value has table	le value			PC =	TOS			
TABLE	ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;										
	RETLW kn	; End	of table								
	Before In	W =	0x07								
	After Inst	ruction	0.07								
		W =	value of k8	3							

Applicable Devices	61	62	624	B62	63	B63	64	644	R64	65	654	R65	66	67
Applicubic Devices	01	02	0211	1102	00	1100	0-	047	110-	00	007	1100	00	01

		Standa	d Operat	ina Ca	nditiona	Junior	a otherwise stated)		
		Operatir	na temperat	niy cu atura	-40°C		$< \pm 125^{\circ}$ C for extended		
		Operation	ig temper	ature	-40°C	/~ ∠/	$\leq +125$ C for industrial and		
DC CHA	ARACTERISTICS				-40 0	$\leq TA \leq +30^{\circ}$ C for commercial			
		0				۲/ ∠ بدائیم مما	$r \leq +70$ C for continential		
		Operating voltage vold range as described in DC spec Section 15.1 and							
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions		
No.									
	Output High Voltage								
D090	I/O ports (Note 3)	Voh	Vpp-0.7	-	-	v	IOH = -3.0 mA		
2000		1011	100 0.1				$V_{DD} = 4.5V - 40^{\circ}C t_{0} + 85^{\circ}C$		
						v			
DU90A			VDD-0.7	-	-	v	10H = -2.5 mA,		
							$VDD = 4.5V, -40^{\circ}C t0 + 125^{\circ}C$		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOн = -1.3 mA,		
							VDD = 4.5V, -40°C to +85°C		
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA,		
							VDD = 4.5V, -40°C to +125°C		
D150*	Open-Drain High Voltage	VOD	-	-	14	V	RA4 pin		
	Capacitive Loading Specs on								
	Output Pins								
D100	OSC2 pin	Cosca			15	nF	In XT HS and LP modes when		
0100	0002 pm	00302			15	рі	avtornal clock is used to drive		
						_	0301.		
D101	All I/O pins and OSC2 (in RC mode)	CIO			50	pF			

The parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FREQUENCY vs. VDD

FIGURE 16-5: TYPICAL IPD VS. VDD WATCHDOG TIMER **DISABLED 25°C**

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1	No Prescaler	0.5Tcy + 20	—	—	ns		
		input low time	With Prescaler	PIC16 C 62/64	10	—	_	ns	
				PIC16 LC 62/64	20	—	_	ns	
51*	51* TccH CCP1		No Prescaler		0.5Tcy + 20	—	_	ns	
		input high time	With Prescaler	PIC16 C 62/64	10	—	_	ns	
				PIC16 LC 62/64	20	—	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	-	-	ns	N = prescale value (1,4 or 16)
53	TccR	CCP1 output rise time	е	PIC16 C 62/64	_	10	25	ns	
				PIC16 LC 62/64	—	25	45	ns	
54	TccF	ccF CCP1 output fall time		PIC16 C 62/64	_	10	25	ns	
				PIC16 LC 62/64	_	25	45	ns	

These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 18-8: PARALLEL SLAVE PORT TIMING (PIC16C64A/R64)

TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64A/R64)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before $\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ (set	up time)	20		—	ns	
				25	_	_	ns	Extended Range Only
63*	TwrH2dtl	WR↑ or CS↑ to data-in invalid (hold fime) F RD↓ and CS↓ to data-out valid	PIC16 C 64A/R64	20	I	_	ns	
			PIC16 LC 64A.R64	35	_	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid			I	80	ns	
				—	_	90	ns	Extended Range Only
65*	TrdH2dtl	\overline{RD} or \overline{CS} to data-out invalid		10	-	30	ns	

These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.5 <u>Timing Diagrams and Specifications</u>

FIGURE 19-2: EXTERNAL CLOCK TIMING

TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	—	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	-	ns	XT and RC osc mode
		(Note 1)	250	—	-	ns	HS osc mode (-04)
			100	—	-	ns	HS osc mode (-10)
			50	—	-	ns	HS osc mode (-20)
			5	—	—	μS	LP osc mode
		Oscillator Period	250	—	-	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	-	ns	XT oscillator
	TosH	Low Time	2.5	—	-	μs	LP oscillator
			15	—	-	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
				—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 20-5: BROWN-OUT RESET TIMING

TABLE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
30	TmcL	MCLR Pulse Width (low)	2	—	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc	—	—	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset		_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 20-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
No.									
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5TCY + 20	_	_	ns	Must also meet
				With Prescaler	10	_	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	-	—	ns	
				With Prescaler	Greater of:	—	—	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
					N				
45*	Tt1H	T1CKI High Time	Synchronous, P	rescaler = 1	0.5TCY + 20		—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47
			Prescaler =	PIC16 LC 6X	25	—	—	ns	
			2,4,8						
			Asynchronous	PIC16 C 6X	30			ns	
				PIC16 LC 6X	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler = 1	0.5TCY + 20		—	ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	—	ns	parameter 47
			Prescaler =	PIC16 LC 6X	25	—	—	ns	
			2,4,8						
			Asynchronous	PIC16 C 6X	30	—	—	ns	
				PIC16 LC 6X	50		—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	Greater of:	_	—	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16 LC 6X	Greater of:				N = prescale value
					50 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
			Asynchronous	PIC16 C 6X	60	—	—	ns	
				PIC16 LC 6X	100	—	—	ns	
	Ft1	Timer1 oscillator inp	out frequency ran	ige	DC	-	200	kHz	
		(oscillator enabled b	by setting bit T1C	SCEN)					
48	TCKEZtmr1	Delay from external	clock edge to tin	ner increment	2Tosc	-	7Tosc	—	

These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 20-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input low time	With Prescaler	PIC16 C 63/65A	10	—	—	ns	
				PIC16 LC 63/65A	20	_	_	ns	
51*	51* TccH CCP1 and		No Prescaler		0.5TCY + 20	—	_	ns	
		input high time	With Prescaler	PIC16 C 63/65A	10	—	—	ns	
				PIC16 LC 63/65A	20	_	_	ns	
52*	TccP	CCP1 and CCP2 input period			<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 o	utput rise time	PIC16 C 63/65A	—	10	25	ns	
			PIC16LC63/65/		—	25	45	ns	
54*	TccF	CCP1 and CCP2 output fall time		PIC16 C 63/65A	_	10	25	ns	
				PIC16 LC 63/65A	_	25	45	ns	

* These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 21-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	Tcy + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	_	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	$\overline{\text{SS}}$ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	—	50	ns	

* These parameters are characterized but not tested.

24.6 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)								
	Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
А		5.080			0.200			
A1	0.381	1.778		0.015	0.070			
A2	3.810	4.699		0.150	0.185			
A3	3.810	4.445		0.150	0.175			
В	0.355	0.585		0.014	0.023			
B1	1.270	1.651	Typical	0.050	0.065	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	22.352	23.622		0.880	0.930			
D1	20.320	20.320	Reference	0.800	0.800	Reference		
E	7.620	8.382		0.300	0.330			
E1	5.588	7.874		0.220	0.310			
e1	2.540	2.540	Reference	0.100	0.100	Reference		
eA	7.366	8.128	Typical	0.290	0.320	Typical		
eB	7.620	10.160		0.300	0.400			
L	3.175	3.810		0.125	0.150			
N	18	18		18	18			
S	0.508	1.397		0.020	0.055			
S1	0.381	1.270		0.015	0.050			

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)								
	Millimeters			Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
Α	4.318	5.715		0.170	0.225			
A1	0.381	1.778		0.015	0.070			
A2	3.810	4.699		0.150	0.185			
A3	3.810	4.445		0.150	0.175			
В	0.355	0.585		0.014	0.023			
B1	1.270	1.651	Typical	0.050	0.065	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	51.435	52.705		2.025	2.075			
D1	48.260	48.260	Reference	1.900	1.900	Reference		
E	15.240	15.875		0.600	0.625			
E1	12.954	15.240		0.510	0.600			
e1	2.540	2.540	Reference	0.100	0.100	Reference		
eA	14.986	16.002	Typical	0.590	0.630	Typical		
eB	15.240	18.034		0.600	0.710			
L	3.175	3.810		0.125	0.150			
N	40	40		40	40			
S	1.016	2.286		0.040	0.090			
S1	0.381	1.778		0.015	0.070			

F.10 PIC17CXXX Family of Devices

		PIC17C42A	PIC17CR42	PIC17C43	PIC17CR43	PIC17C44
Clock	Maximum Frequency of Operation (MHz)	33	33	33	33	33
	EPROM Program Memory (words)	2К	—	4K	—	8K
Memory	ROM Program Memory (words)	-	2К	—	4K	—
	RAM Data Memory (bytes)	232	232	454	454	454
Peripherals	Timer Module(s)	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3	TMR0, TMR1, TMR2, TMR3
	Captures/PWM Module(s)	2	2	2	2	2
	Serial Port(s) (USART)	Yes	Yes	Yes	Yes	Yes
	Hardware Multiply	Yes	Yes	Yes	Yes	Yes
	External Interrupts	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	11	11	11	11	11
_	I/O Pins	33	33	33	33	33
Features	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	Number of Instructions	58	58	58	58	58
	Packages	40-pin DIP; 44-pin PLCC, MQFP, TQFP				

		PIC17C752	PIC17C756
Clock	Maximum Frequency of Operation (MHz)	33	33
	EPROM Program Memory (words)	8K	16K
Memory	ROM Program Memory (words)	—	—
	RAM Data Memory (bytes)	454	902
	Timer Module(s)	TMR0,	TMR0,
		TMR1,	TMR1,
Devinherale		TMR2,	TMR2,
Peripherals		TMR3	TMR3
	Captures/PWM Module(s)	4/3	4/3
	Serial Port(s) (USART)	2	2
	Hardware Multiply	Yes	Yes
	External Interrupts	Yes	Yes
	Interrupt Sources	18	18
	I/O Pins	50	50
Features	Voltage Range (Volts)	3.0-6.0	3.0-6.0
	Number of Instructions	58	58
	Packages	64-pin DIP; 68-pin LCC, 68-pin TQFP	64-pin DIP; 68-pin LCC, 68-pin TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.