

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc66t-04-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC16C6X FAMILY OF DEVICES

		PIC16C61	PIC16C62A	PIC16CR62	PIC16C63	PIC16CR63
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20
	EPROM Program Memory (x14 words)	1K	2K	_	4K	_
Memory	ROM Program Memory (x14 words)			2K		4K
	Data Memory (bytes)	36	128	128	192	192
	Timer Module(s)	TMR0	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/ PWM Module(s)		1	1	2	2
	Serial Port(s) (SPI/I ² C, USART)		SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C USART
	Parallel Slave Port				_	_
	Interrupt Sources	3	7	7	10	10
	I/O Pins	13	22	22	22	22
	Voltage Range (Volts)	3.0-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
Features	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes
	Brown-out Reset	_	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SO	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC, SSOP	28-pin SDIP, SOIC	28-pin SDIP, SOIC

		PIC16C64A	PIC16CR64	PIC16C65A	PIC16CR65	PIC16C66	PIC16C67
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	EPROM Program Memory (x14 words)	2K		4K		8K	8K
Memory	ROM Program Memory (x14 words)	—	2K		4K	_	
	Data Memory (bytes)	128	128	192	192	368	368
	Timer Module(s)	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2	TMR0, TMR1, TMR2
Peripherals	Capture/Compare/PWM Mod- ule(s)	1	1	2	2	2	2
	Serial Port(s) (SPI/I ² C, USART)	SPI/I ² C	SPI/I ² C	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART	SPI/I ² C, USART
	Parallel Slave Port	Yes	Yes	Yes	Yes	_	Yes
	Interrupt Sources	8	8	11	11	10	11
	I/O Pins	33	33	33	33	22	33
	Voltage Range (Volts)	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0	2.5-6.0
	In-Circuit Serial Programming	Yes	Yes	Yes	Yes	Yes	Yes
Features	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages	40-pin DIP; 44-pin PLCC, MQFP, TQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP	40-pin DIP; 44-pin PLCC, MQFP, TQFP	28-pin SDIP, SOIC	40-pin DIP; 44-pin PLCC, MQFP, TQFP

All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.

FIGURE 5-4: BLOCK DIAGRAM OF THE RB7:RB4 PINS FOR PIC16C62A/63/R63/64A/65A/ R65/66/67

TABLE 5-3: PORTB FUNCTIONS

FIGURE 5-5: BLOCK DIAGRAM OF THE RB3:RB0 PINS

Name	Bit#	Buffer Type	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuuu
86h, 186h TRISB PORTB Data Direction Register								1111 1111	1111 1111		
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.3 PORTC and TRISC Register

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTC is an 8-bit wide bi-directional port. Each pin is individually configurable as an input or output through the TRISC register. PORTC is multiplexed with several peripheral functions (Table 5-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 5-3: INITIALIZING PORTC

FIGURE 5-6: PORTC BLOCK DIAGRAM

3: Peripheral OE (output enable) is only activated if peripheral select is active.

TABLE 5-5: PORTC FUNCTIONS FOR PIC16C62/64

Name	Bit#	Buffer Type	Function
RC0/T1OSI/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator input or Timer1 clock input
RC1/T1OSO	bit1	ST	Input/output port pin or Timer1 oscillator output
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or synchronous serial port data output
RC6	bit6	ST	Input/output port pin
RC7	bit7	ST	Input/output port pin

Legend: ST = Schmitt Trigger input

5.5 PORTE and TRISE Register

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTE has three pins, RE2/CS, RE1/WR, and RE0/RD which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). In this mode the input buffers are TTL.

Figure 5-9 shows the TRISE register, which controls the parallel slave port operation and also controls the direction of the PORTE pins.

FIGURE 5-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

FIGURE 5-9: TRISE REGISTER (ADDRESS 89h)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	
IBF	OBF	IBOV	PSPMODE	_	bit2	bit1	bit0	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7 :	IBF: Input 1 = A word 0 = No wor	Buffer Full has been d has beer	Status bit received and n received	is waiting t	o be read by	the CPU		
bit 6:	OBF : Outp 1 = The ou 0 = The ou	out Buffer F Itput buffer Itput buffer	ull Status bit still holds a p has been rea	reviously w d	ritten word			
bit 5:	IBOV : Input 1 = A write 0 = No over	t Buffer Ov occurred v rflow occu	verflow Detect when a previo rred	bit (in mic usly input v	roprocessor i word has not	node) been read	(must be cle	ared in software)
bit 4:	PSPMODE 1 = Paralle 0 = Genera	E: Parallel S I slave por al purpose	Slave Port Mo t mode I/O mode	de Select k	bit			
bit 3:	Unimplem	ented: Re	ad as '0'					
	PORTE D	ata Direc	ction Bits					
bit 2:	Bit2 : Direct 1 = Input 0 = Output	tion Contro	ol bit for pin R	E2/CS				
bit 1:	Bit1: Direc 1 = Input 0 = Output	tion Contro	ol bit for pin R	E1/WR				
bit 0:	Bit0 : Direc 1 = Input 0 = Output	tion Contro	ol bit for pin R	E0/RD				

8.3 <u>Timer1 Operation in Asynchronous</u> <u>Counter Mode</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

If control bit $\overline{T1SYNC}$ (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and generate an interrupt on overflow which will wake the processor. However, special precautions in software are needed to read-from or write-to the Timer1 register pair, TMR1L and TMR1H (Section 8.3.2).

In asynchronous counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

8.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{T1SYNC}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high time and low time requirements, as specified in timing parameters (45 - 47).

8.3.2 READING AND WRITING TMR1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 8-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 8-1: READING A 16-BIT FREE-RUNNING TIMER

;	All Int	errupts	are	disabled
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
	MOVF	TMR1H,	W	;Read high byte
	SUBWF	TMPH,	W	;Sub 1st read
				;with 2nd read
	BTFSC	STATUS	Z	;is result = 0
	GOTO	CONTINU	JE	;Good 16-bit read
;	TMR1L ma	y have r	olle	d over between the read
;	of the h	igh and	low	bytes. Reading the high
;	and low	bytes no	w w	ill read a good value.
	MOVF	TMR1H,	W	;Read high byte
	MOVWF	TMPH		;
	MOVF	TMR1L,	W	;Read low byte
	MOVWF	TMPL		;
;	Re-ena	ble Inte	rrup	ot (if required)
CC	ONTINUE			;Continue with
	:			;your code

8.4 <u>Timer1 Oscillator</u>

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

A crystal oscillator circuit is built in-between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 8-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must allow a software time delay to ensure proper oscillator start-up.

TABLE 8-1: CAPACITOR SELECTION FOR THE TIMER1 OSCILLATOR

Osc Type	Freq C1		C2				
LP	32 kHz	33 pF	33 pF				
	100 kHz	15 pF	15 pF				
	200 kHz	15 pF	15 pF				
These v	alues are for o	design guidan	ce only.				
Crystals Tested:							
32.768 kHz	32.768 kHz Epson C-001R32.768K-A						
100 kHz	Epson C-2 1	\pm 20 PPM					
200 kHz	STD XTL 20	0.000 kHz	\pm 20 PPM				
 Note 1: Higher capacitance increases the stability of oscillator but also increases the stability time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 							

12.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 12-10. The data comes in the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at FOSC.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is double buffered register, i.e., it is a two deep FIFO. It is

FIGURE 12-10: USART RECEIVE BLOCK DIAGRAM

possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR register will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear overrun bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a stop bit is detected as clear. Error bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will load bits RX9D and FERR with new values. Therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

FIGURE 12-11: ASYNCHRONOUS RECEPTION

TABLE 13-9:	STATUS BITS AND THEIR SIGNIFICANCE FOR
	PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67

POR	BOR	то	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on a Power-on Reset
0	x	x	0	Illegal, PD is set on a Power-on Reset
1	0	x	x	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR reset during normal operation
1	1	1	0	MCLR reset during SLEEP or interrupt wake-up from SLEEP

Legend: x = unknown, u = unchanged

TABLE 13-10: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C61/62/64/65

	Program Counter	STATUS	PCON ⁽²⁾
Power-on Reset	000h	0001 1xxx	0 -
MCLR reset during normal operation	000h	000u uuuu	u-
MCLR reset during SLEEP	000h	0001 0uuu	u-
WDT Reset	000h	0000 luuu	u-
WDT Wake-up	PC + 1	uuu0 0uuu	u-
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	u-

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

2: The PCON register is not implemented on the PIC16C61.

TABLE 13-11: RESET CONDITION FOR SPECIAL REGISTERS ON PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67

	Program Counter	STATUS	PCON
Power-on Reset	000h	0001 1xxx	0x
MCLR reset during normal operation	000h	000u uuuu	uu
MCLR reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
Brown-out Reset	000h	0001 luuu	u0
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

TABLE 14-2: PIC16CXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcod	e	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS						1	
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL AI	ND CO	NTROL OPERATIONS						1	
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Applicable Devices	61	62	624	B62	63	B63	64	644	R64	65	654	R65	66	67
Applicubic Devices		02	0211	1102	00	1100	0-	047	110-	00	007	1100	00	01

		Standa	d Operat	ina Ca	nditiona	Junior	a otherwise stated)		
		Operatir	na temperat	niy cu atura	-40°C		$< \pm 125^{\circ}$ C for extended		
		Operation	ig temper	ature	-40°C	/~ ∠/	$T_A \leq +120$ C for industrial and		
DC CHA	ARACTERISTICS				-40 0	^ ∠	$1 \leq +00$ C for commercial		
		0				۲/ ∠ بدائیم مما	$r \leq +70$ C for continential		
		Operatir	ig vollage	VDD ra	ange as c	escribe	ed in DC spec Section 15.1 and		
		Section 15.2.							
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions		
No.									
	Output High Voltage								
D090	I/O ports (Note 3)	Voh	Vpp-0.7	-	-	v	IOH = -3.0 mA		
2000		1011	100 0.1				$V_{DD} = 4.5V - 40^{\circ}C t_{0} + 85^{\circ}C$		
DU90A			VDD-0.7	-	-	v	10H = -2.5 mA,		
							$VDD = 4.5V, -40^{\circ}C t0 + 125^{\circ}C$		
D092	OSC2/CLKOUT (RC osc config)		VDD-0.7	-	-	V	IOн = -1.3 mA,		
							VDD = 4.5V, -40°C to +85°C		
D092A			VDD-0.7	-	-	V	IOH = -1.0 mA,		
							VDD = 4.5V, -40°C to +125°C		
D150*	Open-Drain High Voltage	VOD	-	-	14	V	RA4 pin		
	Capacitive Loading Specs on								
	Output Pins								
D100	OSC2 pin	Cosca			15	nF	In XT HS and LP modes when		
0100	0002 pm	00302			15	рі	avtornal clock is used to drive		
						_	0301.		
D101	All I/O pins and OSC2 (in RC mode)	CIO			50	pF			

The parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS

TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet
			With Prescaler	10	—	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20	—	—	ns	Must also meet
			With Prescaler	10	_	_	ns	parameter 42
42*	Tt0P	T0CKI Period	No Prescaler	TCY + 40	_	_	ns	N = prescale value
			With Prescaler	Greater of: 20 ns or <u>Tcy + 40</u> N	_	_	ns	(2, 4,, 256)

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

NOTES:

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

18.3 DC Characteristics: PIC16C62A/R62/64A/R64-04 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-10 (Commercial, Industrial, Extended) PIC16C62A/R62/64A/R64-20 (Commercial, Industrial, Extended) PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)

	Standard Operating Conditions (unless otherwise stated)											
		Operatio	ng temper	ature	e -40°	C ≤ .	$TA \leq +125^{\circ}C$ for extended,					
DC CH	ABACTERISTICS				-40°	C ≤	TA \leq +85°C for industrial and					
00 011					0°C	≤ .	TA \leq +70°C for commercial					
		Operati	ng voltage	VDD	range as	descri	bed in DC spec Section 18.1 and					
		Section	18.2			-						
Param	Characteristic	Sym	Min	Тур	Max	Units	Conditions					
No.				1								
	Input Low Voltage											
	I/O ports	VIL										
D030	with TTL buffer		Vss	-	0.15VDD	V	For entire VDD range					
D030A			Vss	-	0.8V	V	$4.5V \leq V \text{DD} \leq 5.5V$					
D031	with Schmitt Trigger buffer		Vss	-	0.2Vdd	V						
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2Vdd	V						
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	v	Note1					
	Input High Voltage											
	I/O ports	VIH		-								
D040	with TTL buffer		2.0	-	Vdd	v	$4.5V \le VDD \le 5.5V$					
D040A			0.25VDD	-	Vdd	v	For entire VDD range					
			+ 0.8V				5					
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	v	For entire VDD range					
D042	MCLR		0.8VDD	-	Vdd	v	-					
D042A	OSC1 (XT, HS and LP)		0.7Vdd	-	Vdd	v	Note1					
D043	OSC1 (in RC mode)		0.9VDD	-	Vdd	v						
D070	PORTB weak pull-up current	IPURB	50	250	400	μA	VDD = 5V, VPIN = VSS					
	Input Leakage Current (Notes 2, 3)											
D060	I/O ports	lı∟	-	-	±1	μA	Vss \leq VPIN \leq VDD. Pin at hi-imped-					
	· · · ·					1	ance					
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq VPIN \leq VDD$					
D063	OSC1		-	-	±5	μA	Vss \leq VPIN \leq VDD. XT. HS and LP					
						<i></i>	osc configuration					
	Output Low Voltage											
D080	I/O ports	VOL	-	-	0.6	v	IOL = 8.5 mA, VDD = 4.5V,					
	•						-40°C to +85°C					
D080A			-	-	0.6	v	IOL = 7.0 mA, VDD = 4.5V,					
							-40°C to +125°C					
D083	OSC2/CLKOUT (RC osc confia)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V,					
	, · · · · · · · · · · · · · · · · · · ·						-40°C to +85°C					
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V,					
							-40°C to +125°C					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 18-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	-	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	-	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	-	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	-	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	_	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μS	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	-	μS	After this period the first clock
		time	400 kHz mode	0.6	—	μS	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	_
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	-	ns	Note 2
			400 kHz mode	100	-	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	-	μS	_
		time	400 kHz mode	0.6	-	μS	
109*	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading			400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

19.0 ELECTRICAL CHARACTERISTICS FOR PIC16C65

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +85°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +14V
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Iok (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	
Maximum current sunk by PORTC and PORTD (combined)	
Maximum current sourced by PORTC and PORTD (combined)	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-	VOH) x IOH} + Σ (VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 19-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C65-04	PIC16C65-10	PIC16C65-20	PIC16LC65-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 µA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 6.0V IDD: 3.8 mA max. at 3V IPD: 800 µA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 μA max. at 4V Freq: 4 MHz max.
HS	VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz may	VDD: 4.5V to 5.5V IDD: 15 mA max. at 5.5V IPD 1.0 μA typ. at 4.5V	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Fren: 20 MHz max	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Fren: 20 MHz max
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 3.0V to 6.0V IDD: 105 μA max. at 32 kHz, 3.0V IPD: 800 μA max. at 3.0V Freq: 200 kHz max.	VDD: 3.0V to 6.0V IDD: 105 μA max. at 32 kHz, 3.0V IPD: 800 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 21-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	_	_	ns	
71*	TscH	SCK input high time (slave mode)	Tcy + 20	_	_	ns	
72*	TscL	SCK input low time (slave mode)	TCY + 20	_	_	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	—	—	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	—	ns	
75*	TdoR	SDO data output rise time		10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	$\overline{\text{SS}}$ to SDO output hi-impedance	10	_	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	—	—	50	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-11: I²C BUS DATA TIMING

TABLE 21-10: I²C BUS DATA REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	-		
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	—	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	-	μS	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μS	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	_	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	_	μs	
		time	400 kHz mode	0.6	_	μs	
109*	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

22.5 <u>Timing Diagrams and Specifications</u>

FIGURE 22-2: EXTERNAL CLOCK TIMING

TABLE 22-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	4	MHz	XT and BC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	BC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μS	LP osc mode
		Oscillator Period	250	_	_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	_	250	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	—	ns	XT oscillator
	TosH	Low Time	2.5	_	_	μs	LP oscillator
			15	—	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	_	—	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-8: PARALLEL SLAVE PORT TIMING (PIC16C67)

TABLE 22-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C67)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62*	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)		20	_	_	ns	
				25	_	—	ns	Extended Range Only
63*	TwrH2dtl	$\overline{\text{WR}}\uparrow$ or $\overline{\text{CS}}\uparrow$ to data–in invalid (hold time)	PIC16 C 67	20	_	_	ns	
			PIC16 LC 67	35	—	—	ns	
64	TrdL2dtV $\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data-out valid		-	—	80	ns		
				-	_	90	ns	Extended Range Only
65*	TrdH2dtl	$\overline{\text{RD}}$ or $\overline{\text{CS}}$ to data-out invalid		10	—	30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

APPENDIX A: MODIFICATIONS

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. Timer0 pin is also a port pin (RA4/T0CKI) now.
- 14. FSR is made a full 8-bit register.
- "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- Power Control register (PCON) is added with a Power-on Reset status bit (POR).(Not on the PIC16C61).
- Brown-out Reset has been added to the following devices: PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/ 67.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

Table 18-1:	Cross Reference of Device Specs for Oscillator Configurations and
	(Commercial Devices)
Table 18-2:	External Clock Timing Requirements
Table 18-3:	CLKOUT and I/O Timing Requirements
Table 18-4:	Reset, Watchdog Timer, Oscillator Start-up Timer and
Table 18-5:	Timer0 and Timer1 External
Table 18-6:	Capture/Compare/PWM
Table 18-7:	Parallel Slave Port Requirements (PIC16C64)
Table 18-8	SPI Mode Requirements 195
Table 18-9	I ² C Bus Start/Stop Bits
10010 10 01	Requirements 196
Table 18-10	I ² C Bus Data Bequirements 197
Table 19-1	Cross Beference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices) 199
Table 19-2	External Clock Timing
10010 10 21	Bequirements 205
Table 19-3	CI KOUT and I/O Timing
	Requirements
Table 19-4:	Reset, Watchdog Timer.
	Oscillator Start-up Timer
	Power-up Timer, and Brown-out
	Reset Requirements
Table 19-5:	Timer0 and Timer1 External
	Clock Requirements
Table 19-6:	Capture/Compare/PWM
	Requirements (CCP1)
Table 19-7:	Parallel Slave Port Requirements
	(PIC16C64A/R64)210
Table 19-8:	SPI Mode Requirements
Table 19-9:	I ² C Bus Start/Stop Bits
	Requirements
Table 19-10:	I ² C Bus Data Requirements
Table 20-1:	Cross Reference of Device Specs
	for Oscillator Configurations and
	Frequencies of Operation
	(Commercial Devices)215
Table 20-2:	External Clock Timing
	Requirements221
Table 20-3:	CLKOUT and I/O Timing
	Requirements
Table 20-4:	Reset, Watchdog Timer,
	Oscillator Start-up Timer and
	Power-up Timer Requirements
Table 20-5:	Timer0 and Timer1 External
	Clock Requirements
I able 20-6:	Capture/Compare/PWM
- 11 65 -	Requirements (CCP1 and CCP2)225
1 able 20-7:	Parallel Slave Port Requirements
Table 20-8:	SPI Mode Requirements
i able 20-9:	I-O BUS STATT/STOP BITS
	Requirements
Table 20-10:	IC BUS Data Requirements
1 able 20-11:	USARI Synchronous (ransmission
	nequirements

Table 20-12:	USART Synchronous Receive	
	Requirements 23	0
Table 21-1:	Cross Reference of Device	
	Specs for Oscillator Configurations	
	and Frequencies of Operation	
Table 21-2	(Commercial Devices)	1
	Bequirements 23	27
Table 21-3	CLKOUT and I/O Timing	
14510 21 0.	Bequirements 23	88
Table 21-4:	Reset, Watchdog Timer, Oscillator	
	Start-up Timer, Power-up Timer, and	
	Brown-out Reset Requirements 23	9
Table 21-5:	Timer0 and Timer1 External	
	Clock Requirements 24	0
Table 21-6:	Capture/Compare/PWM	
	Requirements (CCP1 and CCP2) 24	1
Table 21-7:	Parallel Slave Port Requirements	
	(PIC16C65A) 24	2
Table 21-8:	SPI Mode Requirements 24	.3
Table 21-9:	P-C Bus Start/Stop Bits	
Table 01 10	Requirements	-4
Table 21-10.	I C Bus Data Requirements	
	Transmission Bequirements 24	6
Table 21-12	LISABT Synchronous Beceive	.0
	Beguirements	6
Table 22-1:	Cross Reference of Device Specs	-
	for Oscillator Configurations and	
	Frequencies of Operation	
	(Commercial Devices) 24	7
Table 22-2:	External Clock Timing	
	Requirements 25	3
Table 22-3:	CLKOUT and I/O Timing	
T	Requirements	4
Table 22-4:	Reset, Watchdog Timer,	
	Discillator Start-up Timer,	
	Reset Bequirements 25	5
Table 22-5	Timer0 and Timer1 External	0
10010 22 01	Clock Requirements	6
Table 22-6:	Capture/Compare/PWM	
	Requirements (CCP1 and CCP2)	7
Table 22-7:	Parallel Slave Port Requirements	
	(PIC16CR65)	8
Table 22-8:	SPI Mode Requirements 25	9
Table 22-9:	I ² C Bus Start/Stop Bits	
	Requirements	0
Table 22-10:	I ² C Bus Data Requirements	1
Table 22-11:	USART Synchronous Transmission	·~
Table 22 12:	LISART Synahronous Resolve	2
Table 22-12.	Bequirements 26	:2
Table 23-1	Cross Beference of Device Specs	~
10010 20 11	for Oscillator Configurations and	
	Frequencies of Operation	
	(Commercial Devices) 26	63
Table 23-2:	External Clock Timing	
	Requirements 26	9
Table 23-3:	CLKOUT and I/O Timing	
	Requirements	0
I able 23-4:	Reset, Watchdog Timer,	
	Oscillator Start-up Limer,	
	Power-up Timer, and Brown-out	-1
	nesei nequirements21	1