

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc66t-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLE	4-3:	SPECIA		ION RE	GISTER			0003/60	3		
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
03h ⁽¹⁾	STATUS	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	ər		1	1	1	xxxx xxxx	uuuu uuuu
05h	PORTA	—	—	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	—	Unimpleme	nted							-	-
09h	—	Unimpleme	nted							-	-
0Ah ^(1,2)	PCLATH	—	—	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(5)	(5)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	_	_	_		_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the I	_east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Most Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Por	t Receive Bu	iffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Transmit Data Register									0000 0000
1Ah	RCREG	USART Receive Data Register									0000 0000
1Bh	CCPR2L	Capture/Compare/PWM2 (LSB)									
1Ch	CCPR2H	Capture/Co	mpare/PWM	2 (MSB)						xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	—	Unimpleme	nted							—	—

TABLE 4-3: SPECIAL FUNCTION REGISTERS FOR THE PIC16C63/R63

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The IRP and RP1 bits are reserved on the PIC16C63/R63, always maintain these bits clear.

5: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C63/R63, always maintain these bits clear.

5.0 I/O PORTS

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Some pins for these I/O ports are multiplexed with an alternate function(s) for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Register

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

All devices have a 6-bit wide PORTA, except for the PIC16C61 which has a 5-bit wide PORTA.

Pin RA4/T0CKI is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.

Reading PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with Timer0 module clock input to become the RA4/T0CKI pin.

EXAMPLE 5-1: INITIALIZING PORTA

BCF	STATUS,	RPO ;	;
BCF	STATUS,	RP1 ;	PIC16C66/67 only
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
BSF	STATUS,	RP0	: Select Bank 1
MOVLW	0xCF		Value used to
			: initialize data
			direction
MOVWF	TRISA		Set RA<3:0> as inputs
			RA<5:4> as outputs
			TRISA<7:6> are always
			read as '0'.

FIGURE 5-1: BLOCK DIAGRAM OF THE RA3:RA0 PINS AND THE RA5 PIN

FIGURE 5-2: BLOCK DIAGRAM OF THE RA4/T0CKI PIN

TABLE 5-1: PORTA FUNCTIONS

Name	Bit#	Buffer Type	Function
RA0	bit0	TTL	Input/output
RA1	bit1	TTL	Input/output
RA2	bit2	TTL	Input/output
RA3	bit3	TTL	Input/output
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS (1)	bit5	TTL	Input/output or slave select input for synchronous serial port.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C61 does not have PORTA<5> or TRISA<5>, read as '0'.

TABLE 5-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA	—	—	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA	_	—	PORTA Data	Direction Re	egister ⁽¹⁾				11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5> and TRISA<5> are not implemented on the PIC16C61, read as '0'.

6.0 OVERVIEW OF TIMER MODULES

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

All PIC16C6X devices have three timer modules except for the PIC16C61, which has one timer module. Each module can generate an interrupt to indicate that an event has occurred (i.e., timer overflow). Each of these modules are detailed in the following sections. The timer modules are:

- Timer0 module (Section 7.0)
- Timer1 module (Section 8.0)
- Timer2 module (Section 9.0)

6.1 <u>Timer0 Overview</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. TMR0 can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

6.2 <u>Timer1 Overview</u>

_		
IЛ		•
		-
~	plicable Devices	3

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode.

TImer1 also has a prescaler option which allows TMR1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. TMR1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit compare and must be synchronized to the device.

6.3 <u>Timer2 Overview</u>

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer2 is an 8-bit timer with a programmable prescaler and a programmable postscaler, as well as an 8-bit Period Register (PR2). Timer2 can be used with the CCP module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16.

The postscaler allows TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive).

6.4 <u>CCP Overview</u>

_		
Δ	nnlicable	Devices
~	ppiloubic	Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The CCP module(s) can operate in one of three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM).

Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or sixteenth rising edge of the CCPx pin.

Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs, an interrupt can be generated and the output pin CCPx can be forced to a given state (High or Low) and Timer1 can be reset. This depends on control bits CCPxM3:CCPxM0.

PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high.

11.4.2 ADDRESSING I²C DEVICES

There are two address formats. The simplest is the 7-bit address format with a R/W bit (Figure 11-15). The more complex is the 10-bit address with a R/W bit (Figure 11-16). For 10-bit address format, two bytes must be transmitted with the first five bits specifying this to be a 10-bit address.

FIGURE 11-15: 7-BIT ADDRESS FORMAT

FIGURE 11-16: I²C 10-BIT ADDRESS FORMAT

11.4.3 TRANSFER ACKNOWLEDGE

All data must be transmitted per byte, with no limit to the number of bytes transmitted per data transfer. After each byte, the slave-receiver generates an acknowledge bit (\overline{ACK}) (Figure 11-17). When a slave-receiver doesn't acknowledge the slave address or received data, the master must abort the transfer. The slave must leave SDA high so that the master can generate the STOP condition (Figure 11-14).

FIGURE 11-17: SLAVE-RECEIVER ACKNOWLEDGE

If the master is receiving the data (master-receiver), it generates an acknowledge signal for each received byte of data, except for the last byte. To signal the end of data to the slave-transmitter, the master does not generate an acknowledge (not acknowledge). The slave then releases the SDA line so the master can generate the STOP condition. The master can also generate the STOP condition during the acknowledge pulse for valid termination of data transfer.

If the slave needs to delay the transmission of the next byte, holding the SCL line low will force the master into a wait state. Data transfer continues when the slave releases the SCL line. This allows the slave to move the received data or fetch the data it needs to transfer before allowing the clock to start. This wait state technique can also be implemented at the bit level, Figure 11-18. The slave will inherently stretch the clock, when it is a transmitter, but will not when it is a receiver. The slave will have to clear the SSPCON<4> bit to enable clock stretching when it is a receiver.

FIGURE 11-18: DATA TRANSFER WAIT STATE

11.5.1 SLAVE MODE

PIC16C6X

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 11-4 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification as well as the requirement of the SSP module is shown in timing parameter #100 and parameter #101.

11.5.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The

address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave (Figure 11-16). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT-<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 11-4: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bit Transfer is	ts as Data s Received			Set bit SSPIF		
BF	SSPOV	$SSPSR \to SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

FIGURE 13-2: CONFIGURATION WORD FOR PIC16C62/64/65

— bit13			-	-	_	_	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0 bit0	Register: Address	CONFIG 2007h
bit 13-6:	Unimpleme	nted: Re	ead a	s '1'										
bit 5-4:	CP1:CP0 : C 11 = Code p 10 = Upper I 01 = Upper 3 00 = All men	ode Pro protection half of pr 3/4th of mory is c	tectio n off rograi progra code p	n bits m men am me protect	nory co mory c ed	de pro	tected otected							
bit 3:	PWRTE : Pov 1 = Power-up 0 = Power-up	wer-up T p Timer p Timer	Fimer enabl disab	Enable led led	e bit									
bit 2:	WDTE: Wate 1 = WDT ena 0 = WDT dis	chdog Ti abled abled	imer E	Enable	bit									
bit 1-0:	FOSC1:FOS 11 = RC osc 10 = HS osc 01 = XT osc 00 = LP osc	SCO: Oso cillator cillator cillator illator illator	cillato	r Seleo	tion bi	ts								

FIGURE 13-3: CONFIGURATION WORD FOR PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67

CP1	CP0	CP1	CP0	CP1	CP0	-	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address	2007h
bit 13- bit 5:4	8: CP 11 10 01 00	i: CP1:CP0: Code Protection bits ⁽²⁾ 11 = Code protection off 10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected 00 = All memory is code protected													
bit 7:	Un	implen	nented	Read	as '1'										
bit 6:	BC 1 = 0 =	DEN: E Brown Brown	Brown-o I-out Re I-out Re	out Res eset ena eset dis	et Enal abled abled	ole bit (1)								
bit 3:	PV 1 = 0 =	/RTE : F Power Power	Power-u r-up Tim r-up Tim	ip Time ner disa ner enal	r Enab bled bled	le bit ⁽¹)								
bit 2:	WI 1 = 0 =	DTE : W WDT (WDT (atchdog enablec disablec	g Timer I d	Enable	e bit									
bit 1-0	D: FC 11 10 01 00	= RC c = HS c = XT o = LP o	OSCO: oscillato oscillato oscillato scillato	Oscillat r r r r	or Sele	ection b	its								
Note	1: En En 2: All	abling E sure the of the (Brown-o e Powe CP1:CF	out Res r-up Tir 90 pairs	et auto ner is e have t	matical nabled o be giv	ly enable anytime ven the s	es Powe Brown ame va	er-up T I-out Re alue to	imer (PV eset is ei impleme	VRT) re nabled. int the o	egardle: code pr	ss of the sotection s	value of bit P	WRTE.

-

BTFSS	Bit Test f, Skip if Set		CALL	Call Sub	Call Subroutine					
Syntax:	[<i>label</i>] B	FSS f,b			Syntax:	[label]	CALL k	[
Operands:	$0 \le f \le 12$	27			Operands:	$0 \le k \le 2047$				
	0 ≤ b < 7				Operation:	(PC)+ 1 \rightarrow TOS.				
Operation:	skip if (f<	:b>) = 1				$k \rightarrow PC < 10:0>,$				
Status Affected:	None					(PCLATH	$(PCLATH<\!\!4:\!\!3\!\!>) \rightarrow PC<\!\!12:\!11\!\!>$			
Encoding:	01	11bb	bfff	ffff	Status Affected:	None				
Description:	If bit 'b' in	register 'f' i	s '0' then t	he next	Encoding:	10	0kkk	kkkk	kkkk	
Words:	instructior If bit 'b' is discarded instead, m 1	is execute '1', then the and a NOF naking this	d. e next instr is execut a 2Tcy ins	uction is ed truction.	Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCI ATH Call.				
Cycles:	1(2)					is a two cy	cle instruc	ction.		
O Cuelo Activitur	·(<u></u>)	00	02	04	Words:	1				
Q Cycle Activity.		Q2	03	Q4	Cycles:	2				
	Decode	register 'f'	data	No- Operation	Q Cycle Activity:	Q1	Q2	Q3	Q4	
If Skip:	(2nd Cyc	le)			1st Cycle	Decode	Read literal 'k',	Process data	Write to PC	
	Q1	Q2	Q3	Q4			Push PC to Stack			
	No- Operation	No- Operation	No- Operation	No- Operation	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation	
Example	HERE	BTFSC	FLAG,1	CODE	Example	HERE	CALL	THERE		
	TRUE	•	1100200	_0022		Before Ir	struction			
		•					PC = A	ddress HE	RE	
		•				After Ins	truction	ddroee TU	TDT	
	Before Ir	Istruction	addroco T				TOS = A	ddress HE	RE+1	
	After Inst	ruction	address i	IERE						
	/	if FLAG<1:	> = 0,							
		PC =	address F	ALSE						
		it FLAG<1: PC =	> = 1, address ™	RIIR						

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

15.5 <u>Timing Diagrams and Specifications</u>

FIGURE 15-2: EXTERNAL CLOCK TIMING

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	-	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			1	_	4	MHz	HS osc mode (-04)
			1		20	MHz	HS osc mode (-20)
1	Tosc	External CLKIN Period	250	—	—	ns	XT and RC osc mode
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	1,000	ns	HS osc mode (-04)
			50	—	1,000	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	1.0	Тсү	DC	μS	TCY = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	—	ns	XT oscillator
	IosH	Low lime	2.5	—	—	μS	LP oscillator
			10	_	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	25	—	—	ns	XT oscillator
	IOSF	Fall lime	50	—	—	ns	LP oscillator
			15	_	—	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 15-3: CLKOUT AND I/O TIMING

CLKOUT AND I/O TIMING REQUIREMENTS TABLE 15-3:

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓	_	15	30	ns	Note 1	
11*	TosH2ckH	OSC1↑ to CLKOUT↑		_	15	30	ns	Note 1
12*	TckR	CLKOUT rise time		—	5	15	ns	Note 1
13*	TckF	CLKOUT fall time		_	5	15	ns	Note 1
14*	TckL2ioV	CLKOUT \downarrow to Port out value	b	_		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOU	JT ↑	0.25Tcy + 25		—	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT	0		—	ns	Note 1	
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port	_		80 - 100	ns		
18*	TosH2iol	OSC1↑ (Q2 cycle) to Port (I/O in hold time)	TBD		_	ns		
19*	TioV2osH	Port input valid to OSC1↑ (time)	(I/O in setup	TBD		_	ns	
20*	TioR	Port output rise time	PIC16 C 61	_	10	25	ns	
			PIC16LC61	_		60	ns	
21*	TioF	Port output fall time	PIC16 C 61	_	10	25	ns	
			PIC16 LC 61	_		60	ns	
22††*	Tinp	RB0/INT pin high or low time		20	_		ns	
23††*	Trbp	RB7:RB4 change int high o	or low time	20	_	_	ns	

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

These parameters are asynchronous events not related to any internal clock edges. ††

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	200	—	—	ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period	—	1024Tosc	—		TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V$, $-40^{\circ}C$ to $+125^{\circ}C$
34*	Tıoz	I/O Hi-impedance from MCLR Low	—	—	100	ns	

* These parameters are characterized but not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 16-12: TYPICAL IDD VS. FREQUENCY (EXTERNAL CLOCK, 25°C)

FIGURE 16-13: MAXIMUM IDD vs. FREQUENCY (EXTERNAL CLOCK, -40° TO +85°C)

FIGURE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
NO.				1					
40*	Tt0H	T0CKI High Pulse V	Vidth	No Prescaler	0.5TCY + 20	—	_	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	/idth	No Prescaler	0.5TCY + 20	—	-	ns	Must also meet
				With Prescaler	10	—	—	ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	-	-	ns	
				With Prescaler	Greater of:	—	—	ns	N = prescale value
					20 or <u>ICY + 40</u>				(2, 4,, 256)
45*	THE	TAOKI Link Time	O maharana R		N 0.5Taxi - 00				Must slas was st
45"	ITTH	I ICKI High Time	Synchronous, P	rescaler = 1	0.51CY + 20		_	ns	Must also meet
			Synchronous,	PIC16C6X	15	_	_	ns	parameter 47
			2,4,8	PIC16 LC 6X	25	_	_	ns	
			Asynchronous	PIC16 C 6X	30	—	_	ns	
				PIC16 LC 6X	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler = 1	0.5TCY + 20	—		ns	Must also meet
			Synchronous,	PIC16 C 6X	15	—	_	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 6X	25	—	—	ns	
			Asynchronous	PIC16 C 6X	30	—	-	ns	
				PIC16 LC 6X	50	—	_	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 6X	Greater of:	—	_	ns	N = prescale value
					30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
				PIC16 LC 6X	Greater of:				N = prescale value
					50 OR <u>ICY + 40</u>				(1, 2, 4, 8)
				DIG 40 COV	N				
			Asynchronous	PIC16 C 6X	60	_	_	ns	
		-	L	PIC16 LC 6X	100	-	—	ns	
	⊢t1	Timer1 oscillator inp	out frequency rar	ige	DC	_	200	kHz	
40		(oscillator enabled b	by setting bit 11C	ISCEN)	07		77		
48	ICKEZtmr1	Delay from external	CIOCK edge to tin	ner increment	21050		/ 10SC	-	

These parameters are characterized but not tested.

18.2 DC Characteristics: PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)

DC CHAI	RACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40° C $\leq TA \leq +85^{\circ}$ C for industrial and 0° C $\leq TA \leq +70^{\circ}$ C for commercial							
Param No.	Characteristic	Sym	Min	Тур†	Max	, Units	Conditions		
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)		
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V			
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details		
D004*	VDD rise rate to ensure internal Power-on Reset signal	Svdd	0.05	-	-	V/ms	See section on Power-on Reset for details		
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled		
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)		
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled		
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V		
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C		
D021	(Note 3, 5)		-	0.9	5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C		
D021A			-	0.9	5	μA	VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$		
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

- $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 18-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic	Characteristic			Тур†	Max	Units	Conditions
50*	50* TccL CCP1 No Prescaler		No Prescaler		0.5Tcy + 20	-	_	ns	
		input low time	With Prescaler	PIC16 C 62A/R62/ 64A/R64	10	-	_	ns	
				PIC16 LC 62A/R62/ 64A/R64	20	—	—	ns	
51*	TccH	CCP1	No Prescaler		0.5TCY + 20	—	_	ns	
		input high time	With Prescaler	PIC16 C 62A/R62/ 64A/R64	10	—	—	ns	
				PIC16 LC 62A/R62/ 64A/R64	20	-	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	-	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output rise ti	me	PIC16 C 62A/R62/ 64A/R64	_	10	25	ns	
				PIC16 LC 62A/R62/ 64A/R64	_	25	45	ns	
54*	54* TccF CCP1 output fall time		PIC16 C 62A/R62/ 64A/R64	_	10	25	ns		
			PIC16 LC 62A/R62/ 64A/R64	_	25	45	ns		

* These parameters are characterized but not tested.

19.5 <u>Timing Diagrams and Specifications</u>

FIGURE 19-2: EXTERNAL CLOCK TIMING

TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	—	4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	—	200	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	-	ns	XT and RC osc mode
		(Note 1)	250	—	-	ns	HS osc mode (-04)
			100	—	-	ns	HS osc mode (-10)
			50	—	-	ns	HS osc mode (-20)
			5	—	—	μS	LP osc mode
		Oscillator Period	250	—	-	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			100	—	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1) High or	50	—	-	ns	XT oscillator
	TosH	Low Time	2.5	—	-	μs	LP oscillator
			15	—	-	ns	HS oscillator
4	TosR,	External Clock in (OSC1) Rise or	_	—	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
				—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 20-11: I²C BUS DATA TIMING

TABLE 20-10: I²C BUS DATA REQUIREMENTS

Parameter	Sym	Characteristic		Min	Max	Units	Conditions
No.							
100*	THIGH	Clock high time	100 kHz mode	4.0	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5Tcy	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	—	μs	Device must operate at a mini- mum of 1.5 MHz
			400 kHz mode	1.3	_	μs	Device must operate at a mini- mum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	_	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall time	100 kHz mode	-	300	ns	
			400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	-	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	-	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	Tsu:sto	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109*	TAA	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	—	μs	betore a new transmission can start
	Cb	Bus capacitive loading		_	400	pF	

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

21.0 ELECTRICAL CHARACTERISTICS FOR PIC16CR63/R65

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	-65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	-0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA, PORTB, and PORTE (Note 3) (combined)	
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined)	.p200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined)	
Maximum current sourced by PORTC and PORTD (Note 3) (combined)	
	\mathbf{t} (\mathbf{A} (\mathbf{a}) \mathbf{A} (\mathbf{a}

- **Note 1:** Power dissipation is calculated as follows: Pdis = $VDx \{IDD \SigmaIOH\} + \Sigma (VDD VOH) \times IOH\} + \Sigma (VOI \times IOL)$
- Note 2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "fow" level to the MCLR/VPP pin rather than pulling this pin directly to Vss.
- Note 3: PORTD and PORTE not available on the P(C16CR63.

† NOTICE: Stresses above those listed under "Absolute Maximum Patings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 21-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16CR63-04 PIC16CR65-04	PIC16CR63-10 PIC16CR65-10	PIC16CR63-20 PIC16CR65-20	PIC16LCR63-04 PIC16LCR65-04	JW Devices	
RC	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IRD: 1.5 µA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 5.5V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	
ХТ	VDD: 4.0V to 5:5V IDD: 5 mA max. at 5.5V IPD: 16 hA max. at 4V Freq: 4 MHz max.	Vod: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 3.0V to 5.5V IDD: 3.8 mA max. at 3V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 5.5V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	
HS	VDD: 4.5V to 5.5V IDD: 13:5 mA typ. at 5.5V	VDD: 4.5V to 5.5V IDD: 10 mA max. at 5.5V	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V	
	IPD: 1.5 μA typ. at 4.5V	IPD 1.5 μA typ. at 4.5V	IPD: 1.5 μA typ. at 4.5V		IPD: 1.5 μA typ. at 4.5V	
LP	Preq. 4 Min2 IIIax. VDD: 4.0V to 5.5V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 3.0V to 5.5V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	Preq. 20 Min2 fildx. VDD: 3.0V to 5.5V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 22-5: BROWN-OUT RESET TIMING

TABLE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
30	TmcL	MCLR Pulse Width (low)	2	—	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc	—	—	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset		_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

24.12 44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Package Group: Plastic MQFP										
		Millimeters		Inches							
Symbol	Min	Max	Notes	Min	Max	Notes					
α	0°	7 °		0°	7 °						
А	2.000	2.350		0.078	0.093						
A1	0.050	0.250		0.002	0.010						
A2	1.950	2.100		0.768	0.083						
b	0.300	0.450	Typical	0.011	0.018	Typical					
С	0.150	0.180		0.006	0.007						
D	12.950	13.450		0.510	0.530						
D1	9.900	10.100		0.390	0.398						
D3	8.000	8.000	Reference	0.315	0.315	Reference					
E	12.950	13.450		0.510	0.530						
E1	9.900	10.100		0.390	0.398						
E3	8.000	8.000	Reference	0.315	0.315	Reference					
е	0.800	0.800		0.031	0.032						
L	0.730	1.030		0.028	0.041						
N	44	44		44	44						
CP	0.102	_		0.004	-						