

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc67-04-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physica	l register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe		xxxx xxxx	uuuu uuuu					
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad		xxxx xxxx	uuuu uuuu					
05h	PORTA	—	—		xx xxxx	uu uuuu					
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h		Unimpleme	Unimplemented								
09h		Unimplemented									_
0Ah ^(1,2)	PCLATH	_	_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(6)	(6)	_	1	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh		Unimpleme	nted							_	_
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the M	/lost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPM0	0000 0000	0000 0000					
15h	CCPR1L	Capture/Compare/PWM1 (LSB)								xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Compare/PWM1 (MSB)									uuuu uuuu
17h	CCP1CON	—	—	CCP1M0	00 0000	00 0000					
18h-1Fh	_	Unimpleme	nted							_	_

TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											<u> </u>
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	ficant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	Idress pointe	ər					xxxx xxxx	uuuu uuuu
05h	PORTA		_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Dat	ORTC Data Latch when written: PORTC pins when read								uuuu uuuu
08h	PORTD	PORTD Dat	ORTD Data Latch when written: PORTD pins when read								uuuu uuuu
09h	PORTE		RE2 RE1 RE0								uuu
0Ah ^(1,2)	PCLATH	-	—	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2		_	_		_	_	_	CCP2IF	0	0
0Eh	TMR1L	Holding reg	ister for the L	east Signific	cant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the M	Aost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON		_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	-	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Port	Receive Bu	ffer/Transmit	Register		•		xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	-	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Transmit Data Register								0000 0000	0000 0000
1Ah	RCREG	USART Receive Data Register								0000 0000	0000 0000
1Bh	CCPR2L	Capture/Co	Capture/Compare/PWM2 (LSB)								uuuu uuuu
1Ch	CCPR2H									xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh-1Fh	_	Unimpleme	nted							—	_

TABLE 4-5: SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A/R65

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C65/65A/R65, always maintain these bits clear.

TABLE	4-6:	SPECIA		TION RE	GISTERS	S FOR T	HE PIC1	6C66/67	(Cont.'c	I)	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conte	nts of FSR to	address dat	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sig	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ad	dress point	er				1	xxxx xxxx	uuuu uuuu
85h	TRISA	_	_	PORTA Da	ta Direction R	legister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction I	Register						1111 1111	1111 1111
87h	TRISC	PORTC Dat	ta Direction	Register						1111 1111	1111 1111
88h ⁽⁵⁾	TRISD	PORTD Dat	ta Direction	Register						1111 1111	1111 1111
89h ⁽⁵⁾	TRISE	IBF	OBF	Bits	0000 -111	0000 -111					
8Ah ^(1,2)	PCLATH	_	—	—	Write Buffer	for the uppe	er 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE ⁽⁶⁾	(4)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	_	_	_	_	—	_	_	CCP2IE	0	0
8Eh	PCON	—	—	—	-	_	_	POR	BOR	dd	uu
8Fh	-	Unimpleme	nted				•			-	_
90h		Unimpleme	nted							_	_
91h	-	Unimpleme	nted							-	—
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	-	Unimpleme	nted							_	—
96h	-	Unimpleme	nted							_	—
97h	-	Unimpleme	nted							_	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register									0000 0000
9Ah	-	Unimplemented									_
9Bh	_	Unimpleme	nted		-	—					
9Ch	_	Unimpleme	nted							—	_
9Dh	—	Unimpleme		—	—						
9Eh	_	Unimpleme	nted							—	—
9Fh	-	Unimpleme	nted							-	-

TABLE 4-6: SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: PIE1<6> and PIR1<6> are reserved on the PIC16C66/67, always maintain these bits clear.

5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.

6: PSPIF (PIR1<7>) and PSPIE (PIE1<7>) are reserved on the PIC16C66, maintain these bits clear.

4.2.2.5 PIR1 REGISTER

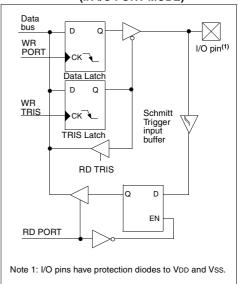
Appli	cable	e Dev	vice	es									
61 62	62A	R62	63	R63	64	64 <i>F</i>	R64	65	65A	R65	5 66	67	
This periph	0				IS 1	the	indiv	idu	al fl	ag	bits	for	the

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 4-16: PIR1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 0Ch)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	-	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit					
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset					
bit 7-6:	Reserved:	Always ma	aintain thes	e bits clear.				LI					
bit 5-4:	Unimplem	ented: Rea	ad as '0'										
bit 3:	1 = The tra	nsmission/	reception is	Interrupt Fla complete (ag bit (must be clea	ared in softw	vare)						
bit 2:	0 = Waiting to transmit/receive CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode												
bit 1:		to PR2 mat	tch occurre	•	bit cleared in so	ftware)							
bit 0:	TMR1IF : T 1 = TMR1 0 = No TM	register ove	erflow occu	rred (must b	be cleared in	software)							
globa		GIE (INTC						corresponding enable bit or the rupt flag bits are clear prior to					

5.4 PORTD and TRISD Register


Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 5-7: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

TABLE 5-9: PORTD FUNCTIONS

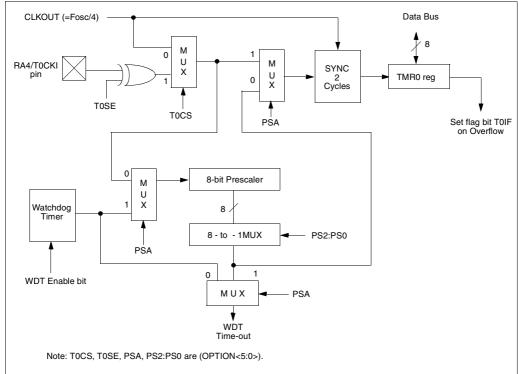
Legend: ST = Schmitt Trigger input, TTL = TTL input Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port mode.

TABLE 5-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	PORTD I	Data Direc	ction Register						1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ata Directio	0000 -111	0000 -111	

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

7.3 Prescaler


Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF TMR0, MOVWF TMR0, BSF TMR0, bitx) will clear the prescaler count. When assigned to the Watchdog Timer, a CLRWDT instruction will clear the Watchdog Timer and the prescaler count. The prescaler is not readable or writable.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment.

FIGURE 7-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

8.0 TIMER1 MODULE

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Timer1 is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. Register TMR1 (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the TMR1 interrupt enable bit TMR1IE (PIE1<0>).

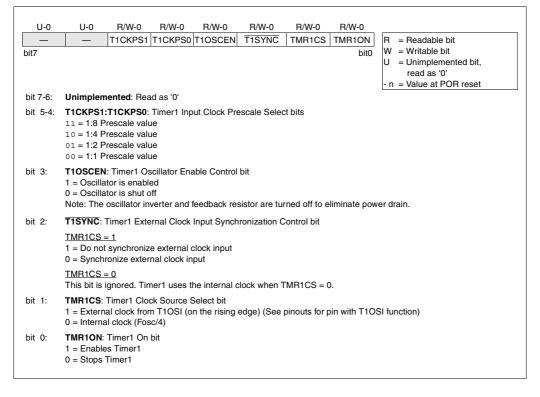
Timer1 can operate in one of two modes:

- · As a timer
- · As a counter

The operating mode is determined by clock select bit, TMR1CS (T1CON<1>) (Figure 8-2).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).


Timer1 also has an internal "reset input". This reset can be generated by CCP1 or CCP2 (Capture/Compare/ PWM) module. See Section 10.0 for details. Figure 8-1 shows the Timer1 control register.

For the PIC16C62A/R62/63/R63/64A/R64/65A/R65/ R66/67, when the Timer1 oscillator is enabled (T1OSCEN is set), the RC1 and RC0 pins become inputs. That is, the TRISC<1:0> value is ignored.

For the PIC16C62/64/65, when the Timer1 oscillator is enabled (T1OSCEN is set), RC1 pin becomes an input, however the RC0 pin will have to be configured as an input by setting the TRISC<0> bit.

The Timer1 module also has a software programmable prescaler.

FIGURE 8-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)

U-0	U-0 R/W-0 R	/W-0 R/W-0	R/W-0	R/W-0	R/W-0	
—	- CCPxX CC	CPxY CCPxM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit
bit7					bit0	W = Writable bit
						U = Unimplemented bit, read as '0'
						- n =Value at POR reset
bit 7-6:	Unimplemented: F	Poad as '0'				
	•					
bit 5-4:	CCPxX:CCPxY: PV	VM Least Significa	ant bits			
	Capture Mode Unused					
	Compare Mode					
	Unused					
	PWM Mode					
	These bits are the t	wo LSbs of the P	NM duty cy	cle. The eig	ht MSbs are	found in CCPRxL.
bit 3-0:	CCPxM3:CCPxM0	: CCPx Mode Sele	ect bits			
	0000 = Capture/Co	•		k module)		
	0100 = Capture mo		•			
	0101 = Capture mo		•			
	0110 = Capture mo	· ·	0 0			
	1000 = Compare m	· ·	• •	CCPxIF is	set)	
	1001 = Compare m		•		,	
	•		•		,	is set, CCPx pin is unaffected)
	•		al event (CC	PxIF bit is s	et; CCP1 res	ets TMR1; CCP2 resets TMR1)
	11xx = PWM mode	9				

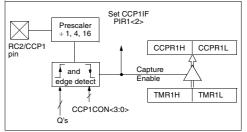
10.1 Capture Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1 (Figure 10-2). An event is defined as:

- · Every falling edge
- · Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an
	output, a write to PORTC can cause a cap-
	ture condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work consistently.

10.1.3 SOFTWARE INTERRUPT

When the Capture event is changed, a false capture interrupt may be generated. The user should clear enable bit CCP1IE (PIE1<2>) to avoid false interrupts and should clear flag bit CCP1IF following any such change in operating mode.

EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION

Desired PWM frequency is 78.125 kHz, Fosc = 20 MHz TMR2 prescale = 1

 $1/78.125 \text{ kHz} = [(PR2) + 1] \cdot 4 \cdot 1/20 \text{ MHz} \cdot 1$ $12.8 \ \mu s = [(PR2) + 1] \cdot 4 \cdot 50 \text{ ns} \cdot 1$ PR2 = 63

Find the maximum resolution of the duty cycle that can be used with a 78.125 kHz frequency and 20 MHz oscillator:

1/78.125 kHz	= $2^{\text{PWM RESOLUTION}} \cdot 1/20 \text{ MHz} \cdot 1$
12.8 µs	= $2^{\text{PWM RESOLUTION}} \bullet 50 \text{ ns} \bullet 1$
256	$= 2^{\text{PWM RESOLUTION}}$
log(256)	= (PWM Resolution) • $log(2)$
8.0	= PWM Resolution

At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and a 20 MHz oscillator, i.e., $0 \leq$ CCPR1L:CCP1CON<5:4> \leq 255. Any value greater than 255 will result in a 100% duty cycle.

In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased.

Table 10-3 lists example PWM frequencies and resolutions for Fosc = 20 MHz. The TMR2 prescaler and PR2 values are also shown.

10.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 10-4: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on:)R,)R	all o	e on other sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF			0000	
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh ⁽⁴⁾	PIR2	—	_	_	_	-	-	-	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh ⁽⁴⁾	PIE2	—	_	_	_		—		CCP2IE		0		0
87h	TRISC	PORTC D	PORTC Data Direction register									1111	1111
0Eh	TMR1L	Holding re	egister for	the Least	Significant	Byte of the	16-bit TMF	R1 registe	r	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	egister for	the Most S	Significant I	Byte of the [·]	16-bit TMF	1 register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00	0000	uu	uuuu
15h	CCPR1L	Capture/C	Compare/	PWM1 (LS	B)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/	PWM1 (MS	SB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh ⁽⁴⁾	CCPR2L	Capture/Compare/PWM2 (LSB)									xxxx	uuuu	uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/C		xxxx	xxxx	uuuu	uuuu						
1Dh ⁽⁴⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes.

Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.

11.3 SPI Mode for PIC16C66/67

This section contains register definitions and operational characterisitics of the SPI module on the PIC16C66 and PIC16C67 only.

FIGURE 11-7: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)(PIC16C66/67)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
SMP	CKE	D/A	Р	S	R/W	UA	BF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	<u>SPI Mas</u> 1 = Inpu 0 = Inpu <u>SPI Slav</u>	<u>ster Mod</u> it data sa it data sa ve Mode	ampled at e ampled at r	end of data niddle of da	output time ata output tir ed in slave m			
bit 6:	$\frac{CKP = 0}{1 = Data}$ $0 = Data$ $\frac{CKP = 1}{1 = Data}$	<u>)</u> a transm a transm <u>1</u> a transm	itted on ris itted on fal itted on fal	ct (Figure ⁻ ing edge of ling edge o ling edge o ing edge of	f SCK f SCK	e 11-12, an	d Figure 11-	13)
bit 5:	1 = India	cates that	at the last b) ed or transmi ed or transmi			
bit 4:	detected 1 = India	d last, SS cates tha	SPEN is cle	eared) t has been	cleared whe detected las			isabled, or when the Start bit is T)
bit 3:	detected 1 = India	d last, SS cates tha	SPEN is cle	eared) t has been	cleared whe			lisabled, or when the Stop bit is
bit 2:	This bit	holds th match to d	ne R/W bit				Iress match	. This bit is only valid from the
bit 1:	1 = India	cates that	at the user	it I ² C mode needs to up I to be upda	pdate the ad	dress in the	e SSPADD r	egister
bit 0:	BF: Buff	fer Full S	status bit					
	1 = Rec 0 = Rec	eive com eive not	complete,	es) PBUF is full SSPBUF is				
	1 = Tran	ismit in p		SPBUF is f PBUF is en				

11.4 <u>I²C[™] Overview</u>

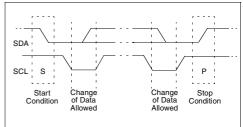
This section provides an overview of the Inter-Integrated Circuit (I²C) bus, with Section 11.5 discussing the operation of the SSP module in I^2C mode.

The I^2C bus is a two-wire serial interface developed by the Philips[®] Corporation. The original specification, or standard mode, was for data transfers of up to 100 Kbps. The enhanced specification (fast mode) is also supported. This device will communicate with both standard and fast mode devices if attached to the same bus. The clock will determine the data rate.

The I²C interface employs a comprehensive protocol to ensure reliable transmission and reception of data. When transmitting data, one device is the "master" which initiates transfer on the bus and generates the clock signals to permit that transfer, while the other device(s) acts as the "slave." All portions of the slave protocol are implemented in the SSP module's hardware, except general call support, while portions of the master protocol need to be addressed in the PIC16CXX software. Table 11-3 defines some of the I²C bus terminology. For additional information on the I²C interface specification, refer to the Philips document "*The I²C bus and how to use it.*"#939839340011, which can be obtained from the Philips Corporation.

In the I^2C interface protocol each device has an address. When a master wishes to initiate a data transfer, it first transmits the address of the device that it wishes to "talk" to. All devices "listen" to see if this is their address. Within this address, a bit specifies if the master wishes to read-from/write-to the slave device. The master and slave are always in opposite modes (transmitter/receiver) of operation during a data transfer. That is they can be thought of as operating in either of these two relations:

- · Master-transmitter and Slave-receiver
- · Slave-transmitter and Master-receiver


In both cases the master generates the clock signal.

The output stages of the clock (SCL) and data (SDA) lines must have an open-drain or open-collector in order to perform the wired-AND function of the bus. External pull-up resistors are used to ensure a high level when no device is pulling the line down. The number of devices that may be attached to the I^2C bus is limited only by the maximum bus loading specification of 400 pF.

11.4.1 INITIATING AND TERMINATING DATA TRANSFER

During times of no data transfer (idle time), both the clock line (SCL) and the data line (SDA) are pulled high through the external pull-up resistors. The START and STOP conditions determine the start and stop of data transmission. The START condition is defined as a high to low transition of the SDA when the SCL is high. The STOP condition is defined as a low to high transition of the SDA when the SCL is high. The START and STOP conditions. The master generates these conditions for starting and terminating data transfer. Due to the definition of the START and STOP conditions, when data is being transmitted, the SDA line can only change state when the SCL line is low.

FIGURE 11-14: START AND STOP CONDITIONS

Term	Description
Transmitter	The device that sends the data to the bus.
Receiver	The device that receives the data from the bus.
Master	The device which initiates the transfer, generates the clock and terminates the transfer.
Slave	The device addressed by a master.
Multi-master	More than one master device in a system. These masters can attempt to control the bus at the same time without corrupting the message.
Arbitration	Procedure that ensures that only one of the master devices will control the bus. This ensure that the transfer data does not get corrupted.
Synchronization	Procedure where the clock signals of two or more devices are synchronized.

TABLE 11-3: I²C BUS TERMINOLOGY

FIGURE 11-27: OPERATION OF THE I²C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE

DLE_MODE (7-bit):	,	0	
if (Addr_match)	{	Set interrupt;	
		if (R/W = 1)	{ Send $\overline{ACK} = 0$;
			set XMIT_MODE;
			}
		else if (R/W =	0) set RCV_MODE;
	}		
RCV_MODE:	,		
if ((SSPBUF=Full) OR (SSI	POV – 1))		
•			
	acknowledge;		
}			
	$r SSPSR \rightarrow SSI$	PBOF;	
send AC	CK = 0;		
}			
Receive 8-bits in SSPSR;			
Set interrupt;			
XMIT_MODE:			
While ((SSPBUF = Empty)	AND (CKP=0))	Hold SCL Low;	
Send byte;		. ,	
Set interrupt;			
if (ACK Received = 1)	{	End of transmi	ssion:
II (AOR Necelled – I)	ì		
	,	Go back to IDL	E_MODE,
	}		
else if (\overline{ACK} Received = 0)	Go back to XI	MIT_MODE;	
IDLE_MODE (10-Bit):			
If (High_byte_addr_match)			
{ PRIOR	_ADDR_MATCH	H = FALSE;	
Set inte	rrupt;		
if ((SSP	BUF = Full) OR	((SSPOV = 1))	
	{ Set SS	SPOV;	
	Do not	acknowledge;	
	}	0,	
	{ Set UA	- 1.	
eise	Sond A	UN = 0,	
eise	Send A		dated) Lield CCL laws
eise	While (dated) Hold SCL low;
eise	While (Clear U	IA = 0;	
eise	While (Clear L Receive	IA = 0; e Low_addr_byt	
6126	While (Clear U Receive Set inte	IA = 0; e Low_addr_byt errupt;	
eise	While (Clear L Receive	IA = 0; e Low_addr_byt errupt;	
eise	While (Clear L Receive Set inte Set UA	IA = 0; e Low_addr_byt errupt;	e;
eise	While (Clear L Receive Set inte Set UA	IA = 0; e Low_addr_byt errupt; = 1; _byte_addr_mat	e;
eise	While (Clear L Receive Set inte Set UA	IA = 0; e Low_addr_byt errupt; = 1; _byte_addr_mat { PRIOF	e; ch)
eise	While (Clear L Receive Set inte Set UA	IA = 0; e Low_addr_byt errupt; = 1; _byte_addr_mai { PRIOF Send <i>i</i>	e; ch) R_ADDR_MATCH = TRUE; ACK = 0;
eise	While (Clear L Receive Set inte Set UA	IA = 0; e Low_addr_byt errupt; = 1; _byte_addr_mat { PRIOF Send 7 while (e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low;
eise	While (Clear L Receive Set inte Set UA	IA = 0; e Low_addr_byt errupt; = 1; _byte_addr_mat { PRIOF Send 7 while (Clear b	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
eise	While (Clear L Receive Set inte Set UA	IA = 0; = Low_addr_byt rrrupt; = 1; _byte_addr_mai { PRIOF Send 7 while (Clear I Set RC	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low;
eise	While (Clear L Receive Set inte Set UA	IA = 0; e Low_addr_byt errupt; = 1; _byte_addr_mat { PRIOF Send 7 while (Clear b	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
	While (Clear L Receive Set inte Set UA	IA = 0; = Low_addr_byt rrrupt; = 1; _byte_addr_mai { PRIOF Send 7 while (Clear I Set RC	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
	While (Clear L Receive Set inte Set UA If (Low	IA = 0; = Low_addr_byt rrrupt; = 1; _byte_addr_mai { PRIOF Send 7 while (Clear I Set RC	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
}	While (Clear L Receive Set inte Set UA If (Low_	IA = 0; a Low_addr_byt rrrupt; = 1; byte_addr_mat { PRIOF Send 7 while (Clear l Set RC }	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
} else if (High_byte_addr_ma	While (Clear L Receive Set inte Set UA If (Low_ } } atch AND (R/W	IA = 0; a Low_addr_byt rrrupt; = 1; byte_addr_mat { PRIOF Send <i>i</i> while (Clear l Set RC } = 1)	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
} else if (High_byte_addr_ma	While (Clear L Receive Set inte Set UA If (Low_	IA = 0; a Low_addr_byt rrrupt; = 1; byte_addr_mat { PRIOF Send <i>i</i> while (Clear l Set RC } = 1)	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
} else if (High_byte_addr_ma { if (PRIC	While (Clear L Receive Set inte Set UA If (Low_ } } atch AND (R/W PR_ADDR_MATC	IA = 0; a Low_addr_byt rrrupt; = 1; byte_addr_mat { PRIOF Send <i>i</i> while (Clear l Set RC } = 1) CH)	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
} else if (High_byte_addr_ma { if (PRIC	While (Clear L Receive Set inte Set UA If (Low_ If (Low_ ADR_MAT(Send AT { send A	IA = 0; a Low_addr_byt rrrupt; = 1; _byte_addr_mat { PRIOF Send <i>i</i> while (Clear l Set RC } = 1) CH) CK = 0;	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
} else if (High_byte_addr_ma { if (PRIC	While (Clear L Receive Set inte Set UA If (Low_ If (Low_ ADR_MAT(Send AT { send A	IA = 0; a Low_addr_byt rrrupt; = 1; byte_addr_mat { PRIOF Send <i>i</i> while (Clear l Set RC } = 1) CH)	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
} else if (High_byte_addr_ma { if (PRIC	While (Clear L Receive Set inte Set UA If (Low_ If (Low_ ADR_MAT(Send AT { send A	IA = 0; a Low_addr_byt rrrupt; = 1; _byte_addr_mat { PRIOF Send <i>i</i> while (Clear l Set RC } = 1) CH) CK = 0;	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
} else if (High_byte_addr_ma { if (PRIC	While (Clear L Receive Set inte Set UA If (Low_ If (Low_ If (Low_ ADDR_MAT(Send Ā set XM }	IA = 0; a Low_addr_byt rrrupt; = 1; byte_addr_mat { PRIOF Send <i>i</i> while (Clear l Set RC } = 1) CH) CK = 0; IT_MODE;	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;
} else if (High_byte_addr_ma { if (PRIC	While (Clear L Receive Set inte Set UA If (Low_ If (Low_ If (Low_ ADDR_MAT(Send Ā set XM }	IA = 0; a Low_addr_byt rrrupt; = 1; byte_addr_mat { PRIOF Send <i>i</i> while (Clear l Set RC } = 1) CH) CK = 0; IT_MODE;	e; <u>ADDR_MATCH = TRUE;</u> <u>ACK = 0;</u> SSPADD not updated) Hold SCL low; JA = 0;

TABLE 12-3: BAUD RATES FOR SYNCHRONOUS M
--

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909	MHz	SPBRG
RATE (K)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.766	+1.73	255	9.622	+0.23	185
19.2	19.53	+1.73	255	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92
76.8	76.92	+0.16	64	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22
96	96.15	+0.16	51	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18
300	294.1	-1.96	16	307.69	+2.56	12	312.5	+4.17	7	298.3	-0.57	5
500	500	0	9	500	0	7	500	0	4	NA	-	-
HIGH	5000	-	0	4000	-	0	2500	-	0	1789.8	-	0
LOW	19.53	-	255	15.625	-	255	9.766	-	255	6.991	-	255

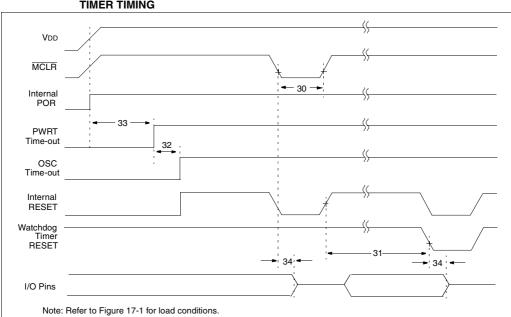
	Fosc = 5	5.0688 MI	Ηz	4 MHz			3.579545	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	NA	-	-	1.202	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	NA	-	-	2.404	+0.16	103	NA	-	-
9.6	9.6	0	131	9.615	+0.16	103	9.622	+0.23	92	9.615	+0.16	25	NA	-	-
19.2	19.2	0	65	19.231	+0.16	51	19.04	-0.83	46	19.24	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	76.923	+0.16	12	74.57	-2.90	11	83.34	+8.51	2	NA	-	-
96	97.48	+1.54	12	1000	+4.17	9	99.43	+3.57	8	NA	-	-	NA	-	-
300	316.8	+5.60	3	NA	-	-	298.3	-0.57	2	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	1267	-	0	100	-	0	894.9	-	0	250	-	0	8.192	-	0
LOW	4.950	-	255	3.906	-	255	3.496	-	255	0.9766	-	255	0.032	-	255

TABLE 12-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG	7.15909	MHz	SPBRG
RATE		%	value		%	value		%	value		%	value
(K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	1.221	+1.73	255	1.202	+0.16	207	1.202	+0.16	129	1.203	+0.23	92
2.4	2.404	+0.16	129	2.404	+0.16	103	2.404	+0.16	64	2.380	-0.83	46
9.6	9.469	-1.36	32	9.615	+0.16	25	9.766	+1.73	15	9.322	-2.90	11
19.2	19.53	+1.73	15	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5
76.8	78.13	+1.73	3	83.33	+8.51	2	78.13	+1.73	1	NA	-	-
96	104.2	+8.51	2	NA	-	-	NA	-	-	NA	-	-
300	312.5	+4.17	0	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	312.5	-	0	250	-	0	156.3	-	0	111.9	-	0
LOW	1.221	-	255	0.977	-	255	0.6104	-	255	0.437	-	255

	Fosc =	5.0688 MI	Ηz	4 MHz			3.57954	5 MHz		1 MHz			32.768 k	Hz	
BAUD RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	0.31	+3.13	255	0.3005	-0.17	207	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.202	+1.67	51	1.190	-0.83	46	1.202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.404	+1.67	25	2.432	+1.32	22	2.232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	NA	-	-	9.322	-2.90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	NA	-	-	18.64	-2.90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	-	-	NA	-	-	NA	-	-
HIGH	79.2	-	0	62.500	-	0	55.93	-	0	15.63	-	0	0.512	-	0
LOW	0.3094	-	255	3.906	-	255	0.2185	-	255	0.0610	-	255	0.0020	-	255

PIC16C6X


SLEEP

Syntax:	[label]	SLEEP							
Operands:	None								
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ \text{O} \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ \text{O} \rightarrow \overline{\text{PD}} \end{array}$								
Status Affected:	TO, PD								
Encoding:	0.0	0000	0110	0011					
Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 13.8 for more details.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	No- Operation	No- Operation	Go to Sleep					
Example:	SLEEP								

SUBLW	Subtract	W from	_iteral					
Syntax:	[label]	SUBLW	k					
Operands:	$0 \le k \le 25$	5						
Operation:	k - (W) \rightarrow	(W)						
Status Affected:	C, DC, Z							
Encoding:	11	110x	kkkk	kkkk				
Description:	The W register is subtracted (2's comple- ment method) from the eight bit literal 'k'. The result is placed in the W register.							
Words:	1							
Cycles:	1							
Q Cycle Activity:	Q1	Q2	Q3	Q4				
	Decode	Read literal 'k'	Process data	Write to W				
Example 1:	SUBLW	0x02						
	Before Instruction							
		W = C = Z =	1 ? ?					
	After Instr	ruction						
		W = C = Z =	1 1; result is 0	positive				
Example 2:	Before Ins	struction						
		W = C = Z =	2 ? ?					
	After Instr	ruction						
		W = C = Z =	0 1; result i 1	s zero				
Example 3:	Before Ins	struction						
		W = C = Z =	3 ? ?					
	After Inst	ruction						
		W = C = Z =	0xFF 0; result is 0	negative				

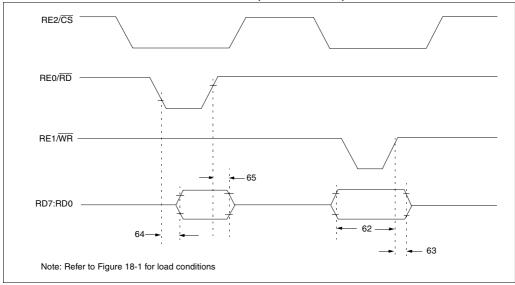
-

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	—	—	ns	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	-	1024Tosc	_	-	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34*	Tioz	I/O Hi-impedance from MCLR Low	-	—	100	ns	

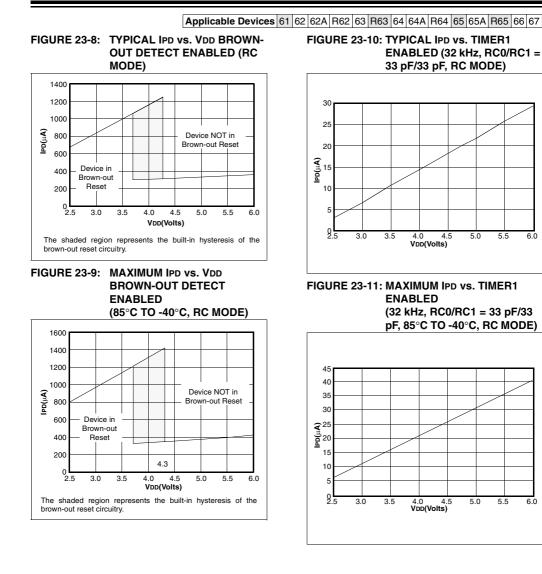

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C6X

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

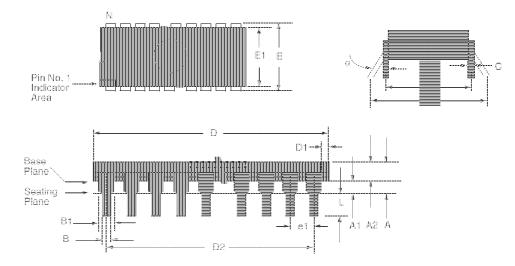
FIGURE 18-8: PARALLEL SLAVE PORT TIMING (PIC16C64A/R64)


TABLE 18-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64A/R64)

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} (setup time)		20	_	_	ns	
				25	_	-	ns	Extended Range Only
63*	TwrH2dtl	$\overline{WR}\uparrow$ or $\overline{CS}\uparrow$ to data–in invalid (hold time)	PIC16 C 64A/R64	20	—	—	ns	
			PIC16 LC 64A.R64	35	_	—	ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data–out valid		I	_	80	ns	
				—	_	90	ns	Extended Range Only
65*	TrdH2dtI	$\overline{\text{RD}}$ or $\overline{\text{CS}}$ to data-out invalid		10	_	30	ns	

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.


PIC16C6X

Data based on matrix samples. See first page of this section for details.

24.7 28-Lead Ceramic CERDIP Dual In-line with Window (300 mil)) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)							
		Millimeters		Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
Α	3.30	5.84		.130	0.230		
A1	0.38	_		0.015	_		
A2	2.92	4.95		0.115	0.195		
В	0.35	0.58		0.014	0.023		
B1	1.14	1.78	Typical	0.045	0.070	Typical	
С	0.20	0.38	Typical	0.008	0.015	Typical	
D	34.54	37.72		1.360	1.485		
D2	32.97	33.07	Reference	1.298	1.302	Reference	
E	7.62	8.25		0.300	0.325		
E1	6.10	7.87		0.240	0.310		
е	2.54	2.54	Typical	0.100	0.100	Typical	
eA	7.62	7.62	Reference	0.300	0.300	Reference	
eB	—	11.43		—	0.450		
L	2.92	5.08		0.115	0.200		
Ν	28	28		28	28		
D1	0.13	_		0.005	_		

APPENDIX A: MODIFICATIONS

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. Timer0 pin is also a port pin (RA4/T0CKI) now.
- 14. FSR is made a full 8-bit register.
- "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, VPP, RB6 (clock) and RB7 (data in/out).
- Power Control register (PCON) is added with a Power-on Reset status bit (POR).(Not on the PIC16C61).
- Brown-out Reset has been added to the following devices: PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/ 67.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	om: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
	plication (optional):	
Woι	ould you like a reply?YN	
Dev	vice: PIC16C6X Literature Number: I	DS30234E
Que	lestions:	
4	What are the best features of this document?	
1.	what are the best leatures of this document?	
2.	How does this document meet your hardware and soft	ware development needs?
3.	Do you find the organization of this data sheet easy to	follow? If not, why?
4.	What additions to the data sheet do you think would er	nhance the structure and subject?
_		
5.	What deletions from the data sheet could be made wit	hout affecting the overall usefulness?
6	Is there any incorrect or misleading information (what a	and whore \2
0.		
7.	How would you improve this document?	
	<i>y</i>	
8.	How would you improve our software, systems, and sil	icon products?