

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc67-04-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											
00h ⁽¹⁾	INDF	Addressing	this location	uses conten	ts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ac	ldress pointe	er					xxxx xxxx	uuuu uuuu
05h	PORTA	—	_	PORTA Dat	a Latch wher	written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB PORTB Data Latch when written: PORTB pins when read									xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Data Latch when written: PORTC pins when read									uuuu uuuu
08h	—	Unimplemented								—	
09h	—	Unimpleme	nted							—	-
0Ah ^(1,2)	PCLATH	—	-	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	(6)	(6)	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	—	Unimpleme	nted							—	-
0Eh	TMR1L	Holding reg	ister for the l	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the I	Aost Signific	ant Byte of th	ie 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	—	-	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	is Serial Por	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	—	Unimpleme	nted							—	_

TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

IADLE	4-0:	SPECIA			GISTERS			0000/07	(Cont.a)	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	dress pointe	er	1			1	xxxx xxxx	uuuu uuuu
85h	TRISA	_	—	PORTA Da	ta Direction R	egister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction I	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction I	Register						1111 1111	1111 1111
88h ⁽⁵⁾	TRISD	PORTD Da	ta Direction I	Register						1111 1111	1111 1111
89h ⁽⁵⁾	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Dat	ta Direction I	Bits	0000 -111	0000 -111
8Ah ^(1,2)	PCLATH	—	Write Buffer for the upper 5 bits of the Program Counter							0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE ⁽⁶⁾	(4)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	—	—	—	_	—	—	—	CCP2IE	0	0
8Eh	PCON	—	—	—	_	—	—	POR	BOR	dd	uu
8Fh	_	Unimpleme	nted				•	•		_	_
90h	-	Unimpleme	nted							—	—
91h	-	Unimpleme	nted							—	—
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Por	t (I ² C mode)	Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	—	Unimpleme	nted							—	_
96h	-	Unimpleme	nted							—	—
97h	-	Unimpleme	nted							—	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generator R	egister						0000 0000	0000 0000
9Ah	-	Unimpleme	nted							—	—
9Bh	—	Unimpleme	nted							-	-
9Ch	-	Unimpleme	nted							—	_
9Dh	-	Unimpleme	nted							—	—
9Eh	—	Unimpleme	nted							-	—
9Fh	-	Unimpleme	nted							-	—

TABLE 4-6: SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67 (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: PIE1<6> and PIR1<6> are reserved on the PIC16C66/67, always maintain these bits clear.

5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.

6: PSPIF (PIR1<7>) and PSPIE (PIE1<7>) are reserved on the PIC16C66, maintain these bits clear.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit				
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset 				
bit 7-6:	bit 7-6: Reserved: Always maintain these bits clear.											
bit 5:	bit 5: RCIE: USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt											
bit 4:	 4: TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt 											
bit 3:	SSPIE: Syn 1 = Enable 0 = Disable	nchronous s the SSP i es the SSP	Serial Port interrupt interrupt	Interrupt Er	nable bit							
bit 2:	CCP1IE : C 1 = Enable 0 = Disable	CP1 Interrus the CCP1	upt Enable i interrupt 1 interrupt	bit								
bit 1:	TMR2IE : TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt											
bit 0:	TMR1IE : T 1 = Enable 0 = Disable	MR1 Overfi s the TMR1 es the TMR	low Interruj I overflow i 1 overflow i	ot Enable bi nterrupt interrupt	t							

FIGURE 4-13: PIE1 REGISTER FOR PIC16C63/R63/66 (ADDRESS 8Ch)

FIGURE 4-14: PIE1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 8Ch)

5.0 I/O PORTS

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Some pins for these I/O ports are multiplexed with an alternate function(s) for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

5.1 PORTA and TRISA Register

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

All devices have a 6-bit wide PORTA, except for the PIC16C61 which has a 5-bit wide PORTA.

Pin RA4/T0CKI is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input.

Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin.

Reading PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with Timer0 module clock input to become the RA4/T0CKI pin.

EXAMPLE 5-1: INITIALIZING PORTA

BCF	STATUS,	RPO ;	;
BCF	STATUS,	RP1 ;	PIC16C66/67 only
CLRF	PORTA	;	Initialize PORTA by
		;	clearing output
		;	data latches
BSF	STATUS,	RP0	: Select Bank 1
MOVLW	0xCF		Value used to
			: initialize data
			direction
MOVWF	TRISA		Set RA<3:0> as inputs
			RA<5:4> as outputs
			TRISA<7:6> are always
			read as '0'.

FIGURE 5-1: BLOCK DIAGRAM OF THE RA3:RA0 PINS AND THE RA5 PIN

FIGURE 5-2: BLOCK DIAGRAM OF THE RA4/T0CKI PIN

TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2 FIGURE 7-3:

FIGURE 7-4: **TMR0 INTERRUPT TIMING**

7.2 Using Timer0 with External Clock

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.2.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

FIGURE 10-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)

			DAMO				DAMA	
0-0	0-0	R/W-U	R/W-U	R/W-U	R/W-U	H/W-U	R/W-U	
	—	CCPXX	CCPXY	CCPXM3	CCPxM2	CCPxM1	CCPxM0	R = Readable bit
bit7							bit0	VV = VVIIIable bit
								as '0'
								- n =Value at POR reset
bit 7-6:	Unim	plemente	d: Read a	s '0'				
bit 5-4:	CCP	X:CCPxY	: PWM Le	ast Signific	ant bits			
	<u>Captu</u>	ure Mode						
	Unus	ed						
	Comp	pare Mode						
	Unus	ed						
	Theory	<u>IVIOCIE</u> o bito oro t	ha two I S	be of the D		olo. Tho oig	ht MCha ara	found in CCPPyl
	111656					cie. The eig		
bit 3-0:	CCP	(M3:CCPx	MO: CCP	K Mode Sel	ect bits			
	0000	= Capture	Compare	PVVIVI OTT (resets CCP	x module)		
	0100	- Capture	mode ev	ory rising e	euge adae			
	0110	= Capture	mode, ev	erv 4th risi	na edae			
	0111	= Capture	e mode, ev	ery 16th ris	sing edge			
	1000	= Compai	re mode, s	set output o	n match (bit	CCPxIF is	set)	
	1001	= Compar	re mode, o	lear output	on match (I	oit CCPxIF i	is set)	
	1010	= Compar	re mode, g	enerate so	tware interr	upt on matc	h (bit CCPxIF	is set, CCPx pin is unaffected)
	1011	= Compar	e mode, tr	igger speci	al event (CC	PxIF bit is s	et; CCP1 res	ets TMR1; CCP2 resets TMR1)
	11xx	= PWM m	lode					

10.1 Capture Mode

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1 (Figure 10-2). An event is defined as:

- · Every falling edge
- · Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

10.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an
	output, a write to PORTC can cause a cap-
	ture condition.

FIGURE 10-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

10.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work consistently.

10.1.3 SOFTWARE INTERRUPT

When the Capture event is changed, a false capture interrupt may be generated. The user should clear enable bit CCP1IE (PIE1<2>) to avoid false interrupts and should clear flag bit CCP1IF following any such change in operating mode.

EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION

Desired PWM frequency is 78.125 kHz, Fosc = 20 MHz TMR2 prescale = 1

 $1/78.125 \text{ kHz} = [(PR2) + 1] \cdot 4 \cdot 1/20 \text{ MHz} \cdot 1$ $12.8 \ \mu s = [(PR2) + 1] \cdot 4 \cdot 50 \text{ ns} \cdot 1$ PR2 = 63

Find the maximum resolution of the duty cycle that can be used with a 78.125 kHz frequency and 20 MHz oscillator:

$= 2^{\text{PWM RESOLUTION}} \bullet 1/20 \text{ MHz} \bullet 1$
$= 2^{\text{PWM RESOLUTION}} \bullet 50 \text{ ns} \bullet 1$
$= 2^{\text{PWM RESOLUTION}}$
= (PWM Resolution) • $log(2)$
= PWM Resolution

At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and a 20 MHz oscillator, i.e., $0 \leq$ CCPR1L:CCP1CON<5:4> \leq 255. Any value greater than 255 will result in a 100% duty cycle.

In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased.

Table 10-3 lists example PWM frequencies and resolutions for Fosc = 20 MHz. The TMR2 prescaler and PR2 values are also shown.

10.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 10-4: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE

Add	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	e on: DR, DR	Valu all o Res	e on ther sets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh ⁽⁴⁾	PIR2	—	_	_	_		_	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh ⁽⁴⁾	PIE2	—	_	_	_		_	_	CCP2IE		0		0
87h	TRISC	PORTC D	PORTC Data Direction register									1111	1111
0Eh	TMR1L	Holding re	egister fo	r the Least	Significant	Byte of the	16-bit TMF	R1 register	r	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	egister fo	r the Most	Significant I	Byte of the 1	16-bit TMF	1 register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0 0	0000	uu	uuuu
15h	CCPR1L	Capture/C	Compare/	PWM1 (LS	B)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/0	Compare/	PWM1 (MS	SB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0 0	0000	00	0000
1Bh ⁽⁴⁾	CCPR2L	Capture/C	Capture/Compare/PWM2 (LSB)									uuuu	uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/0	Compare/	PWM2 (MS	SB)					xxxx	xxxx	uuuu	uuuu
1Dh ⁽⁴⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0 0	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes.

Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽²⁾	(3)	RCIF ⁽¹⁾	TXIF ⁽¹⁾	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000
0Dh ⁽⁴⁾	PIR2	—	—	—	-	—	—	—	CCP2IF		
8Ch	PIE1	PSPIE ⁽²⁾	(3)	RCIE ⁽¹⁾	TXIE ⁽¹⁾	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000
8Dh ⁽⁴⁾	PIE2	—	_	_	_	_	_	_	CCP2IE		
87h	TRISC	PORTC I		1111 1111	1111 1111						
11h	TMR2	Timer2 m	iodule's reg		0000	0000					
92h	PR2	Timer2 m	Timer2 module's Period register								
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/0	Compare/P	WM1 (LSB)				L		xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/0	Compare/P	WM1 (MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh ⁽⁴⁾	CCPR2L	Capture/0	Compare/P	WM2 (LSB)		·		·	·	xxxx xxxx	uuuu uuuu
1Ch ⁽⁴⁾	CCPR2H	Capture/0	Compare/P	WM2 (MSB)					xxxx xxxx	սսսս սսսս
1Dh ⁽⁴⁾	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 10-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

 Legend:
 x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in this mode.

 Note
 1:
 These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only.

2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear.

3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear.

4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67.

13.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 13-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 13-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 13-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 13-7: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

13.2.4 RC OSCILLATOR

For timing insensitive applications the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 13-8 shows how the RC combination is connected to the PIC16CXX. For Rext values below 2.2 kΩ, the oscillator operation may become unstable or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping Rext between 3 k Ω and 100 k Ω .

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-5 for waveform).

FIGURE 13-8: RC OSCILLATOR MODE

14.1 Instruction Descriptions

ADDLW	Add Literal and W								
Syntax:	[<i>label</i>] A	DDLW	k						
Operands:	$0 \le k \le 25$	55							
Operation:	(W) + k –	→ (W)							
Status Affected:	C, DC, Z								
Encoding:	11	111x	kkkk	kkkk					
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'	Process data	Write to W					
Example:	ADDLW 0x15 Before Instruction W = 0x10 After Instruction W = 0x25								

ANDLW	AND Lite	eral with	w						
Syntax:	[<i>label</i>] ANDLW k								
Operands:	$0 \le k \le 25$	55							
Operation:	(W) .AND	0. (k) \rightarrow (W)						
Status Affected:	Z								
Encoding:	11	1001	kkkk	kkkk					
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal "k"	Process data	Write to W					
Example	ANDLW	0x5F							
	Before In	struction	0x43						
	After Inst	ruction	0140						
		= W	0x03						

ADDWF	Add W a	nd f							
Syntax:	[label] A	[<i>label</i>] ADDWF f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(W) + (f)	→ (desti	nation)						
Status Affected:	C, DC, Z								
Encoding:	00	0111	dfff	ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example	ADDWF	FSR,	0						
	Before In	struction W = FSR =	0x17 0xC2						
	After Inst	ruction							
		W = FSR =	0xD9 0xC2						

ANDWF	AND W v	vith f								
Syntax:	[<i>label</i>] Al	NDWF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$									
Operation:	(W) .AND. (f) \rightarrow (destination)									
Status Affected:	Z									
Encoding:	00	0101	dfff	ffff						
Description:	AND the W register with register 'f'. If 'd' is 0 the result is stored in the W regis- ter. If 'd' is 1 the result is stored back in register 'f'.									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Example	ANDWF	FSR,	1							
	Before In	struction	I							
		W = ESB =	0x17 0xC2							
	After Inst	ruction	0.02							
		W = FSR =	0x17 0x02							

COMF	Complement f	DECFSZ	Decrement f, Skip if 0					
Syntax:	[<i>label</i>] COMF f,d	Syntax:	[label] DECFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(\bar{f}) \rightarrow (destination)$	Operation:	(f) - 1 \rightarrow (destination);					
Status Affected:	Z		skip if result = 0					
Encoding:	: 00 1001 dfff ffff Status Affected:		None					
Description:	The contents of register 'f' are comple-	Encoding:	00 1011 dfff ffff					
	W. If 'd' is 1 the result is stored back in register 'f'.	Description:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed					
Words:	1		back in register 'f'. If the result is 1, the next instruction, is					
Cycles:	1		executed. If the result is 0, then a NOP is executed instead making it a 2Tcy instruc-					
Q Cycle Activity:	Q1 Q2 Q3 Q4		tion.					
	Decode Read Process Write to	Words:	1					
		Cycles:	1(2)					
		Q Cycle Activity:	Q1 Q2 Q3 Q4					
Example	COMF REG1, 0 Before Instruction		Decode Read register 'f' data Vrite to destination					
	REG1 = 0x13	If Skip:	(2nd Cycle)					
	REG1 = 0x13		Q1 Q2 Q3 Q4					
	W = 0xEC		No-No-No-OperationOperationOperation					
DECF	Decrement f	Example						
Syntax:	[<i>label</i>] DECF f,d	Example	GOTO LOOP					
Operands:	0 ≤ f ≤ 127 d ∈ [0,1]		CONTINUE • •					
Operation:	(f) - 1 \rightarrow (destination)		Before Instruction					
Status Affected:	Z		PC = address HERE					
Encoding:	00 0011 dfff ffff		CNT = CNT - 1					
Description:	Decrement register 'f'. If 'd' is 0 the result is stored in the W register. If 'd' is		if CNT = 0, PC = address CONTINUE					
Words:	1 the result is stored back in register 1.		if CNT \neq 0,					
Cycles:	1		FC = addless HERE+1					
O Cycle Activity	. 01 02 03 04							
a cyclo / loundy.	Decode Read register data destination							
Example	DECF CNT, 1							
	CNT = 0x01 $Z = 0$ After Instruction							
	CNT = 0x00 Z = 1							

IORWF	Inclusive	Inclusive OR W with f								
Syntax:	[label]	IORWF	f,d							
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$									
Operation:	(W) .OR.	(W) .OR. (f) \rightarrow (destination)								
Status Affected:	Z	Z								
Encoding:	00	0100	dfff	ffff						
Description:	Inclusive (ter 'f'. If 'd' W register back in re	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'.								
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write to destination						
Example	IORWF		RESULT	, 0						
	Before In	struction	1							
		RESULT	= 0x	13						
	After Inst	ruction	= 0x	91						
		RESULT	= 0x	13						
		W	= 0x	93						
		Z	= 1							

MOVLW	Move Literal to W								
Syntax:	[label]	MOVLW	/ k						
Operands:	$0 \le k \le 25$	55							
Operation:	$k \rightarrow (W)$								
Status Affected:	None								
Encoding:	11	00xx	kkkk	kkkk					
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'	Process data	Write to W					
Example	MOVLW After Inst	0x5A							
		W =	0x5A						

-

MOVF	Move f								
Syntax:	[label]	MOVF	f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(f) \rightarrow (destination)								
Status Affected:	Z								
Encoding:	00	1000	dfff	ffff					
Description:	The contents of register f is moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register f er cince status flag Z is affected								
Words:	1								
Cycles:	1								
Q Cycle Activity:	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process data	Write to destination					
Example	MOVF	FSR,	0						
	egister								

MOVWF	Move W to f									
Syntax:	[label]	MOVW	Ff							
Operands:	$0 \leq f \leq 127$									
Operation:	$(W) \rightarrow (f)$									
Status Affected:	None									
Encoding:	00	0000	lfff	ffff						
Description:	Move data from W register to register									
Words:	1									
Cycles:	1									
Q Cycle Activity:	Q1	Q2	Q3	Q4						
	Decode	Read register 'f'	Process data	Write register 'f'						
Example	MOVWF	OPTIC	DN_REG							
	Before In	struction		-						
		W	= 0xFI = 0x4F	=						
	After Instruction									
	OPTION = 0x4 W = 0x4									
		••	0.411							

RETLW	Return v	vith Liter	al in W		RETURN	Return f	rom Sub	routine	
Syntax:	[<i>label</i>] RETLW k			Syntax:	[label]	RETUR	N		
Operands:	$0 \le k \le 2$	55			Operands:	None			
Operation:	$k \rightarrow (W);$				Operation:	$TOS \rightarrow PC$			
	$TOS \rightarrow PC$			Status Affected:	None				
Status Affected:	None		Encodina:	00	0000	0000	1000		
Encoding:	11	01xx	kkkk	kkkk	Description:	Return fro	m subrout	ine. The st	ack is
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the				POPed an is loaded i is a two cy	the top of top of the top of top	of the stack gram cour ction.	k (TOS) hter. This	
	instruction	return address). This is a two cycle Words:				1			
Words:	1				Cycles:	2			
Cycles:	2				Q Cycle Activity:	Q1	Q2	Q3	Q4
Q Cycle Activity:	_ Q1	Q2	Q3	Q4	1st Cycle	Decode	No- Operation	No- Operation	Pop from the Stack
1st Cycle	Decode	Read literal 'k'	No- Operation	Write to W, Pop from the	2nd Cycle	No- Operation	No- Operation	No- Operation	No- Operation
2nd Cycle	No-	No-	No-	No-	Example	RETURN			
Zha Oyoic	Operation	aration Operation Operation			After Interrupt				
Example	CALL TABL	E ;W con ;offse ;W now	tains tabl t value has table	le value			PC =	TOS	
TABLE	ADDWF PC RETLW k1 RETLW k2 •	;W = o ;Begin ;	ffset table						
	RETLW kn	; End	of table						
	Before In	W =	0x07						
	After Inst	ruction	0.07						
		W =	value of k8	3					

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

TABLE 17-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)

Parameter No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1	No Prescaler		0.5Tcy + 20	—	_	ns	
		input low time	With Prescaler	PIC16 C 62/64	10	—	_	ns	
				PIC16 LC 62/64	20	—	_	ns	
51*	TccH	CCP1	No Prescaler		0.5Tcy + 20	—	_	ns	
		input high time	With Prescaler	PIC16 C 62/64	10	—	_	ns	
				PIC16 LC 62/64	20	—	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4 or 16)
53	TccR	CCP1 output rise time	е	PIC16 C 62/64	_	10	25	ns	
					_	25	45	ns	
54	TccF	CCP1 output fall time		PIC16 C 62/64	_	10	25	ns	
				PIC16 LC 62/64	_	25	45	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 22-5: BROWN-OUT RESET TIMING

TABLE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
30	TmcL	MCLR Pulse Width (low)	2	—	—	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc	—	—	TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset		_	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μs	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 22-11: SPI SLAVE MODE TIMING (CKE = 0)

FIGURE 22-12: SPI SLAVE MODE TIMING (CKE = 1)

24.6 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Package Group: Ceramic CERDIP Dual In-Line (CDP)											
	Millimeters Inches										
Symbol	Min	Max	Notes	Min	Max	Notes					
α	0°	10°		0°	10°						
А		5.080			0.200						
A1	0.381	1.778		0.015	0.070						
A2	3.810	4.699		0.150	0.185						
A3	3.810	4.445		0.150	0.175						
В	0.355	0.585		0.014	0.023						
B1	1.270	1.651	Typical	0.050	0.065	Typical					
С	0.203	0.381	Typical	0.008	0.015	Typical					
D	22.352	23.622		0.880	0.930						
D1	20.320	20.320	Reference	0.800	0.800	Reference					
E	7.620	8.382		0.300	0.330						
E1	5.588	7.874		0.220	0.310						
e1	2.540	2.540	Reference	0.100	0.100	Reference					
eA	7.366	8.128	Typical	0.290	0.320	Typical					
eB	7.620	10.160		0.300	0.400						
L	3.175	3.810		0.125	0.150						
N	18	18		18	18						
S	0.508	1.397		0.020	0.055						
S1	0.381	1.270		0.015	0.050						

APPENDIX A: MODIFICATIONS

The following are the list of modifications over the PIC16C5X microcontroller family:

- Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- 2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STA-TUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
- 5. OPTION and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake-up from SLEEP through interrupt is added.
- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT), are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. Timer0 pin is also a port pin (RA4/T0CKI) now.
- 14. FSR is made a full 8-bit register.
- "In-circuit programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, VPP, RB6 (clock) and RB7 (data in/out).
- Power Control register (PCON) is added with a Power-on Reset status bit (POR).(Not on the PIC16C61).
- Brown-out Reset has been added to the following devices: PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/ 67.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps:

- Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.